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TO NONLINEAR TRANSIENT ONE-DIMENSIONAL HEAT-CONDUCTION PROBLEMS

by

T. C. Chawla, G. Leaf, W. L. Chen, and M. A. Grolmes

ABSTRACT

A collocation method for the solution of one-
dimensional parabolic partial differential equations
using Hermite splines as approximating functions and
Gaussian quadrature points as collocation points is
described. The method consists of expanding depen-
dent variables in terms of piecewise cubic Hermite
splines in the space variable at each time step. The
unknown coefficients in the expansion are obtained
at every time step by requiring that the resultant
differential equation be satisfied at a number of
points (in particular, at the Gaussian quadrature
points) in the field equal to the number of unknown
coefficients. This collocation procedure reduces the
partial differential equation to a system of ordinary
differential equations which is solved as an initial-
value problem using the steady-state solution as the
initial condition. The method thus developed is
applied to a two-region nonlinear transient heat-
conduction problem and compared with a finite-
difference method. It is demonstrated that because
of high-uvrder accuracy only a small number of equa-
tions are needed to produce desirable accuracy. The
method has the desirable characteristic of an analyt-
ical method in that it produced point values as
against nodal values in the finite-difference scheme.

I. INTRODUCTION

Various numerical methods have been devised for solutions to the
problems. of transient nonlinear heat conduction. The most common of these
are finite-difference methods and finite-element methods using Galerkin or
weighted residual procedures. Finite-difference methods are usually of
low order and therefore require the solution of large systems of equations
in order to achieve a satisfactory truncation error. A large system of
equarions luwplles large storage requirements; conscquently, time differ-

encing must be done with single—timé-step methods whether explicit or



implicit. In an explicit method, the largest time step that can be taken
is limited due to stability conditions. On the other hand, an implicit
method will allow larger time steps, but only at a higher cost per time
step. In either case, substantial machine times are encountered in solving

such large systems of equations.

In contrast to low-order finite-difference methods, finite-element
methods based on the use of a Galerkin or a weighted residual procedure
can achieve high-order accuracy, thereby substantially reducing the size of
the numerical system. Hence, the data-handling requirements are less
severe and multistep time-differencing methods can be used in order to in-
crease the size of the time steps. On the other hand, for nonlinear prob-
lems, these methods usually reduire the computation of integrals at each
time step. This, in turn, implies considerably more érithmetic at each
timé step when compared to low-order finite-difference methods. Thus, in
spite of their greater accuracy, these higher-order Galerkin procedures
when applied to nonlinear conduction problems may not be substantially

faster than finite-difference methods.

A third method is based on collocation combined with the use of
suitable approximating subspaces. For nonlinear problems, this approach
has an advantage over a Gglerkin-type procedure in that there is much less
arithmetic at each time step. On the other hand, it has the disadvantage
that, unless the collocation points are suitébly chosen, this method pro-
duces low-order accuracy regardless of the nature of the approximating
subspaces. This implies large systems of equations in order to obtain
suitable accuracy, just as in the case of low-order finite-difference
methods. However, de Boor and Swartz! and Douglas and Depont2 have shown
that if Gaussian quadrature points are selected as collocation points,
high-order accuracy can be achieved with suitable approximating subspaces.
HenCe; in this case, the advantages ot a high-order Galerkin-type proce-
~ dure are achieved, namely, a small system of equations and the use of
multistep time differencing. In.addition, like finite-difference methods,
it requires only a small amount of arithmetic at each time step. In this
report, we demonstrate an application of this method to the nonlinear heat-
conduction equation; nonlinearity is introduced by requiring the transport

properties to be a function of temperature.



II. DESCRIPTION OF THE PROBLEM

For this application, consider a single fuel pin for a nuclear
reactor. This pin consists of a hollow cylindrical solid of mixed-oxide
fuel encased in a cylindrical sheath of stainless-steel cladding. There
is a finite contact resistance between the fuel and the clad, and the
outer §urface of the clad is cooled by convection. The fuel is heated by
a uniform volume heat source which can vary with time. A schematic cross-

sectional -view of such a system is shown in Fig. 1. The figure contains

Fig. 1.

Cross-sectional View of a Fuel Pin Showing
Ry the Knot Sequences. : :

ANL Neg. No. 900-4880.

