BNWL-B-127

#### HANFORD MULTIPURPOSE TL DOSIMETER

n

#### FIELD TESTS AND EVALUATION\*

L. L. Nichols, G. W. R. Endres, D. B. Shipler E. E. Oscarson,<sup>1</sup> and L. L. Crass<sup>2</sup>

August, 1972

NOTICE This report was prepared as an account of work sponsored by the United States Government. Neither the United States nor the United States Energy Research and Development Administration, nor any of their employees, nor any of their contractors, subcontractors, or their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness or usefulness of any information, apparatus, product or process disclosed, or represents that its use would not infringe privately owned rights.

Battelle Pacific Northwest Laboratories Richland, Washington 99352

\*This paper is based on work performed under United States Atomic Energy Commission Contract AT(45-1)-1830.

1 Address: Atlantic Richfield Hanford Company, Richland, Washington

<sup>2</sup>Address: Douglas United Nuclear, Inc., Richland, Washington

# DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency Thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

# DISCLAIMER

Portions of this document may be illegible in electronic image products. Images are produced from the best available original document.

#### HANFORD MULTIPURPOSE TL DOSIMETER

#### FIELD TESTS AND EVALUATION

A new multipurpose thermoluminescent dosimeter (TLD) has been developed for Hanford to replace the currently used betagamma film dosimeter for personnel monitoring of radiation exposure. Implementation of this new system began in January, 1972. Before implementation, field tests were conducted to compare the multipurpose TLD with film dosimeters and exposure rate instruments that are currently used to assist in the evaluation of dose to personnel. It must be pointed out that in this type of study, it is very difficult to identify the type and quantity of radiation to any degree of accuracy so that most of the results can be used only for comparison purposes. A description of the multipurpose TLD and the lab tests that were performed in its evaluation are described in another report.<sup>(1)</sup> An exploded view of the dosimeter is shown in Figure 1.

These field tests were conducted in two main parts. One set of tests consisted of placing two multipurpose dosimeters, two beta-gamma film dosimeters and two NTA neutron film dosimeters on two-gallon polyethylene jugs filled with water. These jugs were placed in normal work locations in Hanford facilities and remained in position until a significant exposure had been accumulated on the dosimeters. Exposure rates were measured with typical exposure rate instruments at the beginning of the exposure and were postulated to be constant during the time the jugs were in position.

The second portion of the field test consisted of selecting employees to wear the new TL dosimeters in addition to their assigned beta-gamma and NTA neutron film dosimeters. Selection of participating employees from the Atlantic Richfield Hanford Company (ARHCO) was made on the basis of work location, job classification, and the anticipated exposure during the test period. The work locations selected were Purex, B Plant, Z Plant, the Tank Farms, and the 222-S Analytical Laboratory. Selected participants each had a recent history of above average monthly radiation exposure. Process operators, radiation monitors, laboratory workers, and maintenance craftsmen, in approximately equal numbers on each shift, participated in the tests. Field tests were also conducted with Douglas United Nuclear (DUN) employees. Selection of DUN employees was made on a similar basis as used for ARHCO but involved a smaller group of employees. Stephens self-reading pocket dosimeters (pencils) were also worn by the DUN employees.

The NTA and beta-gamma film dosimeters were processed and interpreted using normal procedures. The multipurpose dosimeters were read out on a modified TLD reader and the results were interpreted using the following four equations:

Penetrating dose = 
$$\frac{R_1}{k_1}$$
 (1)

Derma dose = penetrating dose +  $\frac{R_1 - k_2 R_2}{k_2}$ 

(2)

Thermal nuetron dose = 
$$\frac{R_3 - R_4}{k_4}$$
 (3)

Fast neutron dose = 
$$\frac{R_4 - k_5 R_5 - k_6 (R_3 - R_4)}{k_7}$$
 (4)

where  $R_1$ ,  $R_2$ ,  $R_3$ ,  $R_4$  and  $R_5$  are the net integrated counts from the phototube due to the thermoluminescence of each TLD block, respectively. The calibration constants  $k_1^{--k_7}$  are all determined by exposure to known calibration sources.

The calibration sources used for the multipurpose dosimeters were radium, strontium, plutonium fluoride and thermal neutrons from the Hanford sigma pile. The calibration sources used to interpret the film dosimeters were radium, uranium beta, 16-keV X-ray, plutonium fluoride, and thermal neutrons from the Hanford sigma pile.

The most meaningful results were from the tests which use the set of six dosimeters (2 TLD, 2 beta-gamma film and 2 NTA film) symmetrically attached to a jug filled with water. These jugs were placed in the 105-KE, 105-N, Purex, B Plant, 234-5, 325, 327, 3745 and 3745-B Buildings for various periods of time to accumulate exposure. CP and snoopy readings were made at each of the 49 jug locations. The dosimeters were all interpreted and the results are tabulated in Table I, page 9. There are no surprises from the comparisons.

Due to the thinner effective filter in the TLD badges (0.025" aluminum vs 0.020" tantalum), the penetrating dose interpretations tend to be higher than for the film dosimeters. In general, the derma doses are about the same for those doses that

-3-

can reasonably be interpreted from film. There are some discrepancies at high exposures where the film is difficult to read. The fast neutron interpretations for the multipurpose dosimeters were more consistent than for NTA film. The multipurpose dosimeter gave a positive indication of neutron exposure in all areas where neutrons were known to exist. This was not the case with NTA film.

Another striking comparison is the precision of the two TLD readings for a given location compared to the two film readings. Paired film dosimeter readings which show significant differences are both given in the Table, whereas the two TLD dosimeters, in all cases, agreed with each other within 10 percent.

As an overall comparison of the two systems (TLD vs film), the various doses determined by the dosimeters in each building are totaled and shown for easy comparison. The TLD interpretations were simply summed. Where discrepancies appeared in the pairs of films for penetrating and derma dose, that reading most consistent with the corresponding CP integrated dose and TLD result was used. All of the penetrating dose comparisons were good except for B Plant. After studying the densitometer readings for those films, it was concluded that the film was too black to permit an X-ray interpretation which should have been significant. Therefore, the assignment of 35 percent of this X-ray dose to penetrating dose (which is the customary procedure) could not be done. Therefore, the penetrating dose interpretation for film was low.

All of the derma dose comparisons were good except at the 325 Building where the TLD indicated 50 percent more than the

film. The largest contributor to this discrepancy was the badges at 604 BG location where the TLD indicated twice as much derma as the film. If the dose interpretation obtained from the TLD's is compared to the integrated CP dose, the agreement is reasonable for both these work locations.

Special attention should be given the special laboratory exposures at the bottom of Table I. These exposures were made to known sources where the doses could be measured and/or calculated. In all cases, the TLD indicated more reasonable interpretations than film dosimeters.

An identical but less extensive study was conducted at a later time and the neutron results are shown in Table II. In addition to the film, TLD and field instruments, a tissue equivalent proportional counter (TEPC) was used to measure neutrons. Again, there are some wide variations between the film and TLD measurement of fast neutron dose. Whenever the field instruments indicated the presence of neutrons, the TLD responded positively. On top of the KE Reactor, adjacent to #23 vertical safety rod, the TEPC and TLD system were exposed in a very nonuniform neutron field with the TLD placed in the center. The difference in TEPC and TLD dosimeter results was expected, but the film missed most of the neutron dose. Other exposures show a wide variation in film results for fast neutron dose. Both film and TLD do a satisfactory job measuring thermal neutrons, although the film results are more scattered.

Average quality factors  $(\overline{QF})$  for fast neutrons were obtained for 13 different field and laboratory exposures of the TEPC. The

-5-

average of the  $\overline{QF}$  for these exposures is 10.1. For widely varying geometry, the range in  $\overline{QF}$  is from 8.5 for a bare  $^{252}$ Cf to 12.0 for a heavily shielded storage vault containing plutonium fuels. These measurements indicate that 10 is very good  $\overline{QF}$  for fast neutron dose interpretation in Hanford facilities. A  $\overline{QF}$  of 3 is used for all thermal neutron dose interpretations. These  $\overline{QF}$ values have been utilized in interpretation of dose equivalent for the multipurpose dosimeter.

