Lithium Methyl Carbonate as a Reaction Product of Metallic Lithiumand Dimethyl Carbonate

PDF Version Also Available for Download.

Description

To improve the understanding of passive film formation on metallic lithium in organic electrolyte, we synthesized and characterized lithium methyl carbonate (LiOCO{sub 2}CH{sub 3}), a prototypical component of the film. The chemical structure of this compound was characterized with Nuclear Magnetic Resonance (NMR) and Fourier Transform Infrared Spectroscopy (FTIR), and its thermal stability and decomposition pathway was studied by thermo-gravimetric analysis (TGA). The FTIR spectrum of chemically synthesized compound enabled us to resolve multiple products in the passive film on lithium in dimethyl carbonate (DMC). Lithium methyl carbonate is only one of the components, the others being lithium oxalate and ... continued below

Creation Information

Zhuang, Guorong V.; Yang, Hui; Ross Jr., Philip N.; Xu, Kang & Jow, T. Richard October 16, 2005.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

To improve the understanding of passive film formation on metallic lithium in organic electrolyte, we synthesized and characterized lithium methyl carbonate (LiOCO{sub 2}CH{sub 3}), a prototypical component of the film. The chemical structure of this compound was characterized with Nuclear Magnetic Resonance (NMR) and Fourier Transform Infrared Spectroscopy (FTIR), and its thermal stability and decomposition pathway was studied by thermo-gravimetric analysis (TGA). The FTIR spectrum of chemically synthesized compound enabled us to resolve multiple products in the passive film on lithium in dimethyl carbonate (DMC). Lithium methyl carbonate is only one of the components, the others being lithium oxalate and lithium methoxide.

Source

  • Journal Name: Electrochemical and Solid State Letters; Journal Volume: 9; Journal Issue: 2; Related Information: Journal Publication Date: 2006

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: LBNL--58495
  • Grant Number: DE-AC02-05CH11231
  • Office of Scientific & Technical Information Report Number: 877335
  • Archival Resource Key: ark:/67531/metadc878637

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • October 16, 2005

Added to The UNT Digital Library

  • Sept. 21, 2016, 2:29 a.m.

Description Last Updated

  • Sept. 29, 2016, 3:09 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 1

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Zhuang, Guorong V.; Yang, Hui; Ross Jr., Philip N.; Xu, Kang & Jow, T. Richard. Lithium Methyl Carbonate as a Reaction Product of Metallic Lithiumand Dimethyl Carbonate, article, October 16, 2005; Berkeley, California. (digital.library.unt.edu/ark:/67531/metadc878637/: accessed October 17, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.