COOLANT

dimensional nomenclature. If the volume heat source in the fuel is de-
_noted by q(t), and if axial and circumferential conduction terms are neg-
lected, then the heat—conduction equation can be written in cylindrical

coordinates as

o (T) Cp(T) o= = l—3—<rm> §—$> + 400 )

r dr
When the above equation is applied to the clad, the heat-source term is set

equal to zero. The boundary conditions which must be satisfied are

— =0 at r=R H (2a)

- + .
- K o = b [TpREE) - T GG D] et =Ry s @

C — .
ar " %car T TRS (2¢)
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- K ET—C .—h(t) [T (R t)'— T (t)] ' (2d)
‘ C ar cye? Na )

Here, TF'= TF(r,t) refers to the temperature distribution in the fuel and
T, = TC(r,t) to the temperature distribution in the clad. The temperature

C )
of the external medium (sodium) surrounding the clad is denoted by T_ (t).

} Na
The definition of the other symbols used is given in the Nomenclature.

- The above equations can be simplified somewhat by application of

Kirchoff's transformation

©
i
_6NIH

K(T)dT. . N €

Upon the introduction of the variable O into Egs. l,and.2, we obtain

. ‘arz 0 '
BOF
P =0 acr=R_; . : (5»?)

BOF ‘ ’ .-_ + ) .
T KOF 35 hg TF <@F(RF,C)> - TC<®C(R.F,L)>] aL r = RF 3 (Gb)

30, 20,
Kor 37 = Xoc 37 At T = Rp (5¢)
30, ‘
- KOC Pyt h(t) TC GC(RC-,t)) - TNa(;)] '. A : (5d)

Here the diffusivity a = K(T)/p(T)CP(T) must be evaluated by means of the
transformation T = T(0) which is. the inverse of the transformation given

in Eq. 3.



11

III. A METHOD OF COLLOCATION

We shall seek an approximate solution of Eqs. 4 and 5 using the
method of lines in conjunction with colieeation. To this end, we assume
that at each fixed time the transformed temperature 9(r,t) can be approxi-
mated by a function which is a piecewise cubic polynomial in r and that the
function together with its first derivative is continuous. More specifi-
cally, let [a,b] denote either the fuel region [RO’RF] or the clad region
[RF’RC]' Let this interval be subdivided by the set of points

Relative to this partition m, the approximating subspace.H3(n) will consist

of all functions f(x) such that

(1) £f(x) is equal to a cubic polynomial in each subinterval

[xi’xi+l] for 1 < i < n,

(2) f£(x) and f'(x) are continuous at the points X for

2 < i < n, and

(3) f(x) satisfies the appropriate boundary conditions in ‘
Eqs. 5, depending.on whether the interval [a,b] is the fuel
or the clad.

Slnce this problem has two regions, we will generate two approximating sets

of functions: § )(n ) and H§ )(n ), one relative to a partition 7m, of the

F
fuel, the other relative to a partition Te of the clad. These two sets of

functions are required to satisfy the common interface conditions (5b) and

(5¢).

A convenient basis for generating either set of approximating func-

tions is the set {Vj(x), Sj(x)}?:i; where



' Cox-x\2 [ x - x.\] |
V.(x) = I B | ' '
i 1 - - : 1+ 2 = for x, < x < %, (6a)
‘ j+1 N j+1 /] J . ‘
k0 elséwhere
e 2
( X X, X - X, .
ho|—1) 1+ —1 -~ for x, . < x < X,
Ay hj hj B o N
. 2 .
S () < x—x.)( x—x.> :
.(x) = h — 1 1 - —1 ' for x. < x < x, (6b)
J . 2 — —
j+1 hj+1 hj+1A j j+1
LO elsewhere
The functions V (x), V (x), S l(x), and S (x) together with their first

derivatives are‘shown in F1gs 2 and 3. It 1s assumed that V (x) and

X-COLLOCANON POINIS

L5 // \\/Vl yx // N /Vl“”

0 M- m),—\( vix , .
: /(- 7\ Fig. 2.

05— .

{/////, )L////><\‘\\A . \\\\5>; Graphs of’;} l(x), V; l(m),

0of—<* * * - -

\\\ I‘\ A . i - rs..

sk Xj-2 Xll\ //Xn\\ //Xjﬂ Vj(“'): urul Vj(‘L).