The second portion of the field tests consisted of comparing dose interpretation from the multipurpose dosimeter with results obtained from the film dosimeter normally worn by the employee. A summary by work location of November, 1970 and January, 1971 data is given in Table 3, page 14. A complete list of the data summarized in this Table is given in Appendix A. Although everyone in a given building or classification group does not get exactly the same type or amount of exposure, their combined exposures can be discussed with some meaning. Overall, the results for each month are consistent. The penetrating dose interpretations show the differences in filters between the two systems which tend to indicate more dose to the TLD in the presence of intermediate energy photons and intermediate and high energy beta particles (conditions prevalent at Purex, 222-S, T and B Plants and with radiation monitors). The penetrating dose interpretation at 234-5 Building was influenced by the large X-ray component of the exposure. The filter system of the film dosimeter tends to over-estimate the penetrating portion of the X-ray contribution of the exposure.

-0-

The TLD derma and penetrating dose interpretations are low compared to film for the 234-5 Building. The film dosimeter has been observed to over-respond compared to TLD and pencils in similar circumstances. The high TLD derma interpretation for Purex, Tank Farms, and B Plant is most likely due to the high penetrating interpretation from beta and X-ray exposures. The film interprets more of this type of exposure as non-penetrating than does TLD. The sums for film are still less than for TLD.

The TL and film derma interpretation for T plant, radiation monitors and Shop's personnel are comparable even though the penetrating dose for each may not be. The total exposures were interpreted in different ways in the two badge systems but both gave similar results. The high derma interpretation at 222-S Building by film can be reconciled by considering two conditions. First, the TLD is calibrated to 90Sr, which is prevalent in the building, and the film is calibrated to uranium-beta. Wherefore, the film over-responds to Sr- $\beta$  by about 40 percent. Secondly, the film interprets soft X-rays (8 keV) as equal mrads of beta exposure while the TLD interprets only 14 percent of that exposure. Both of these conditions prevail in the 222-S Building.

Both types of dosimeters indicated the presence of neutrons in the 234-5 Building only. The slow neutron interpretations were comparable, but the TLD indicated fast neutron exposures on a greater number of dosimeters than did film. This was expected because of the higher sensitivity of the TLD 600's when compared to NTA film.

The DUN field studies were also concluded in January, 1971. The results for November, December and January are included in

-7--

Table IV. The Tld, film, and pencil results were quite consistent. A few very obvious exceptions can readily be attributed to negligence in carrying out wearing directions by the individuals assigned TLD dosimeters. The data shown in Appendix A have been marked with an asterisk when we were able to determine that negligence in wearing instructions was the main reason for discrepancy in the data from the two badge systems.

The overall results from the multipurpose dosimeter have indicated that it works well in the wide variety of exposure situations encountered in Hanford facilities. The calibrations and methods of evaluation described provide acceptable dose interpretations for routine personnel monitoring for exposures to beta particles, X-rays, gamma rays, slow, and fast neutrons, either singularly or in combinations. The TLD dose interpretations are not as complex as those for film nor does the TLD have the limitations exhibited by the film dosimeter system. The multipurpose dosimeter has met or surpassed all of the design criteria. The implementation of the system will be a decided improvement in the field of personnel dosimetry at Hanford.

#### ACKNOWLEDGEMENTS

The authors acknowledge the help of the Health Physics and Radiation Monitoring Groups in the Atlantic Richfield Hanford Co. and Douglas United Nuclear. The cooperation of the many employees who wore duplicate dosimeters for several months is also gratefully acknowledged. This work could not have been conducted without the help and assistance of the Calibrations Facility of Battelle-Northwest.

-8-

## TABLE I

## SPECIAL FIELD STUDIES

(Two-gallon polyethylene jug filled with water was used as phantom)

|            |                |      | •                 |        |                   |     | •         |                                 |         |                      |                 |         |
|------------|----------------|------|-------------------|--------|-------------------|-----|-----------|---------------------------------|---------|----------------------|-----------------|---------|
|            |                | Pen  | mrad              | Derma  | <u>mrad</u>       | NsN | mrem      | N<br>f                          | mrem    | Exposure<br>Duration | CP <sup>2</sup> | Snoopy  |
| _ <i>P</i> | lork Location  | TLD  | Film <sup>1</sup> | TLD    | Film <sup>1</sup> | TLD | Film      | TLD                             | Film    | <u>(hr)</u>          | <u>(mr)</u>     | (mrem)  |
| PU         | REX            |      |                   | ·.     |                   | · . |           | •                               |         |                      |                 |         |
|            | Q-3            | 1.20 | 100               | 120    | 100               | 9   | 20        | 180                             | 180     | 121                  | 120             | 160     |
|            | H-2            | 230  | 160               | 230    | (290)<br>200      |     | 30<br>0   |                                 | <u></u> | 120                  | 240             | 400 BBC |
|            | Q-Cell         | 40   | (30)<br>0         | 40     | (30)              |     |           |                                 |         | 120                  | 120             |         |
|            | RAC            | 2350 | (2500)<br>1300    | 2350   | (2500)<br>1300    |     | 0<br>40   |                                 | fog     | 49                   | 1470            |         |
|            | F 15           | 180  | 60                | 400    | 700               |     |           |                                 |         | 49                   | 539<br>196      |         |
|            | B-5            | 230  | (250)<br>120      | 230    | (250)<br>120      |     | 0<br>· 30 |                                 |         | 1                    | 300             |         |
|            | L-10 .         | 160  | 160               | 160    | 170.              |     | · 0       |                                 |         | 120                  | 240             |         |
|            | RI-20          | 260  | 220               | 260    | 220               | 30  | 40        | 790                             | 90      | 120                  | 120             | 720     |
|            | <sup>.</sup> . | 3570 | 3480              | 3790 . | 4260              | 39  | 57        | 970                             | 270     |                      | 3640/<br>2806   | 880     |
| <u>B-</u>  | Plant          |      |                   |        |                   |     |           |                                 |         |                      |                 |         |
|            | 51             | 890  | 60                | 3760   | 820<br>(5060)     |     |           |                                 |         | 23                   | 4600/<br>690    |         |
|            | IAW            | 450  | 150               | 1170   | 1650              |     | 6         |                                 |         | 22                   | 1540/<br>550    |         |
|            | 14-1           | 530  | (310)<br>600      | 530    | (310)<br>1250     |     | 12        |                                 |         | 3.67                 | 590/<br>260     |         |
|            | 14-Cell        | 90   | 70                | 90     | (180)<br>100      | ·   |           |                                 |         | 22.5                 | 180             |         |
|            | West Stor      | 2300 | 1630              | 2300   | 1630              | 6   | 9         | <del>100</del> - <del>100</del> | fog     | 3.67                 | 2940/<br>1840   |         |
|            | 26-Cell        | 300  | 0<br>(30)         | 1750   | 4000<br>(1720)    |     | 6         |                                 |         | <b>4</b>             | 4000/<br>1400   |         |
|            |                | 4560 | 2250              | 9510   | 10550             | 6   | 33        |                                 |         |                      | 13850/<br>4920  |         |

