Flux analysis of central metabolic pathways in Geobactermetallireducens during reduction of solubleFe(III)-NTA

PDF Version Also Available for Download.

Description

We analyzed the carbon fluxes in the central metabolism ofGeobacter metallireducens strain GS-15 using 13C isotopomer modeling.Acetate labeled in the 1st or 2nd position was the sole carbon source,and Fe-NTA was the sole terminal electron acceptor. The measured labeledacetate uptake rate was 21 mmol/gdw/h in the exponential growth phase.The resulting isotope labeling pattern of amino acids allowed an accuratedetermination of the in vivo global metabolic reaction rates (fluxes)through the central metabolic pathways using a computational isotopomermodel. The tracer experiments showed that G. metallireducens containedcomplete biosynthesis pathways for essential metabolism, and this strainmight also have an unusual isoleucine biosynthesis route (usingacetyl-CoA ... continued below

Creation Information

Tang, Yinjie J.; Chakraborty, Romy; Garcia-Martin, Hector; Chu,Jeannie; Hazen, Terry C. & Keasling, Jay D. January 1, 2007.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Sponsor

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

We analyzed the carbon fluxes in the central metabolism ofGeobacter metallireducens strain GS-15 using 13C isotopomer modeling.Acetate labeled in the 1st or 2nd position was the sole carbon source,and Fe-NTA was the sole terminal electron acceptor. The measured labeledacetate uptake rate was 21 mmol/gdw/h in the exponential growth phase.The resulting isotope labeling pattern of amino acids allowed an accuratedetermination of the in vivo global metabolic reaction rates (fluxes)through the central metabolic pathways using a computational isotopomermodel. The tracer experiments showed that G. metallireducens containedcomplete biosynthesis pathways for essential metabolism, and this strainmight also have an unusual isoleucine biosynthesis route (usingacetyl-CoA and pyruvate as the precursors). The model indicated that over90 percent of the acetate was completely oxidized to CO2 via a completetricarboxylic acid (TCA) cycle while reducing iron. Pyruvate carboxylaseand phosphoenolpyruvate carboxykinase were present under theseconditions, but enzymes in the glyoxylate shunt and malic enzyme wereabsent. Gluconeogenesis and the pentose phosphate pathway were mainlyemployed for biosynthesis and accounted for less than 3 percent of totalcarbon consumption. The model also indicated surprisingly highreversibility in the reaction between oxoglutarate and succinate. Thisstep operates close to the thermodynamic equilibrium possibly becausesuccinate is synthesized via a transferase reaction, and the conversionof oxoglutarate to succinate is a rate limiting step for carbonmetabolism. These findings enable a better understanding of therelationship between genome annotation and extant metabolic pathways inG. metallireducens.

Source

  • Journal Name: Applied and Environmental Microbiology; Journal Volume: 73; Journal Issue: 12; Related Information: Journal Publication Date: June 2007

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: LBNL--63533
  • Grant Number: DE-AC02-05CH11231
  • DOI: 10.1128/AEM.02986-06 | External Link
  • Office of Scientific & Technical Information Report Number: 918684
  • Archival Resource Key: ark:/67531/metadc878512

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • January 1, 2007

Added to The UNT Digital Library

  • Sept. 22, 2016, 2:13 a.m.

Description Last Updated

  • Sept. 25, 2017, 3:51 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 1

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Tang, Yinjie J.; Chakraborty, Romy; Garcia-Martin, Hector; Chu,Jeannie; Hazen, Terry C. & Keasling, Jay D. Flux analysis of central metabolic pathways in Geobactermetallireducens during reduction of solubleFe(III)-NTA, article, January 1, 2007; Berkeley, California. (digital.library.unt.edu/ark:/67531/metadc878512/: accessed December 10, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.