Proteomic Characterization of Yersinia pestis Virulence

PDF Version Also Available for Download.

Description

Yersinia pestis, the etiological agent of plague, functions via the Type III secretion mechanism whereby virulence factors are induced upon interactions with a mammalian host. Here, the Y. pestis proteome was studied by two-dimensional differential gel electrophoresis (2-D DIGE) under physiologically relevant growth conditions mimicking the calcium concentrations and temperatures that the pathogen would encounter in the flea vector and upon interaction with the mammalian host. Over 4100 individual protein spots were detected of which hundreds were differentially expressed in the entire comparative experiment. A total of 43 proteins that were differentially expressed between the vector and host growth conditions ... continued below

Physical Description

PDF-file: 35 pages; size: 0.1 Mbytes

Creation Information

Chromy, B; Murphy, G; Gonzales, A; Fitch, J P & McCutchen-Maloney, S L January 5, 2005.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

Yersinia pestis, the etiological agent of plague, functions via the Type III secretion mechanism whereby virulence factors are induced upon interactions with a mammalian host. Here, the Y. pestis proteome was studied by two-dimensional differential gel electrophoresis (2-D DIGE) under physiologically relevant growth conditions mimicking the calcium concentrations and temperatures that the pathogen would encounter in the flea vector and upon interaction with the mammalian host. Over 4100 individual protein spots were detected of which hundreds were differentially expressed in the entire comparative experiment. A total of 43 proteins that were differentially expressed between the vector and host growth conditions were identified by mass spectrometry. Expected differences in expression were observed for several known virulence factors including catalase-peroxidase (KatY), murine toxin (Ymt), plasminogen activator (Pla), and F1 capsule antigen (Caf1), as well as putative virulence factors. Chaperone proteins and signaling molecules hypothesized to be involved in virulence due to their role in Type III secretion were also identified. Other differentially expressed proteins not previously reported to contribute to virulence are candidates for more detailed mechanistic studies, representing potential new virulence determinants. For example, several sugar metabolism proteins were differentially regulated in response to lower calcium and higher temperature, suggesting these proteins, while not directly connected to virulence, either represent a metabolic switch for survival in the host environment or may facilitate production of virulence factors. Results presented here contribute to a more thorough understanding of the virulence mechanism of Y. pestis through proteomic characterization of the pathogen under induced virulence.

Physical Description

PDF-file: 35 pages; size: 0.1 Mbytes

Source

  • Journal Name: Journal of Bacteriology; Journal Volume: 177; Journal Issue: 23

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: UCRL-JRNL-209060
  • Grant Number: W-7405-ENG-48
  • Office of Scientific & Technical Information Report Number: 875952
  • Archival Resource Key: ark:/67531/metadc878568

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • January 5, 2005

Added to The UNT Digital Library

  • Sept. 21, 2016, 2:29 a.m.

Description Last Updated

  • Dec. 9, 2016, 6:52 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 2
Total Uses: 3

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Chromy, B; Murphy, G; Gonzales, A; Fitch, J P & McCutchen-Maloney, S L. Proteomic Characterization of Yersinia pestis Virulence, article, January 5, 2005; Livermore, California. (digital.library.unt.edu/ark:/67531/metadc878568/: accessed December 11, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.