-9-

-10-

BNWL-B-127

|                 |              |                   |       |                   |       | •                |                  |       |          |                 |                  |
|-----------------|--------------|-------------------|-------|-------------------|-------|------------------|------------------|-------|----------|-----------------|------------------|
| · · ·           |              |                   |       | TABLE             | I (Co | nt'd)            |                  |       |          | •               |                  |
|                 | Pen          | mrad              | Derma | mrad              | N m   | rem              | ~ <sup>N</sup> f | nrem  | Exposure | CP <sup>2</sup> | 0                |
| Work Location   | TLD          | Film <sup>1</sup> | TLD   | Film <sup>1</sup> | TLD   | Film             | TLD              | Film  | Duration | <u>(mr)</u>     | Snoopy<br>(mrem) |
| Z Plant, 234-5  |              |                   |       |                   |       |                  |                  |       |          |                 |                  |
| 228-17DC        | 150          | 260<br>(170)      | 210   | 310               |       | . 9              | 200              |       | 72.4     | 150             | 200              |
| 192-194         | 140          | 140               | 210   | 140               | 138   | 0<br>45          | 1360             | 1660. | 72.7     | 150             | 950              |
| 228-нбіі        | 80           | 100               | 80    | 120               | 18    | 12               | 650              | 320   | 2.34     | 60              | 330              |
| 228-958         | 450          | 530               | 450   | 530               | 135   | 30.              | 730              | 350   | 72.5     | 510             | 360              |
| 228-H618BS      | 100          | 130<br>(270)      | 100   | 140<br>(330)      | 6     | 0<br>9           | 170              |       | 72.5     | 510             | 360              |
| 194             | 60           | 80                | 60    | 20<br>90          | 9     | 6                | 390              | 210   | 2.75     | 90              | 550              |
| 221-Center      | 1470         | 1270              | 1470  | 1270              | 18    | 6<br>0           | 940              | fog   | 73       | 1460            | 660              |
| 221-N           | 1640         | 1360              | 1640  | 1360              | 24    | 0<br>_ <u>18</u> | 1060             | fog   | 73       | 2480            | 1310             |
| · · · .         | 4090         | 3920              | 4220  | 4060              | 348   | 135              | 5500             | 2540  |          | 5410            | 11200            |
| 105-KE (Reactor | Operat       | ing)              |       |                   | ·     |                  |                  |       |          |                 | ,                |
| y mon           | 1600         | (2000)<br>1350    | 1600  | (2000)<br>1350    | 6     |                  |                  |       | 44       | 1890/<br>1670   | <50              |
| X-1,2A          | 340          | 340<br>(190)      | 340   | 340<br>(190)      | 72    | 24               | 980              | 0     | 42.75    | 260             | 430              |
| Face-8510W      | 2İ0          | 320<br>(200)      | 210   | 320<br>(200)      | 12    | .† <b>9</b>      | 300              |       | 164      | 164             | 80               |
| X-1,2D          | 450          | 410               | 500   | 410               | 30    | 15               |                  |       | 42.75    | 300             | 70               |
| γ mon,3L        | 490          | 450               | 490   | 450               |       | 6                |                  |       | 164      | 490             | <20              |
| Face-0174       | 370          | 480               | 370   | 480               | · .9  | . 15             | 330              | 0     | 164      | 330             | 80               |
| KER             | 4620         | 4500.             | 4620  | 4500              | 3     |                  |                  | -7    | .43.5    | 5870            | ·                |
| Top #21         | 1020         | 1160              | 1020  | 1160<br>          | 219   | 42               | 5100             | 130   | 43.5     | 1020            | 1700             |
|                 | <u>9</u> 100 | 9390              | 9150  | 9390              | 351   | 111              | 6710             | 130   |          | 10324/<br>10104 | 2430             |

|            |               | •       |                 | •     | TABLE :         | I (co      | <u>nt'd)</u> |           | •    | •                    |                      |          |
|------------|---------------|---------|-----------------|-------|-----------------|------------|--------------|-----------|------|----------------------|----------------------|----------|
|            |               | Pen     | mrad            | Derma | mrad            | N<br>s     | mrem         | N n       | nrem | Exposure<br>Duration | CP <sup>2</sup>      | Snoopy   |
| We         | ork Location  | TLD .   | Film            | TLD   | Film            | TLD        | <u>Film</u>  | TLD       | Film | (hr)                 | (mr)                 | (mrem)   |
| <u>1(</u>  | 05-N (Reactor | not ope | rating)         | -     |                 |            |              |           | • •  |                      |                      |          |
|            | Top-NW        | 300     | 280             | 300   | 280             |            | 9            |           |      | 23.25                | 350                  |          |
|            | Face          | 560     | 480             | 560   | 480             |            | 12           | <b></b>   |      | 22.5                 | 1580/<br>1350        |          |
| ·          | Top Ball      | 800     | 670             | 800   | 670             |            | 15           |           |      | .67                  | . 400                | <u> </u> |
|            | 51'V-11,12R   | 90      | . 80            | 90    | 80<br>(120)     |            |              |           |      | 145.25               | 290                  |          |
|            | V-11 #6       | 1110    | 1130            | 1110  | 1130            | 3          | 12           | 10        |      | 23.5                 | 1760                 |          |
|            | Ball RE       | 1300    | 1160            | 1335  | 1160            |            | 15           |           |      | 2.0                  | 1500                 |          |
|            | V-12,R,Pipe   | 7410    | (7000)<br>10000 | 7410  | (7000)<br>10000 |            |              |           | ·    | 23.34                | 700                  |          |
|            | 308 Decon     | 1480    | 1230            | 1480  | 1230            |            | 15           |           | 00   | 144                  | 1300/<br><u>1000</u> |          |
|            | •             | 13050   | 12030           | 13440 | 12070           | 3          | 78           |           |      |                      | 7880/<br>7350        | 0.       |
| <u>3</u> 2 | 2 <u>5-B</u>  |         |                 |       |                 |            |              |           |      |                      |                      |          |
|            | 32            | 950     | 850             | 950   | 850             | 3          | 12           |           |      | 14                   | 1010                 |          |
|            | 200           | 300     | 250             | 300   | 250             |            | 12           | . <b></b> |      | <b>1</b> 4 %         | 660                  |          |
|            |               | 1250    | 1100            | 1250  | 1100            | 3          | 24           |           |      |                      | 1760                 |          |
| <u>32</u>  | 25            |         |                 |       |                 |            |              |           |      |                      |                      |          |
|            | 604 GB        | 1330    | 1550            | 3170  | 1660            | <b>_</b> ` | 27           | 0         | fog  | 19.5                 | 2730/<br>2340        | <b></b>  |
|            | 603 нд        | 1060    | . 560           | 2080  | 1390            | 00         | 9            | <b></b>   | . 00 | 19.5                 | 2370/<br>880         |          |
|            | •             | 2850    | 2640            | 5710  | 3690            | Ü          | 36           |           |      |                      | 5100/<br>3220        |          |
|            |               |         |                 |       |                 |            |              |           |      |                      |                      |          |

-11-

|                   |      |                   |       | TABLE             | 1 (0   | ont a)      |      |      |                      |                 |              |
|-------------------|------|-------------------|-------|-------------------|--------|-------------|------|------|----------------------|-----------------|--------------|
|                   | Pen  | mrad              | Derma | mrad              | N mrem |             | N f  | mrem | Exposure<br>Duration | CP <sup>2</sup> | Sncopy       |
| Work Location     | TLD  | Film <sup>1</sup> | TLD   | Film <sup>1</sup> | TLD    | <u>Film</u> | TLD  | Film | (hr)                 | <u>(mr)</u>     | (mrem)       |
| 327               |      |                   |       |                   |        | •           |      |      |                      |                 |              |
| Basin             | 80   | 0<br>(50)         | 100   | 40<br>(90)        |        |             |      | ·    | 43                   | 410             |              |
| B Cell            | 1010 | 820               | 1080  | 830               |        | 9           |      |      | 18.5                 | 1850            |              |
|                   | 1090 | 870               | 1180  | 920               |        | 9           |      |      |                      | 2260            | · .          |
| Special           | •    |                   |       |                   |        |             |      |      |                      |                 |              |
| Ra y              | 310  | 260               | . 310 | 260               |        | 6           |      |      |                      | 300             | (Radicon)    |
| PuF4              | 100  | 60                | 100   | 60                | 6      |             | 620  | 460  | 112                  |                 | 590 (calib)  |
| 90 <sub>Sr</sub>  | 100  |                   | 315   | 690               |        |             |      |      | 64                   | 275             | (VCP)        |
| 252 <sub>Cf</sub> | 180  | 135               | 180   | 135               | 12     | 6           | 1470 | 4500 | 65                   |                 | 2070 (calib) |

TABLE I (Cont'd)

<sup>1</sup>Results in parentheses were used in totals.

<sup>2</sup>First reading is CP window open, second reading window closed.

-12-

#### TABLE II

# SPECIAL STUDIES (mrem)

(Two-gallon polyethylene jug filled with water was used as phantom)

| · ·             | Thermal      | Neutrons | Fast Neutrons |       |         |       |  |
|-----------------|--------------|----------|---------------|-------|---------|-------|--|
| Location        | Film         | TLD      | Snoopy        | TEPC  | Film    | TLD   |  |
| <u>105-KE</u>   |              | •        |               |       |         |       |  |
| X-l             | 54           | 57       | 60            | 270   | 0       | 530   |  |
| Top #23         | 150          | 141      | 1400          | 1700  | 470     | 4100  |  |
| Mon             | 27           | < 3 .    | . <b>O</b>    | 0     | 0       | 60    |  |
| Front Face      | 33           | 7        | 50            | 900   | 0       | 250   |  |
| 308 Bldg.       |              |          |               |       | _       |       |  |
| Rm 208          | 81           | 84       | 2000          | 2700  | 270/260 | 3700  |  |
| Corr #7         | 180          | 390      | 4200          | 14100 | 1270    | 11100 |  |
| Vent Rm.        | 0            | 3        | 30            | . 30  | 0       | 0     |  |
| Rm C            | 75           | 18       | 700           | 730   | 70      | 870   |  |
| 234-5 Bldg.     |              | •        |               |       |         |       |  |
| 17 DC           | 27           | 6        | 340           |       | 0       | 100   |  |
| HC-11           | 75           | 12       | 280           |       | 0       | 180   |  |
| 9B Top Stairs   | 21           | 11       | 410           |       | 100     | 440   |  |
| 9B Under Stairs | 0            | 18       | 280           |       | 60      | 450   |  |
| Rm 221          | 21           | 18       | 410           | 790   | 170     | 460   |  |
| Rm 192          | 45           | 66       | 510           | 620   | 950     | 490   |  |
| Rm 192-C        | ,0<br>       | 6        | 150           | 230   | 310     | 240   |  |
| Rm 193          | 36           | 36       | 380           | 500   | 770     | 600   |  |
| 2731-Z          | , <b>O</b> - | < 3      | 200           |       | 60      | 50    |  |