1 \ /N / ANL Neg. No. 900-4453 Rev. 1.
-0 \ / \ / . ;

\ / \ /

Sl(x) vanish to the left of X5 whereas V (x), and S (x) vanish to the
-:right of x SRE From the defining equatlons, we observe that each of the

functions has the follow1ng properties:



150~ X-COLLOCATION POINTS

Fig. 3. U

. Graphs of Sj.1(x), Sé_l{x);
S;(x), and SJ!(x).

ANL Neg. No. 900-4452 Rev. 1.

(1) Each Vj(x) and Sj(x) is continuous together with its first

derivative in the interval [a,b].

(2) Each Vj(x) and Sj(x) is a cubic polynomial in each subinter-

val, and they vanish outside the subinterval [xj-l’ xj+1].

3) Vi(xj)

. ' =
Gij’ Vi(xj) _‘0

1<i,j<ntl.

Si(xj) 0;‘Si(xj) =g, .

1]
ntl . L
The set {Vi(x), Si(x)}i=1‘WIll form a basis for the set of functions

H3(n). Thus, we assume that the transformed temperature'field Has the form

nt+l

o(x,t) = E [e(xj,cwj () + 0" (x,,0)5, (x)] , ~ Q)
i=1 |

where {O(xj,t), O'(xj,t)}?:i are the unknown coefficients. In Vieﬁ of
property (3), these coefficients represent, respectively, the unknown
teﬁperature and spatial derivative of temperature at each of the knot

points (xj, 12 j < ntHl).

Let

T+t R =r, < 1r, <eee<

F o] 1 2

o

n+l‘

be a partition of the fuel and

I
e

HC:I,{F=R1<R2 <..---< RN+1_ C

13
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a partition of the clad. We seek an approximation to the temperature

field ©(r,t), of the form shown in Eq. 7, in the fuel and the clad. Sub-

~ stituting Eq. 7 into Eqs. 4 and 5, we obtain the following rélatiop in the

fuel:
20 o+l
% = E [VJ. (r)_éF(rj,t) + Sj (r)él;(rj,t)]_~
j=1 ' '
n+l :
= ag <0F(r,t)> E [OF(rJ.,t) Qj'_(r) + ‘e}-;,(rj,t) ‘Pj (.r)]
j=1 = -
+ ag <9F(r,c)> é(t)_/KbF for ry < r<r 45 (8)
where
DI N e, 1.
0 () = Vi (r)‘ 2 Vi@, ) = 8Y0n) + S0
Now.-
n+l . : .
90 _ E [V'(r)@ (r.,t) + S'(r)0'(r t)J
dr JUVORTT T T R
je=1

Since Vj(rl) =0, Si(rl) = 1, and S&(rl) = Q0 for j > l,'we find that the

boundary condition -(5a) implies

. ) = 4 .

OF(rl,t) =0. . , | (9§)
Différentiating this expression with respect to'time, we. find also

82 (xy,t) 5.0;  - B KON



Similarly, we find the following relations at r = r 1 from the boundary

condition (5b)f

~

| h | . |
Op (T ®) = - _§; [TF <®F(rn%1’t>>;’ Tc\<ec(R1’t)>} =Fg 00

and

, : | N ,
Op(r_q.8) = - iﬁ; [?F (@F(rn+l,t)> - TCv<oC(Rl,t?>}

h o [d1, ] dT,
"X |3 Op(rpe1°t) = 35
OF F OF(r +l,t) C eC(Rl?t)
= fp ¥ Agdp(r, .0 + ACeC(Rl,g) . | (9d)
For the clad region (see Fig. 1), we find
N+ ' '
20, (r,t) o .
— = ]
=T E [Vj(;)ec(Rj,t) + Sj(r)OC(Rj,t)]
j=]_ .
‘ N+1 ‘
= 0 (Qc(r,t)> E_ [OC(Rj,t) Qj(r)
. o) ‘
) .
+ @C(Rj,t) Wj(ri] for Rl <r E-RN+1 3 (10)
K K o
- OF OF
0'(R,,t) = — 0l (r ,t) = — F_ ; , (11a)
cr12 KOC F ntl KOC f

15
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or

- .

