The Integration and Abstracyion of EBS Models in Yucca Mountain Performance Assessment

PDF Version Also Available for Download.

Description

The safety strategy for geological disposal of radioactive waste at Yucca Mountain relies on a multi-barrier system to contain the waste and isolate it from the biosphere. The multi-barrier system consists of the natural barrier provided by the geological setting and the engineered barrier system (EBS). In the case of Yucca Mountain (YM) the geologic setting is the unsaturated-zone host rock, consisting of about 600 meters of layered ash-flow volcanic tuffs above the water table, and the saturated zone beneath the water table. Both the unsaturated and saturated rocks are part of a closed hydrologic basin in a desert surface ... continued below

Creation Information

Sevougian, S.D.; Jain, V. & Luik, A.V. January 11, 2006.

Context

This report is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this report can be viewed below.

Who

People and organizations associated with either the creation of this report or its content.

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this report. Follow the links below to find similar items on the Digital Library.

Description

The safety strategy for geological disposal of radioactive waste at Yucca Mountain relies on a multi-barrier system to contain the waste and isolate it from the biosphere. The multi-barrier system consists of the natural barrier provided by the geological setting and the engineered barrier system (EBS). In the case of Yucca Mountain (YM) the geologic setting is the unsaturated-zone host rock, consisting of about 600 meters of layered ash-flow volcanic tuffs above the water table, and the saturated zone beneath the water table. Both the unsaturated and saturated rocks are part of a closed hydrologic basin in a desert surface environment. The waste is to be buried about halfway between the desert surface and the water table. The primary engineered barriers at YM consist of metal components that are highly durable in an oxidizing environment. The two primary components of the engineered barrier system are highly corrosion-resistant metal waste packages, made from a nickel-chromium-molybdenum alloy, Alloy 22, and titanium drip shields that protect the waste packages from corrosive dripping water and falling rocks. Design and performance assessment of the EBS requires models that describe how the EBS and near field behave under anticipated repository-relevant conditions. These models must describe coupled hydrologic, thermal, chemical, and mechanical (THCM) processes that drive radionuclide transport in a highly fractured host rock, consisting of a relatively permeable network of conductive fractures in a setting of highly impermeable tuff rock matrix. An integrated performance assessment of the EBS must include a quantification of the uncertainties that arise from (1) incomplete understanding of processes and (2) from lack of data representative of the large spatial scales and long time scales relevant to radioactive waste disposal (e.g., long-term metal corrosion rates and heterogeneities in rock properties over the large 5 km{sup 2} emplacement area of the repository). A systematic approach to EBS model development and performance assessment should include as key elements: (1) implementation of a systematic FEPs approach, (2) quantification of uncertainty and variability, (3) sensitivity analyses, and (4) model validation and limitations. The approaches used for these key elements in the Yucca Mountain repository program are described in Section 2 of this paper. A specific example of Yucca Mountain EBS model development and integration, related to the modeling of localized corrosion of Alloy 22, is discussed in Sections 3 and 4.

Language

Item Type

Identifier

Unique identifying numbers for this report in the Digital Library or other systems.

  • Report No.: SAND2006-0172P
  • Grant Number: NA
  • DOI: 10.2172/894817 | External Link
  • Office of Scientific & Technical Information Report Number: 894817
  • Archival Resource Key: ark:/67531/metadc878379

Collections

This report is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this report?

When

Dates and time periods associated with this report.

Creation Date

  • January 11, 2006

Added to The UNT Digital Library

  • Sept. 22, 2016, 2:13 a.m.

Description Last Updated

  • Nov. 29, 2016, 4:08 p.m.

Usage Statistics

When was this report last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 1

Interact With This Report

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Sevougian, S.D.; Jain, V. & Luik, A.V. The Integration and Abstracyion of EBS Models in Yucca Mountain Performance Assessment, report, January 11, 2006; Las Vegas, Nevada. (digital.library.unt.edu/ark:/67531/metadc878379/: accessed November 12, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.