-13-

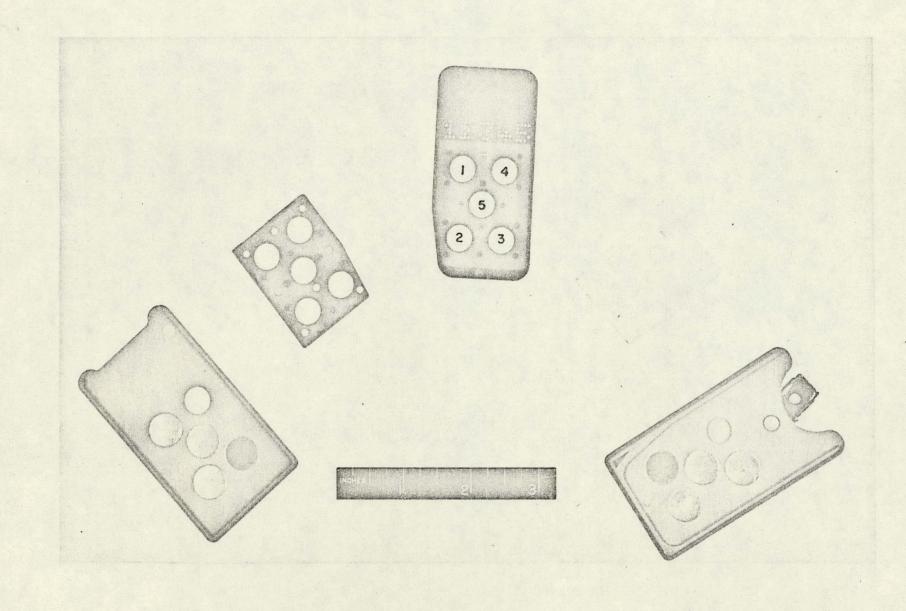
## TABLE III

-14-

| • •       | mrad. | Pen  | mrad 1 | Derma       | mrem<br>Neutron S |      | mre<br>Neuti | em<br>con F |
|-----------|-------|------|--------|-------------|-------------------|------|--------------|-------------|
|           | TLD   | Film | TLD    | <u>Film</u> | TLD               | Film | TLD          | Film        |
| 234-5     | 4030  | 4600 | 4550   | 5520        | 132               | 129  | 2850         | 240         |
| Purex     | 910   | 120  | 1370   | 1140        |                   |      |              | ·           |
| 222-5     | 930   | 850  | 1710   | 3160        |                   |      |              |             |
| Shops     | 540   | 580  | 540    | 610         |                   |      |              |             |
| Tank Farm | 3690  | 2210 | 3890   | 2590        |                   |      |              | •           |
| T Plant   | . 30  | 0    | 50     | 70          |                   |      | •            |             |
| B Plant   | 800   | 350  | 1190   | 1000        | · .               |      |              |             |
| Rad. Mon. | . 760 | 520  | 9.30   | 860         |                   |      |              |             |
| TOTAL     | 11690 | 9230 | 14230  | 14950       | 132               | 129  | 2850         | 240         |

#### ARHCO FIELD STUDIES - NOVEMBER 1970

ARHCO FIELD STUDIES - JANUARY 1971


| 234-5     | 4250  | 4450  | 5070  | 5950  | 177 | 450 | 1360 | 480 ·    |  |
|-----------|-------|-------|-------|-------|-----|-----|------|----------|--|
| Purex     | 1580  | 480   | 2510  | 1710  |     |     |      | · .      |  |
| 222-S     | 1150  | 740   | 2160  | 3060  |     | •   |      |          |  |
| Shops     | 680   | 550   | 720   | 750   |     |     |      |          |  |
| Tank Farm | 4790  | 3330  | 5190  | 4030  |     |     |      |          |  |
| T Plant   | 120   | 0     | 120   | 190   |     | ٠   | · ·  |          |  |
| B Plant   | 1520  | 580   | 2070  | 1290  |     |     |      |          |  |
| Rad. Mon. | 580   | 390   | 780   | 810   |     |     |      | :        |  |
|           |       |       |       |       |     |     |      | <u> </u> |  |
| TOTAL     | 14670 | 10520 | 18620 | 17790 | 177 | 450 | 1360 | 480      |  |
|           |       |       |       |       |     |     |      |          |  |

## TABLE IV

|       | P    | en (mrad    | <u>s)</u> | +    | rma<br>ads) |
|-------|------|-------------|-----------|------|-------------|
| Month | TLD  | <u>Film</u> | Pencil    | TLD  | Film        |
| Nov.  | 1990 | 1390        | 1235      | 1990 | 1440        |
| Dec.  | 6410 | 7500        | 6305      | 6560 | 7500        |
| Jan.  | 210  | 950         | 995       | 250  | 950         |

## DUN FIELD STUDIES

# AN EXPLODED VIEW OF THE HANFORD MULTIPURPOSE DOSIMETER CARD



## APPENDIX A

#### ARHCO - NOVEMBER FIELD TESTS RESULTS

| Delle      | Work     | Pen(r | mrads) |     | rads<br>erma | mrem<br>Neut | Fast<br>crons |     | n Slow<br>crons |
|------------|----------|-------|--------|-----|--------------|--------------|---------------|-----|-----------------|
| Badge<br># | Location | TLD   | Film   | TLD | Film         | TLD          | Film          | TLD | Film            |
| 1          | a        | 70    | 70     | 70  | 100          |              |               |     |                 |
| 2          | a        | 170   | 730    | 170 | 750          | 180          | 0             | 6   | 20              |
| 3          | b        | 0     | 0      | 0   | 0            |              | <del></del>   |     |                 |
| 4          | с        | 330   | 230    | 690 | 1090         |              |               |     |                 |
| 5          | d        | 90    | 60     | 90  | 60           |              |               | ·   |                 |
| 6          | đ        | Ó     | 130    | 0   | 150          |              |               |     |                 |
| 7          | đ        | 230   | 210    | 230 | 220          |              |               |     |                 |
| . 8        | a        | 30    | 80     | 60  | . 90         | 0            | 110           | 0   | 0               |
| 9 ·        | е        | 170   | 130    | 170 | 130          |              |               |     |                 |
| 10         | Ъ        | 30    | 0      | 30  | 0            |              |               |     |                 |
| 11         | с        | 140   | 40     | 310 | 550          |              |               |     |                 |
| . 12       | c        | 80    | 40     | 80  | 60           |              |               |     |                 |
| 13         | с        | 60    | 30     | 120 | 250          |              |               |     |                 |
| 14         | e .      | 80    | 60     | 80  | 60           |              |               |     |                 |
| 15         | е        | 60    | 50     | 60  | 50           |              |               |     |                 |
| 16         | ė        | 140   | 110    | 140 | 110          |              |               |     |                 |
| 17         | с        | 460   | 320    | 460 | 320          | ·            |               | · . |                 |
| 18         | C        | 0     | 0      | 0   | 0            |              |               | . • |                 |
| 19         | a        | 120   | 90.נ   | 190 | 240          |              |               | 3   |                 |
| 20         | a        | 150   | 220    | 250 | 280          |              |               |     |                 |
| 21         | a        | 80    | 110    | 110 | 140          | 140          | . 0           | 3   | 0               |
| 22         | ā        | 80    | 140    | 90  | 170          |              |               |     |                 |
| 23         | 8.       | 180   | 250    | 180 | 290          | 410          | 0             | 15  | 0               |
| 24         | e        | 160   | 140    | 160 | 140          |              |               |     |                 |
| 25         | a        | 210   | 240    | 240 | 280          | 260          | 0             | 12  | 40              |
|            |          |       |        |     |              |              |               |     |                 |