K ' :
. OF » . . ' .
=X [fF + AFQF(rn+l,t) + ACOC(Rl,t)J HE (11b)

: h ,
OcRys1o8) = - E7"7[Tc <GC(RN+1’t)> B TNa(t?] = Fo s

oC

3 ___h '
Oc Ryy12®) = = Koe [TC <OC(RN+1?t)) - TNa(t)] .
dT :
h [ c - .
x| ae- 0.(Ry ,t) =T (t)]- (11c)
K S CHTNHL Na
- 0C Clog(Ryyqst) < .
éé(RN+l’t) = BCéC<RN+l'L) . ; - (i1d)

Here, in Egs. 9‘d-and 11d, we have made the following substitutions:

Hh
It

.
b

by oy | ‘g F
- T, [6.(r ,,,t)} - T.[0G,.(R,,t) s == a0
Rop F-( P+l 9_( ¢l ‘)] Ar Kor 99

Op (T ®)
h, dT e .
S s £, = - 2|1 (o ( ‘u))-T(t) + Bt ()
KOF d@c QC(Rl’t) > °C KOC ‘C lC RN+l Na KOC Na
__h dTC
K, 0
oc “cle, (R, qst)
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Substituting Eqs. 9 into Eq. 8, we obtain . ' ‘
n . v -
. s o
E (Vj (r)OF(rj,t) + Sj (r)OF-(rj,t)) + Vl(r)OF(rl,t)

j=2

* [Vn+l(r) * S () AF] Op (Fpg 1) + Spyy () AP Ry 0)

K

ap(0p (r,t))a(t) . |
S +1(r)fF + - + o GF(r,t)

 ntl . n |
’ |
x< E OF(rj,t) <I>j (r) + E GF(rj’t) \Pj (x)
j=1 j=2
+ £ (?)) for r, <r < rn_*_]: '(12)
Substituting Eqs. 1llb, llc, and 11d into Eq. 10, we obtain
N - -
. . ' OF - B
Z [Vj (r)OC (Rj,t) + Sj (r)@C(Rj,t):l + (Sl(r) AC Koc +V (r)) OC(Rl"t)
j=2 »
: v Xor - -
+ (BCSN+l(r) +'VN+1(r)> Oc Rygp»t) +.5,(r) 4 K, Op (fppp0t)
= - £8 (r) = TOF g g () + o, (0, (x,t)
F'1 K C N+l
oC
N ' N

x( E G)C(Rj,t) <I>j(r) + E O(':(Rj,t) ‘l‘j(r) +

j=1 j=2
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N .
KOF
] —_—
+ E QC(Rj,t) Wj(r) + Wl(r) Ff Ko + wN+1(r).FC>
3=2 ' |
for Rl <r E-RN+1 . (13)

The unknown coefficients contained in Eqs. 12 and 13 are:

n+l n N4+1
]
OF(rj,t) , OF(:j,t) , OC(Rj,t) ' , and
j=1 j=2 =1
N
O, E) .
j=2

4

which add up to 2n + 2N unknowns. In order to obtain 2n + 2N equations,

we can require that Eq. 12 Be satisfied at 2n points in the fuel region and
Eq. 13 be‘satisfied at‘2N points in the clad region. Since there are n
intervals in the fuel region and N intervals in the clad region, it there-
fore seems natural to locate two points in each interval. 1In accordance
with the approximation theory as given by Douglas and Dtipont2 and by

de Boor and Swartz,1 the Gauss-Legendre quadrature points of order 2 are

chosen as the collocation points in each subinteérval [xi, xi+1]. Thus
the collocation points are given by
1 : K h, ‘ ’
n, =5 . +x)+ (1) == 2<i<ntl,l<k<2. .(14)
ik 2 i-1 i 2/3 - - - -

Douglas and Dupont? have shown that for a parabolic equation the use of the
above collocation points will result in acdurécy up to 0(h") provided the
thermal capaéity and conductivity have bounded third-ordér derivatives and
the solptibn O(x,t) has bounded sixth-order spétial'derivatives over a

fixed time interval.
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1 1 1 .l '
g = = - = and vy = 5 [1 +— | . : - (15a)
2( -/;> 2( 6) |

n, ., - X, n, , - x 3
B Y SN KR SO FY S R
h, ’ " h, Y
3 3
> (15b)
N3,1 " %41 6 "§,2 T ®i-1
h, ; h, Y
i i J

