Forest Restoration Carbon Analysis of Baseline Carbon Emissions and Removal in Tropical Rainforest at La Selva Central, Peru Metadata

Metadata describes a digital item, providing (if known) such information as creator, publisher, contents, size, relationship to other resources, and more. Metadata may also contain "preservation" components that help us to maintain the integrity of digital files over time.

Title

  • Main Title Forest Restoration Carbon Analysis of Baseline Carbon Emissions and Removal in Tropical Rainforest at La Selva Central, Peru

Creator

  • Author: Gonzalez, Patrick
    Creator Type: Personal
  • Author: Kroll, Benjamin
    Creator Type: Personal
  • Author: Vargas, Carlos R.
    Creator Type: Personal

Contributor

  • Sponsor: United States. Department of Energy.
    Contributor Type: Organization

Publisher

  • Name: Nature Conservancy
    Place of Publication: United States

Date

  • Creation: 2006-01-10

Language

  • English

Description

  • Content Description: Conversion of tropical forest to agricultural land and pasture has reduced forest extent and the provision of ecosystem services, including watershed protection, biodiversity conservation, and carbon sequestration. Forest conservation and reforestation can restore those ecosystem services. We have assessed forest species patterns, quantified deforestation and reforestation rates, and projected future baseline carbon emissions and removal in Amazon tropical rainforest at La Selva Central, Peru. The research area is a 4800 km{sup 2} buffer zone around the Parque Nacional Yanachaga-Chemillen, Bosque de Proteccion San Matias-San Carlos, and the Reserva Comunal Yanesha. A planned project for the period 2006-2035 would conserve 4000 ha of forest in a proposed 7000 ha Area de Conservacion Municipale de Chontabamba and establish 5600 ha of natural regeneration and 1400 ha of native species plantations, laid out in fajas de enriquecimiento (contour plantings), to reforest 7000 ha of agricultural land. Forest inventories of seven sites covering 22.6 ha in primary forest and 17 sites covering 16.5 ha in secondary forest measured 17,073 trees of diameter {ge} 10 cm. The 24 sites host trees of 512 species, 267 genera, and 69 families. We could not identify the family of 7% of the trees or the scientific species of 21% of the trees. Species richness is 346 in primary forest and 257 in the secondary forest. In primary forest, 90% of aboveground biomass resides in old-growth species. Conversely, in secondary forest, 66% of aboveground biomass rests in successional species. The density of trees of diameter {ge} 10 cm is 366 trees ha{sup -1} in primary forest and 533 trees ha{sup -1} in secondary forest, although the average diameter is 24 {+-} 15 cm in primary forest and 17 {+-} 8 cm in secondary forest. Using Amazon forest biomass equations and wood densities for 117 species, aboveground biomass is 240 {+-} 30 t ha{sup -1} in the primary sites and 90 {+-} 10 t ha{sup -1} in the secondary sites. Aboveground carbon density is 120 {+-} 15 t ha{sup -1} in primary forest and 40 {+-} 5 t ha{sup -1} in secondary forest. Forest stands in the secondary forest sites range in age from 10 to 42 y. Growth in biomass (t ha{sup -1}) as a function of time (y) follows the relation: biomass = 4.09-0.017 age{sup 2} (p < 0.001). Aboveground biomass and forest species richness are positively correlated (r{sup 2} = 0.59, p < 0.001). Analyses of Landsat data show that the land cover of the 3700 km{sup 2} of non-cloud areas in 1999 was: closed forest 78%; open forest 12%, low vegetation cover 4%, sparse vegetation cover 6%. Deforestation from 1987 to 1999 claimed a net 200 km{sup 2} of forest, proceeding at a rate of 0.005 y{sup -1}. Of those areas of closed forest in 1987, only 89% remained closed forest in 1999. Consequently, closed forests experienced disruption in the time period at double the rate of net deforestation. The three protected areas experienced negligible deforestation or slight reforestation. Based on 1987 forest cover, 26,000 ha are eligible for forest carbon trading under the Clean Development Mechanism, established by the Kyoto Protocol to the United Nations Framework Convention on Climate Change. Principal components analysis showed that distance to nonforest was the factor that best explained observed patterns of deforestation while distance to forest best explained observed patterns of reforestation, more significant than elevation, distance to rivers, distance to roads, slope, and distance to towns of population > 400. Aboveground carbon in live vegetation in the project area decreased from 35 million {+-} 4 million t in 1987 to 34 million {+-} 4 million t in 1999. Projected aboveground carbon in live vegetation would fall to 33 million {+-} 4 million t in 2006, 32 million {+-} 4 million t in 2011, and 29 million {+-} 3 million t in 2035. Projected net deforestation in the research area would total 13,000 {+-} 3000 ha in the period 1999-2011, proceeding at a rate of 0.003 {+-} 0.0007 y{sup -1}, and would total 33,000 {+-} 7000 ha in the period 2006-2035. The proposed 7000 ha of forest conservation could prevent gross baseline deforestation of 100 ha (min. 70 ha, max 150 ha) in the period 2006-2035, averting baseline carbon emissions of 10,000 t (min. 6 000 t, max. 18 000 t). Projected gross reforestation in the research area would total 8500 {+-} 1500 ha in the period 1999-2011, proceeding at a rate of 0.0012 y{sup -1} (min. 0.01 y{sup -1}, max. 0.014 y{sup -1}), and would total 24,000 {+-} 4000 ha in the period 2006-2035. Gross baseline reforestation for the proposed 7000 ha of reforestation would total 2600 {+-} 400 ha in the period 2006-2035, representing a baseline removal from the atmosphere of 73,000 t carbon (min. 30,000 t, max. 120,000 t). The proposed reforestation project could sequester 230,000 t carbon (min. 140,000 t, max. 310,000 t) above baseline removal in the period 2006-2035.

Subject

  • Keyword: Pastures
  • Keyword: Plants
  • Keyword: Biomass
  • Keyword: Watersheds
  • Keyword: Removal
  • Keyword: Species Diversity
  • Keyword: Inventories
  • Keyword: Peru
  • Keyword: Regeneration
  • Keyword: Forests
  • Keyword: Rivers
  • Keyword: Trees
  • Keyword: Ecosystems
  • Keyword: Wood
  • Keyword: Deforestation
  • Keyword: Carbon Sequestration
  • Keyword: Kyoto Protocol
  • Keyword: Carbon
  • STI Subject Categories: 09 Biomass Fuels
  • Keyword: Climates

Collection

  • Name: Office of Scientific & Technical Information Technical Reports
    Code: OSTI

Institution

  • Name: UNT Libraries Government Documents Department
    Code: UNTGD

Resource Type

  • Report

Format

  • Text

Identifier

  • Report No.: none
  • Grant Number: FC26-01NT41151
  • DOI: 10.2172/876495
  • Office of Scientific & Technical Information Report Number: 876495
  • Archival Resource Key: ark:/67531/metadc878328