| ATTENDIX A (cont u) |          |              |        |                 |              |      |               |     |                |  |
|---------------------|----------|--------------|--------|-----------------|--------------|------|---------------|-----|----------------|--|
| Badge               | Work     | <u>Pen(r</u> | mrads) |                 | rads<br>erma | · ·  | Fast<br>trons |     | n Slow<br>rons |  |
|                     | Location | TLD          | Film   | TLD             | Film         | TLD  | Film          | TLD | Film           |  |
| 26                  | Ъ        | 40           | 0      | 40              | 0            |      |               |     | •              |  |
| 27                  | f        | 30           | 0      | 50              | 70           |      |               |     |                |  |
| 28 ·                | 8.       | 290          | 240    | 350             | 280          | 0    | 0             | 3.  | 0              |  |
| 29                  | с        | 100          | 0      | 100             | 80           |      |               |     |                |  |
| 30                  | е        | 100          | 50     | 100             | 50           |      |               |     |                |  |
| 31 .                | е        | 210          | 130    | 210             | 130          |      |               |     |                |  |
| 32                  | , a      | 450          | 290    | 470             | 340          | 130  | 0             | 15  | 40             |  |
| 33                  | a        | 130          | 90     | 140             | 120          | 120  | · 0           | · 3 | 0              |  |
| 34                  | a        | 160          | 140    | 160             | 160          | 80   | 0             | 3   | 0.             |  |
| 35                  | g        | 30           | 20     | 30              | 20           |      | •             |     |                |  |
| 36                  | a        | 70           | 120    | 70              | 140          | 100  | 0             | 3   | 0              |  |
| 37                  | Ъ        | 0.           | 0      | <sup>.</sup> 20 | 40           |      |               |     |                |  |
| 38                  | æ        | 110          | 140    | 110             | 160          | 90   | 0             | 6   | 0              |  |
| 39                  | a        | 140          | 110    | 140             | 130          | ·390 | 0             | 15  | 0              |  |
| 40                  | a        | 120          | 150    | 120             | 190          |      |               |     |                |  |
| 41                  | · e      | 220          | 180    | 220             | 180          |      |               |     |                |  |
| 42                  | a        | 30           | 50     | 40              | 60           | 90   | 0             | 3   | 0              |  |
| 43                  | a        | 160          | 230    | 210             | 280          | 270  | 130           | 9   | 30             |  |
| 44 .                | Ⴆ        | 0            | 0      | 0               | 0            |      |               |     |                |  |
| 45                  | a        | 150          | 180    | 150             | 210          | 160  | 0             | 3   | 0              |  |
| 46                  | с        | 60           | 30     | 110             | 240          |      |               | •   |                |  |
| 47                  | a        | 80           | 60     | 120             | 90           | 40   | 0             | 3,  | 0              |  |
| 48                  | b        | 70           | 50     | 70              | 50           |      |               |     |                |  |
| . 49                | C.       | 90           | 50     | 90              | 190          | •    | 1             |     |                |  |
| 50                  | , a      | 40           | 50     | 50              | 60           | 0    | 0             | 3   | 0              |  |
| 51                  | a        | 80           | 130    | 80              | 150          |      |               |     |                |  |
| 52                  | с        | 80           | 400    | 130             | 530          |      |               |     |                |  |
| 53                  | a        | 200          | 240    | 230             | 290          | 130  | 0             | 3   | 0              |  |
| 54                  | с        | · 90         | 30     | 180             | 250          |      |               |     | •              |  |
| 55                  | a        | 80           | 0      | 100             | 70           | 40   | 0             | 9   | 0              |  |
|                     |          |              |        |                 |              |      |               |     |                |  |

APPENDIX A (Cont'd)

-17-

-18-

BNWL-B-127

|   | n Slo <sup>r</sup><br>rons |     | n Fast<br><u>itrons</u> |     | ads<br>erma |     | nrads) | <u>Pen(</u> m | Work       | Badge           |
|---|----------------------------|-----|-------------------------|-----|-------------|-----|--------|---------------|------------|-----------------|
| m | Fil                        | TLD | Film                    | TLD | Film        | TLD | Film   | TLD           | Location   | <u>.</u> #      |
| 0 | I                          | 9   | 0                       | 160 | O           | 20  | 0      | 20            | a          | 56              |
|   |                            |     |                         |     | 0           | 30  | 0      | 0             | g          | 57              |
|   |                            |     |                         |     | 0           | 0   | · 0    | 0             | g          | 58 ·            |
|   |                            |     |                         |     | 70          | 260 | 70     | 260           | e          | 59              |
|   |                            |     |                         |     | 30          | 60  | 30     | 60            | ·e         | 60              |
|   |                            |     |                         |     | 50          | 0   | 0      | 0             | Ъ          | 61              |
|   |                            |     |                         |     | 40          | 30  | 0      | 20            | ъ          | 62              |
|   |                            |     |                         |     | 0           | 0   | 0      | 0             | Ъ          | 63              |
| • |                            |     |                         |     | 60          | 110 | 60     | 110           | e .        | 64              |
|   |                            |     | •                       |     | 270         | 170 | 0      | 60            | Ъ          | 65 <sup>°</sup> |
|   |                            |     |                         |     | . 20        | 30  | 0      | 30            | Ъ          | 66              |
|   |                            |     |                         | •   | 0           | · 0 | 0      | 0             | ъ          | 67              |
|   |                            |     |                         |     | 180         | 0   | 90     | 0             | g          | 68              |
|   |                            |     |                         |     | 90          | 60  | 30     | 40            | g          | 69              |
|   |                            |     |                         |     | 120         | 60  | 0      | 30            | g          | 70              |
|   |                            | •   |                         |     | 0           | 20  | 0      | 0             | Ъ          | 71              |
| 0 | . (                        | 3   | 0                       | 60  | 50          | 70  | 30     | 70            | ъ          | 72              |
|   |                            |     |                         |     | 160         | 220 | 160    | 220           | е          | 73              |
|   |                            |     | • •                     |     | 30          | 110 | 30     | 70            | Ъ          | 74              |
|   |                            |     |                         |     | 0           | 0   | 0      | 0             | g          | 75              |
|   |                            | •   |                         |     | 20          | 0   | 0      | 0             | Ъ          | 76              |
|   |                            |     |                         |     | 20          | 0   | 0      | 0             | g          | 77              |
|   |                            |     |                         |     | 310         | 380 | 220    | 290           | g          | 78              |
|   |                            |     |                         | •   | 30          | 90  | 0      | 60            | . <b>b</b> | 79              |
|   |                            |     | •                       |     | 190         | 100 | 70     | 100           | е          | 80              |
|   |                            |     |                         |     | 50          | 0   | 0      | 0             | g          | 81              |
|   |                            |     |                         |     | 0           |     | 0      | 0             | b          | 82              |
|   |                            |     |                         |     | 0           |     | 0.     | 0             | g          | 83              |
|   |                            |     |                         |     | 0           | 80  | 0      | 20            | Ъ          | 84              |
|   |                            |     |                         |     | 160         | 170 | 110    | 170           | g          | 85              |

APPENDIX A (Cont'd)