Using theée relations in Eqs. 6 give the following expressions for the

values of Vj(x), Sj(X), and their derivatives at the collocation points’

ik’
Vj—l(nj,l) = Vj(”j,z) =‘(l - B)c (1 +28) = Vg
= L) = (L -y)2 (1+ =V
Vj—l(nj,2) Vj(nJ,l) (1 -v)c (1 27) Y
P .. (l6a)
3 ] =—S- . = . - 2= . .
8510y 1) 5y ) = b8 - 8)% = b8,
S. :(n. = -5S,(n, =h, (1 -v)2=nh.S
3—1(“3,2) J(nJ’l) j ( Y) 55y
- J
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V; 1 (n J,l) = -V (nJ’z) = - 6B(1 - B)/hj = - Vé/hj 3
~V5 1 3,2) = - '(n ,1) = - 6y(1 - Y)/hj = - V\'(/hj
‘ > H (16b)
=g =1 - 2 - gt ‘ ,
51103, = 83y p) = 1 - 4s + 387 = 5
' = Qb = - 2 - gt . :
Sj_l(nj’z) = §! (ﬂJ’l) =1 - 4y + 3y 'SY )
" - y" = - _- 2 = _ yn 2 N
Vj—l(nj,l) Vj(nj,z) 6(1 28)/hj Vylhj
Vg 1( 2) = V;(nj’l) = -6(1 - 27)/h3 = - v;/hg_ o
| ' $ : (16¢)
.Sj_l(nj’l) = -'Sj(nj’z) = - 4 - 68)/hj = - SB/hj
S" (n 2)_= - SJ(nJ’l) = - (4 —~6Y)/hj = - SY/hj

Evaluéting Eq. 12 at the collocation points Nk
: ]

noting that each Vj(x) and Sj(x) has its support in [xj_l, xj+l

in the fuel, and
] and, in

particular,

() = 0 for ri(rn,r ]

n+l ’

Vl(r) =0 for ré[rl,ré); v (r) = Sn+1

we obtain the following system of equations:

For i =2, k = 1.(i.e-, 3,1
- . a ->' = _ .
Vy(ny, 0 (E s t) + Vy(my 1)0p(xy,t) 4 8,y 20 (rppe) = Fy g

(17a)



For i = 2, k %'2~(1-e-,_n2,2)

A7)

In general for 3 <i<mn, 1<k<2,

Vi (g Oy g,0) # Vi(”i,k)ép;(ri’t) +5,_, (n, k)e (r l,t>

* ] _ . ) ) .
80 OB = Fy . W

For i = ntl, 1 <k < 2 (di.e., N+l k)
. H

Voo, k)e (r»t) + [Vn+1(“n+1,k) + Sn+1(”n+1,k)Af] Op (T iy15t)
. | i
* S ey 1 O (8 F S (g, k)ACOC(Rl’t) Ftl,k >
‘(l7d)

where

r
|

2.k = ag <OF(n2,k’t)> <®F(rl,t) ¢l(ﬁ2’k)'+ OF(rZ;F) Q(nz;g)-‘

+ @F(rz,t) WZ(HZ;R) + q(t)/KOF> for'1 :_k 512 5 (18a)

=
|

f.@ﬁ(rifl’t> wi—l‘”i,k) + 0p(ry,t) ¥y (ny ) +'d(t)/KoF>'_

for 2 <i<mn,l<k<2; » (18b)

ik~ OF <®F(ni,kft%> (OF(ri-l’t) P31y i)+ Oplrgnt) @y o)

21



22

Frtk = = Sow1 (g 10 Ep + @ <OF(nn+l,k’t)> (Ff Y1 Mpan i)
* Oplryat) 0y, k) + 0 (108 Oy (g )
L hd . . .
+ OF(rn,,t) ‘l‘n(nnﬂ,k) + q(t)/KOF> , (18c)

 Similarly, evaluéting Eq. 13 at- the colloéations points which are denoted

by Ei k and given by Eq. 14 for the clad region, we obtain the following
, ‘ -

system:

Kor . .

