Detectability and printability of EUVL mask blank defects for the32 nm HP node

PDF Version Also Available for Download.

Description

The readiness of a defect-free extreme ultraviolet lithography (EUVL) mask blank infrastructure is one of the main enablers for the insertion of EUVL technology into production. It is essential to have sufficient defect detection capability and understanding of defect printability to develop a defect-free EUVL mask blank infrastructure. The SEMATECH Mask Blank Development Center (MBDC) has been developing EUVL mask blanks with low defect densities with the Lasertec M1350 and M7360, the 1st and 2nd generations, respectively, of visible light EUVL mask blank inspection tools. Although the M7360 represents a significant improvement in our defect detection capability, it is time ... continued below

Creation Information

Cho, Wonil; Han, Hak-Seung; Goldberg, Kenneth A.; Kearney,Patrick A. & Jeon, Chan-Uk August 1, 2007.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

The readiness of a defect-free extreme ultraviolet lithography (EUVL) mask blank infrastructure is one of the main enablers for the insertion of EUVL technology into production. It is essential to have sufficient defect detection capability and understanding of defect printability to develop a defect-free EUVL mask blank infrastructure. The SEMATECH Mask Blank Development Center (MBDC) has been developing EUVL mask blanks with low defect densities with the Lasertec M1350 and M7360, the 1st and 2nd generations, respectively, of visible light EUVL mask blank inspection tools. Although the M7360 represents a significant improvement in our defect detection capability, it is time to start developing a 3rd generation tool for EUVL mask blank inspection. The goal of this tool is to detect all printable defects; therefore, understanding defect printability criteria is critical to this tool development. In this paper, we will investigate the defect detectability of a 2nd generation blank inspection tool and a patterned EUVL mask inspection tool. We will also compare the ability of the inspection tools to detect programmed defects whose printability has been estimated from wafer printing results and actinic aerial images results.

Source

  • SPIE Photomask BACUS, Monterey, CA, September18-19, 2007

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: LBNL--63508
  • Grant Number: DE-AC02-05CH11231
  • Office of Scientific & Technical Information Report Number: 918124
  • Archival Resource Key: ark:/67531/metadc878449

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • August 1, 2007

Added to The UNT Digital Library

  • Sept. 22, 2016, 2:13 a.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 1

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Cho, Wonil; Han, Hak-Seung; Goldberg, Kenneth A.; Kearney,Patrick A. & Jeon, Chan-Uk. Detectability and printability of EUVL mask blank defects for the32 nm HP node, article, August 1, 2007; (digital.library.unt.edu/ark:/67531/metadc878449/: accessed September 21, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.