# APPENDIX A (Cont'd)

|        | Badge | Work     | <u>Pen(r</u> | nrads)      |            | rads<br>erma |     | n Fast<br>trons |     | n Slow<br>rons |   |
|--------|-------|----------|--------------|-------------|------------|--------------|-----|-----------------|-----|----------------|---|
|        | #     | Location | TLD          | <u>Film</u> | TLD        | <u>Film</u>  | TLD | Film            | TLD | Film           |   |
|        | . 86  | е        | 20           | 0           | 40         | 20           |     |                 |     | • •            |   |
|        | 87    | g        | 40           | 0           | 90         | 110          |     |                 |     |                |   |
|        | 88    | g        | 50           | 0           | 100        | 120          |     |                 |     |                |   |
|        | 89    | · g      | 390          | 300         | 390        | 310          |     |                 |     |                |   |
|        | 90    | ъ        | 40           | 0           | .60        | 0            |     |                 |     |                |   |
|        | 91    | Ъ        | 100          | 0           | 150        | 0            |     |                 |     |                | · |
| ·      | 92    | е        | 260          | 100.        | 380        | 100          |     |                 |     |                |   |
|        | 93    | g        | 70           | O           | 230        | 0            |     |                 |     |                |   |
|        | 94    | е        | 260          | 150         | 260        | 150          |     |                 |     |                |   |
|        | 95    | е        | 270          | 130         | 270        | 130          |     |                 |     |                |   |
|        | 96    | g        | 30           | 0           | 40         | . 30         | •   |                 |     |                |   |
|        | 97    | ъ        | 60           | 20          | 80         | 80           |     |                 |     |                |   |
|        | 98    | Ъ        | 70           | 0           | 70         | 90           |     |                 |     |                |   |
|        | 99    | Ъ        | 20           | Ō           | 20         | 0            |     |                 |     | · .            | · |
|        | 100   | Ъ        | 30           | 0           | 30         | . 0          |     |                 |     |                |   |
| •<br>: | 10.F  | е        | 110          | 60          | 110        | 60           |     |                 |     |                |   |
|        | 102   | g        | . 0          | 0           | 0          | 0            |     |                 |     |                |   |
|        | 103   | Ъ        | 0            | 0           | 0          | 190          |     |                 |     |                |   |
|        | 104   | ъ        | 70           | 0           | 100        | 60           |     |                 |     |                |   |
|        | 105   | е        | 70           | 70          | 80         | 160          |     |                 |     |                |   |
|        | 106   | g        | 30           | 0           | 30         | 30           |     |                 |     |                |   |
|        | 107   | Ъ        | 0            | 0           | 20 ·       | 20           |     |                 |     |                |   |
|        | 108   | g        | · 0          | 0           | 0          | 0            |     |                 |     |                | • |
|        | 109   | Ъ        | 0            | 0           | , <b>O</b> | 30           | ۱   |                 |     |                |   |
|        | 110   | . g      | : <b>0</b>   | 0           | 0          | 20           |     | •               |     |                |   |
|        | 111   | g        | 40           | 0           | 40         | 20           |     |                 |     |                |   |
|        | 112   | g        | 130          | 0           | 170        | 50           |     |                 |     | •              | • |
|        | 113   | g        | 40           | 0.          | 70         | 40           |     |                 |     | -              |   |
|        | 114   | e        | 280          | 230         | 280        | 310          |     |                 |     | •              |   |
|        |       |          |              |             |            |              |     |                 |     |                |   |

-19-

BNWL-B-127

|         | Badge    | Work            | Pen(m | rads) |       | urads<br>Derma |      | n Fast<br>trons |     | n Slow<br>trons |            |
|---------|----------|-----------------|-------|-------|-------|----------------|------|-----------------|-----|-----------------|------------|
|         |          | Location        | TLD   | Film  | TLD   | Film           | TLD  | Film            | TLD | Film            |            |
| • .     | 115      | Ъ.              | 0     | 0     | 0     | 0              |      |                 |     |                 |            |
|         | 116      | Ъ               | 0     | 0     | lÒ    | 0              |      | ·               |     |                 |            |
|         | 117      | . е             | 190   |       | 190   |                |      |                 |     |                 | ۰<br>،     |
|         | 118      | ė               | 70    | 60    | 70    | 60             |      |                 |     |                 |            |
|         | 119      | g               | 80    | 0     | - 90  | 90             |      | •               |     |                 |            |
|         | 120      | e               | 400   | 300   | 430   | 300            |      |                 |     |                 | <b>.</b> , |
|         | 121      | Ъ               | 40    | 0     | 40    | 50             |      |                 |     |                 |            |
|         | 122      | g               | 0     | 0     | 0     | 0              | •.   |                 |     |                 |            |
|         | 123      | е               | 20    | 50    | 20    | 120            |      |                 |     |                 |            |
|         | 124      | b               | 50    | 20    | 90    | 60             |      |                 |     |                 |            |
|         | 1.25     | g               | 130   | 100   | 150   | . 100          |      |                 |     |                 |            |
|         |          |                 |       |       |       | ·              |      |                 |     |                 |            |
| MONTHLY | TOTAL    | :               | 11690 | 9230  | 14230 | 14950          | 2850 | 240             | 132 | 129             |            |
|         |          |                 |       | ·     |       |                |      |                 | •   |                 | •          |
|         |          |                 |       |       |       |                |      |                 |     |                 |            |
| Work Lo | cations: |                 |       |       |       |                |      |                 |     |                 |            |
|         |          | b - Pure        |       |       |       |                |      |                 |     |                 |            |
|         |          | c - 222-        |       |       |       |                |      |                 |     | •               |            |
|         | · .      | d - Shor        |       |       |       |                |      |                 | •   |                 |            |
|         |          | e - Tank        |       |       |       |                |      |                 |     |                 |            |
|         | •        | f - 221-        |       |       |       |                | •    |                 | •   |                 |            |
|         |          | <b>g -</b> 221- | -B .  |       |       |                |      |                 |     |                 |            |
|         |          |                 |       |       |       |                |      |                 |     |                 |            |
|         |          |                 |       |       |       |                | •    |                 |     |                 |            |

# APPENDIX A (Cont'd)

-20-

ARHCO FIELD STUDIES - JANUARY 1971

| Badge   | Work       | Penet | rating | De  | erma | mrem<br>Neutron-F |      | mre<br>Neuti |      |
|---------|------------|-------|--------|-----|------|-------------------|------|--------------|------|
| ARHCO-A | Location   | TLD   | Film   | TLD | Film | TLD               | Film | TLD          | Film |
| l       | a          | 80    | 130    | 120 | 160  |                   |      |              | 330  |
| 2       | <b>a</b> . | 210   | 780    | 240 | 800  |                   |      | 6            | 30   |
| 3       | Ъ          |       |        | 70  |      |                   |      |              |      |
| 4       | с          | 190   | 110    | 510 | 920  |                   |      |              |      |
| 5       | d          | 130   | 90     | 150 | 230  |                   |      |              |      |
| 6       | đ          | 40    | 40     | 60  | 80   |                   |      |              |      |
| . 7     | đ          | 240   | 170    | 240 | 180  |                   |      |              |      |
| 8       | a          | 120   | 150    | 130 | 190  |                   |      | 3            | 40   |
| 9       | e          | 340   | 310    | 380 | 310  |                   |      |              |      |
| 10      | Ъ          | 40    |        | 40  | •    |                   |      | •            |      |
| 11      | с          | 120   | 50     | 310 | 570  |                   |      |              |      |
| 12      | с          | 250   | 240    | 300 | 240  |                   |      |              |      |
| 13      | C          | 70    | 30     | 170 | 200  |                   |      |              |      |
| 14      | · e        | 240   | 190    | 240 | 190  |                   |      |              |      |
| 15      | е          | 170   | 150    | 170 | 200  |                   |      |              |      |
| 16      | е          | 280   | 170    | 280 | 170  |                   |      |              |      |
| 17      | С          | 130   | 50     | 130 | 50 · |                   |      |              |      |
| 18      | с          | 50    |        | 70  | 60   |                   |      |              |      |
| 19      | a          | 110   | 70     | 150 | 120  |                   |      | 3            |      |
| 20      | я.         | 80    | 120    | 90  | 220  |                   |      | 3            |      |
| 21      | a          | 100   | 110    | 160 | 150  |                   |      | 3            |      |
| 22      | æ          | 70    | 60     | 80  | 90   |                   |      |              |      |
| 23      | a          | 270   | 280    | 320 | 370  | 200               |      | 9            | 30   |
| 24      | е          | 180   | 130    | 200 | 230  |                   |      |              |      |
| 25      | a          | 210   | 250    | 250 | 330  | 200               |      | 12           | . 40 |
| 26      | Ъ          | 40    |        | 40  | •    |                   |      |              |      |
| 27      | f.         | 120   |        | 120 | 190  |                   |      |              |      |
| 28      | a          | 70    | 50     | 80  | 70   |                   |      |              | 20   |
| 29      | с          | 100   | 30     | 100 | 30   |                   |      | •.           |      |
| 30      | е          | 1,10  | 140    | 190 | 1/10 |                   |      |              | •    |

