Single Bunch Monopole Instability

PDF Version Also Available for Download.

Description

We study single bunch stability with respect to monopole longitudinal oscillations in electron storage rings. Our analysis is different from the standard approach based on the linearized Vlasov equation. Rather, we reduce the full nonlinear Fokker-Planck equation to a Schroedinger-like equation which is subsequently analyzed by perturbation theory. We show that the Haissinski solution [3] may become unstable with respect to monopole oscillations and derive a stability criterion in terms of the ring impedance.

Creation Information

Podobedov, B. & Heifets, S. September 12, 2005.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Authors

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

We study single bunch stability with respect to monopole longitudinal oscillations in electron storage rings. Our analysis is different from the standard approach based on the linearized Vlasov equation. Rather, we reduce the full nonlinear Fokker-Planck equation to a Schroedinger-like equation which is subsequently analyzed by perturbation theory. We show that the Haissinski solution [3] may become unstable with respect to monopole oscillations and derive a stability criterion in terms of the ring impedance.

Source

  • Contributed to IEEE Particle Accelerator Conference (PAC 99), New York, 29 Mar - 2 Apr 1999

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: SLAC-PUB-11475
  • Grant Number: AC02-76SF00515
  • Office of Scientific & Technical Information Report Number: 878445
  • Archival Resource Key: ark:/67531/metadc878459

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • September 12, 2005

Added to The UNT Digital Library

  • Sept. 21, 2016, 2:29 a.m.

Description Last Updated

  • Sept. 26, 2017, 3:43 p.m.

Usage Statistics

When was this article last used?

Congratulations! It looks like you are the first person to view this item online.

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Podobedov, B. & Heifets, S. Single Bunch Monopole Instability, article, September 12, 2005; [Menlo Park, California]. (digital.library.unt.edu/ark:/67531/metadc878459/: accessed October 22, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.