-21-

-22-

BNWL-B-127

|                         |                  | :     |             | (Coi | nt'a) | •                 |      |                |               |
|-------------------------|------------------|-------|-------------|------|-------|-------------------|------|----------------|---------------|
| D                       |                  | Penet | Penetrating |      | Derma | mrem<br>Neutron-F |      |                | rem<br>cron-S |
| Badge<br><u>ARHCO-A</u> | Work<br>Location | TLD   | Film        | TLD  | Film  | TLD               | Film | TLD            | Film          |
| 31                      | · e ́            | 200   | 150         | 200  | 150   |                   |      |                |               |
| 32                      | 8.               | 280   | 310         | 320  | 390   |                   |      |                |               |
| 33                      | a                | 80    | 100         | 110  | 140   |                   | 100  | 6              | 30            |
| 34                      | a                | 160   | 130         | 160  | 180   | 140               |      | 3              |               |
| 35                      | g                | 130   | 60          | 150  | 150   |                   |      |                |               |
| 36                      | a                | 140   | 170         | 140  | 240   | 230               |      | 6              |               |
| 37                      | Ъ                | . 0   | 20          | 80   | 60    | •                 |      |                |               |
| 38 <sup>.</sup>         | a                | 160   | 170         | 180  | 230   | 160               |      | 6              | 30            |
| 39                      | a                | 390   | 320         | 400  | 400   |                   | 110  | 36             | 20            |
| 40                      | a                | 170   | 190         | 250  | 250   |                   |      | •              | 30            |
| 41                      | e                | 270   | . 250       | 270  | 260   |                   |      |                |               |
| 42                      | a                | 120   | 100         | 1.20 | 140   |                   | •    | 6              | 20            |
| 43                      | 8.               | 230   | 270         | 350  | 360   | 180               | 110  | 9              | 50            |
| 44                      | ď                | 40    |             | 40 . |       |                   | •.   |                |               |
| 45                      | a                | 150   | 130         | 150  | 180   |                   |      | .6             | 30            |
| 46                      | с                | 120   | 40          | 210  | 290   |                   |      |                |               |
| 47                      | a                | 110   | 70          | 150  | 130   | t                 |      | <sup>·</sup> 3 | 30            |
| 48                      | ъ                | .70   | 50          | 70   | 140   |                   |      |                |               |
| 49                      | С                | 80    | 60          | 150  | 320   |                   |      |                |               |
| 50                      | 8.               | 70    | 30          | 110  | 60    | 140               |      |                |               |
| 51                      | a                | 120   | 80          | 210  | 120   |                   |      |                |               |
| - 52                    | С                | 140   | 100         | 220  | 180   |                   |      |                |               |
| 53                      | a                | 190   | 100         | 190  | 140   | 110               |      |                |               |
| 54                      | С                | 80    | 80          | 190  | 310   |                   |      |                |               |
| 55                      | 8.               | 180   | 130         | 210  | 180   |                   | _    | 15             |               |
| 56                      | a                | 80    |             | 80   | . 60  |                   | 160  | 18             | 20            |
| 57                      | g                | 20    |             | 50 - |       |                   |      |                | •             |
| 58                      | g                | 40    |             | 80   | ,     |                   |      |                |               |
| 59                      | . е              | 360   | 160         | 360  | 160   |                   |      |                |               |
| 60                      | e                | 580   | 330         | 580  | 340   |                   | • •  |                |               |

BNWL-B-127

|         |                  | -     | •       | (00)  | it u) |     |        |       |               |    |
|---------|------------------|-------|---------|-------|-------|-----|--------|-------|---------------|----|
| Badge   | Home             | Penet | trating | De    | erma  | Neu | tron-F | Neuti | ron-S         |    |
| ARHCO-A | Work<br>Location | TLD   | Film    | TLD   | Film  | TLD | Film   | TLD   | <u>Film</u> , |    |
| 61      | ъ                | 50    |         | 50    | 30    |     |        |       |               |    |
| 62      | ъ                | 40    |         | 140   | 290   |     |        |       |               |    |
| 63      | Ъ                | 80    | 30      | 80    | 30    |     |        |       |               |    |
| 64      | е                | : 120 | 90      | 120   | 90    |     |        |       |               |    |
| 65      | Ъ                | 140   | . 90    | 220 · | 220   |     |        |       |               |    |
| 66      | Ъ                | 70    |         | 70    |       |     |        |       |               |    |
| 67      | Ъ                | 60    |         | 60    | 240   |     |        |       |               |    |
| 68      | g                | 120   | 60      | 150   | 150   |     |        |       |               |    |
| 69      | g                | 50    |         | 110   | 160   |     |        |       |               |    |
| 70      | g                | 130   | 70      | 130   | 100   |     |        |       |               |    |
| 71      | Ъ                | 50    |         | 70    |       |     |        |       |               |    |
| 72      | Ъ                | 120   | 100     | 120   | 140   |     |        | 3     |               |    |
| 73      | · e              | 150   | 120     | 200   | 120   |     |        |       |               |    |
| 74      | р                | 80    | 20      | 80    | 20    |     |        |       |               | ·. |
| 75      | g                |       |         | 20    |       |     |        |       |               |    |
| 76      | Ъ                | Not U | lsed    |       |       | •   |        |       |               |    |
| 77      | g                | 70    |         | 70    | 80    |     |        | •     | •             |    |
| 78      | g                | 90    | 50      | 110   | 70    |     |        |       |               |    |
| 79      | Ъ.,              | 100   | 90      | 150   | 150   |     |        |       |               |    |
| 80      | е                | 90    | 70      | 90    | 310   |     |        |       |               |    |
| .81     | g                | 70    |         | 70    | 50    |     |        |       |               |    |
| 82      | Ъ                | 50    |         | 50    | -     |     |        |       | •             |    |
| 83      | g                | 120   | 70      | 120   | 70    |     | • .    |       |               |    |
| 84      | Ъ                | 40    |         | 40    |       |     |        |       |               |    |
| 85      | Ĕ                | 160   | 120     | 160   | 120   |     |        |       |               |    |
| 86      | е                | 50    |         | 50    |       |     |        |       |               |    |
| 87      | g                | 50    |         | 90    | 130   |     |        |       |               | •  |
| - 88    | g                | 80    | 60      | 240   | 410   |     |        |       |               | •  |
| 89      | g                | 280   | 210     | 300   | 230   |     | •      |       |               |    |
| 90      | Ъ                | 30    |         | 60    | 40    | -   |        | •     | •             |    |

(Cont'd)

-23-

BNWL-B-127

|         | ·               |       | • •     | (Co | nt'd) |                       |     |     |               |   |
|---------|-----------------|-------|---------|-----|-------|-----------------------|-----|-----|---------------|---|
| Badge   | Work            | Penet | crating | De: | rma   | mrem<br><u>Neutro</u> |     |     | rem<br>Sron-S |   |
| ARHCO-A | Location        | TLD   | Film    | TLD | Film  | TLD F                 | ilm | TLD | Film          |   |
| 91      | Ъ               | 40    |         | 40  |       |                       |     |     |               |   |
| 92      | e               | 470   | .150    | 470 | 150   |                       |     |     |               |   |
| 93      | g               | 0     |         | 10  |       |                       |     |     |               |   |
| 94      | е               | 80    | 60      | 110 | 110   |                       |     |     |               |   |
| 95      | е               | 120   | 120     | 120 | 120   |                       |     |     |               |   |
| 96      | g               | 70    | 30      | 70  | 110   |                       |     |     |               |   |
| 97      | Ъ               | 100   |         | 140 | 40    |                       |     | -   |               |   |
| 98      | Ъ               | 90    | 30      | 120 | 30    |                       |     |     |               |   |
| 99      | Ъ               | 40    |         | 90  |       |                       |     |     |               |   |
| 100     | þ               | 0     |         | 70  |       |                       |     |     |               |   |
| 101     | е               | 270   | 140     | 270 | 140   |                       |     |     |               |   |
| 102     | g               | 40    |         | 60  |       |                       |     |     |               | : |
| 103     | b               | 20    |         | 20  |       |                       |     |     |               |   |
| 104     | b               | 80    | 30      | 150 | 120   |                       |     |     |               |   |
| 105     | <sup>.</sup> е, | 190   | 210     | 290 | 310   |                       |     |     |               |   |
| 106     | g               | 70    | 40      | 130 | 80    |                       |     |     |               |   |
| 107     | Ъ               | 20    | 30      | 40  | 30    |                       |     |     |               |   |
| 108     | · g             | 30    |         | 60  |       |                       |     |     |               |   |
| 109     | Ъ               | 0     |         | 120 |       |                       |     |     |               |   |
| 110     | g               | 30    |         | 70  |       |                       |     |     |               |   |
| 111     | g               | 110   |         | 110 |       |                       | 7   |     |               |   |
| 112     | g               | 40    |         | 70  |       | •                     | •   |     |               |   |
| 113     | g               | 40    |         | 40  |       |                       |     |     |               |   |
| 114     | е               | 220   | 250     | 240 | 310   | · •                   | · · |     | :             |   |
| 115     | Ъ               | 30    |         | 30  | ۰.    |                       | •   |     |               |   |
| 116     | Ъ               | 50    |         | 50  |       |                       |     | · . |               |   |
| 117     | е               | 140   | 80.     | 170 | 80    |                       |     |     |               |   |
| 118     | е               | 30    | 20      | 70  | 110   |                       |     |     |               |   |
| 119     | g               | 120   | 80      | 150 | 80    |                       |     |     |               |   |
| 120     | C               | 120   | 90      | 120 | 90    | •                     |     |     |               |   |

BNWL-B-127

(Cont'd)

| Badge     | Work     | Pen            | etrating | <u>z De</u> | erma        |      | irem<br>itron-F | •   | em<br>itron-S |
|-----------|----------|----------------|----------|-------------|-------------|------|-----------------|-----|---------------|
| ARHCO-A   | Location | TLD            | Film     | TLD         | <u>Film</u> | TLD  | Film            | TLD | Film          |
| 121       | Ъ        | . 80           | 40       | 120         | 110         |      |                 |     |               |
| 122       | g        | 30             |          | 80          | 30          |      |                 |     |               |
| 123       | е        | 250            | 200      | 270         | 200         | ×    |                 |     |               |
| 124       | Ъ.       | <sub>.</sub> 0 | 40       | 20          | 110         |      |                 |     |               |
| 125       | g        | 160            | 130      | 240         | 130         |      |                 |     |               |
| MONTHLY I | OTAL     | 14670          | 10520 1  | .8620       | 17790       | 1360 | 480             | 177 | 450           |

## APPENDIX A (Cont'd)

# DUN FIELD STUDIES - NOVEMBER 1970

|        |         | mrads           |        |            |            |                                        |                |  |  |  |  |  |  |
|--------|---------|-----------------|--------|------------|------------|----------------------------------------|----------------|--|--|--|--|--|--|
|        |         | Pen             |        | Der        | ma         | Neutrons                               | TLD            |  |  |  |  |  |  |
| Badge# | TLD     | Film            | Pencil | TLD        | Film       | Slow                                   | Fast           |  |  |  |  |  |  |
| l      | . 70    | · <del>_,</del> | -      | 70         | - <b>-</b> | -                                      | -              |  |  |  |  |  |  |
| 2      | 20      | <b></b> .       | 5      | <b>2</b> 0 | -          | -<br>-                                 | -              |  |  |  |  |  |  |
| 3      | ر<br>70 | ,60             | 55.    | 70         | 60         | -                                      | <u> </u>       |  |  |  |  |  |  |
| 4      | 110     | 90              | 105    | 110        | 90         | -                                      |                |  |  |  |  |  |  |
| 5      | 290     | 280             | 145    | 290        | 280        | · <b>-</b>                             | -              |  |  |  |  |  |  |
| 6      | 60      | 100             | 55     | 60         | 100        | -                                      | _              |  |  |  |  |  |  |
| 7      | 90      | -               | 25     | 90         | -          | -                                      |                |  |  |  |  |  |  |
| 8      | 40      | 0               | 10.    | 40         | -          | <b>-</b>                               |                |  |  |  |  |  |  |
| 9      | 20      | 0               | 0      | 20         | 50         | ······································ |                |  |  |  |  |  |  |
| 10     | 60      | 80              | 45     | 60         | 80         | -                                      | . <del>-</del> |  |  |  |  |  |  |
| 11     | 340     | -               | -      | 340        | _          | -                                      | -              |  |  |  |  |  |  |
| 12     | -       | -               | 125    | · -        | -          | · _                                    |                |  |  |  |  |  |  |
| 13     | 450     | 410             | 310    | 450        | 410        | -                                      | -              |  |  |  |  |  |  |
| 14     | 30      | 90              | .85    | . 30       | 90         | -                                      | -              |  |  |  |  |  |  |
| 15 .   | 130     | 100             | 110    | 130        | 100        | -                                      | -              |  |  |  |  |  |  |
| 16     | 210     | 180             | 160    | Žiu        | 180        |                                        |                |  |  |  |  |  |  |
|        |         |                 |        |            |            |                                        |                |  |  |  |  |  |  |

*,* 

#### APPENDIX A (Cont'd)

| DUN FIELD STUDIES - DECEMBE |
|-----------------------------|
|-----------------------------|

|            |             |          |           |             |       | · ·                     |                            |
|------------|-------------|----------|-----------|-------------|-------|-------------------------|----------------------------|
|            | Pen (       | mrads)   |           | (mra<br>Der |       | mrem<br><u>Neutron-</u> | mrem<br>s <u>Neutron-f</u> |
| Badge#     | TLD         | Film     | Pencil    | TLD         | Film  | TLD                     | TLD                        |
| 251        | 290         | 280      | 280       | 290         | 280   |                         |                            |
| 252        | *210        | 1090     | 880       | 210         | 1090  |                         |                            |
| 253        | *180        | 310      | 280       | 180         | 310   |                         |                            |
| 254 (Laund | ry) 640     | 280      | 265       | 670         | 280   |                         |                            |
| 255        | * 60        | 150      | 135       | 60          | 150   |                         | •                          |
| 256        | * 40        | 270      | 250       | 160         | 270   |                         |                            |
| 257        | 840         | 780      | 855       | 840         | 780   | 3                       |                            |
| 259        | 230         | 270      | 240       | 230         | 270   |                         | : .                        |
| 261        | 1020        | 980      | 1010      | 1020        | 980   |                         |                            |
| 262        | 290         | 340      | 345       | 290         | 340   | 3                       |                            |
| 266        | 380         | 380      | 295       | 380         | 380   |                         |                            |
| 267        | 110         | 170      | 130       | 110         | 170   |                         | · · ·                      |
| 269        | 340         | 410      | 370       | 340         | 410   | 3                       |                            |
| 270        | 990         | 970      | 980       | 990         | 970   | 3                       |                            |
| 271        | 550         | 540      | 640       | 550         | 540   | · · ·                   |                            |
| 274        | 240         | 280      | 260       | 240         | 280   |                         |                            |
|            |             | DUN FI   | ELD STUD  | IES - JA    | NUARY | 1971                    |                            |
| 251-A      | <b>40</b> ` | 80       | 9 5       | 40          | 80    |                         | · .                        |
| 252-A      | * 0         | 160      | 165       | · <b>O</b>  | 160   |                         |                            |
| 259-A      | * 20        | 220      | 290       | 20          | 220   |                         |                            |
| 59-A       | 140         | 210      | 155       | 140         | 210   | · ,                     | • · ·                      |
| 270-A      | * 10        | 140      | 150       | 30          | 140   |                         |                            |
| 271-A      | * 0         | 140      | 140       | 20          | 140   |                         |                            |
| *Doubtful  | as to co    | nsistanc | v of wear | ring.       |       | •                       |                            |

\*Doubtful as to consistancy of wearing.

No. of Copies

5

6

12

5

2

#### Distribution

#### AEC-RL

Nell Fraser, Federal Building PG Holstead, Federal Building WE Lotz, Federal Building PG Rhoades, Federal Building MW Tiernan, Federal Building GR Yesberger, Federal Building

#### WADCO

AB Hall, 328 Building, 300 Area WP Howell, 328 Building, 300 Area RL Junkins, 328 Building, 300 Area LF Kocher, 309 Building, 300 Area HG Ruppert, 328 Building, 300 Area AJ Stevens, 328 Building, 300 Area

#### ARHCO

RD Anderson, 2704-E, 200-E Area GE Backman, 222-T, 200-W Area RC Herald, 234-5, 200-W Area JR Houston, 222-T, 200-W Area WD Killand, 2704-C, 200-E Area LL Lundgren, 222-T, 200-W Area HL Maxfield, 2704-E, 200-E Area 3J McMurray, 2704-E, 200-E Area NP Nisick, 222-T, 200-W Area FA Perkins, 271-B, 200-E Area DT Vladimiroff, 222-S, 200-W Area RH Wilson, 222-T, 200-W Area

#### DUN

CD Corbit, 1720 Building,100-K Area LL Crass, 1720 Building,100-K Area TE Dabrowski, 1720 Building,100-K Area CC Jones, 105 Building,100-N Area JG Myers, 1720 Building,100-N Area

UST

WV Baumgartner PC Friend

BNWL-B-127

#### REFERENCES

(1) L. F. Kocher, G. W. R. Endres, L. L. Nichols, D. B. Shipler, A. J. Haverfield, and P. C. Friend, "The Hanford Thermoluminescent Multipurpose Dosimeter" BNWL-SA-3955, 1971.