K , .

e

. - XoF
L& - —_— =

*55(85,10% B ) + 518 8 k- O = Ca
for 1 <k < 2 3 : | (19a)

Vi Gy, WOR e+ Ve IR, 5, (e IBIR L)

Ve o
585 WO Ryt = Cy o

for 2 <i <N, 1<kc<2;} o ' (19b)

Uy, 100 By ) ( c N+l(€N+l ) +4VN+1(5N+1,k)) Oc Ry1>t)

t S (£N+l k)@c(RN £ = Cy1 x

for1<k<2, = B (19¢)
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where
K
C, . =-S5 (E OF

2,k = 7 5106 1 g Koo o€ <Oc(€2,k’t)> [ec(Rl’t) #1Ey0)

K.
' ' OF
+ OC(Rz,t) “"2(52,‘1() + OC(RZ,t) \Pz(c:z’k) + wl(az’k)Ff 'Koc]

for 1 < k < 2 ; ’ : ~{(20a)

Cix ™~ % <@c(gi,k’t)> <@C(Ri—l’t) ;1085 ) T O Ry LE) 0, (1)
T OcR; 4,0, wifl(gi,k) + 0 Ry»E) \yi(gi,k)>

for 2 <i<N, 1<k<2; : " (20b)

Cpei,ie = 7 Bl Gaer, i) t % <Oc(gN+1,-k)>' (ec Ry Oy By i)
* 00 Ryp1ot) Oy G 1) + O Ry ®) ¥y gy o)

* ¥ Gy, Fc)

for 1 <k < 2. (20c)

We note that the transformed temperature ©(r,t) must be evaluated at the
collocation points in order to evaluate the property functions, such as the
diffusivity o. For this purpose, we use Eq. 7. For example, in the fuel

at the collocation point n, ,e(x, ., x,) we have
i,k i— i

1
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1 : . . ] .

Substituting for the values of the basis functions and their derivatives

-from Eqs. 16 into Eqs. 17 through 21 and rewriting the resulting equations

in matrix form, we obtain

[:A] 4 ﬁ] - GWU,t) , - . : (22)

where U(t) is the 2n + 2N dimensional vector

| ntl o L | N
. ‘OF(rj’t)} S U ‘%(rj’t)} U { OC(RJ, ,t)] U loé(Rj,t),'

j:l A j j=l ) j=2

and G(U,tj is fhe vector of the entire right-hand side. The details of -
the above matrix équation are shown in Fig. 4. From an examination of

Fig. 4 it is clear that the coeftficient métrix [A] is a band matrix. This
pfoperty is a consequence of the basis functions Vj(x) and Sj(x) having
local support. It should be noted that, in general, the coefficient
matrix [A] will depend on the temperatﬁre because of the convective inter-
face and boundary conditions. This dependencé is explicitiy shown in

Eﬁs. 9d'and_11d; Thus, the matrix [A] has to be inverted at each iteration
of every time step. The band structure is utilized in this inversion

process.

- With given initial values {U(0)}, the system (22) represents a

system of nonlinear ordinary differential equations. This syétem is solved

 with the ordinary-differential-equation subroutine GEAR.3
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IV. NUMERICAL RESULTS

The method of collocation as described previously was used for

‘the solution of the transient conduction problem for the cylindrical fuel-

clad pin configuration shown in”Fig. 1. The transport properties of the

materials and the dimensions of ‘the pin are given in Appendix A. The
transient was initiated by permitting the volumetric heat source in the
fuel to increase exponentially with time as specified in Appendix A. The
initial temperature distribution was obtained by a steady-state solution
of Eq. 4 with boundary conditions (5) and an initial uniform heat source
d(t = 0), The effect of step size or the number of knots placed in fuel
and clad regions on the accuracy of the solution was investigated. A set
of five calculations were made. In the first calculation, two knots were

used in the fuel and two in the clad. Since two knots correspond to one

. subinterval, the temperature distribution in this calculation was approxi-

mated with one cubic polynomial in the fuel and another in the clad. The
second calculation used three knots in the fuel, while the fourth calcula-
tion used four knots in the fuel, with both calculations uéing two knots

in the clad. The fourth calculation used fivé knots in the fuel and three

‘knots in the clad. The last calculation was made with 20 knots in the

fuel and five knots in the clad. The positions of knots chousen both in
fuel and cladding for the above five examples are given in Appendix A. In
the choice of these positions, no attempt was made to adjust these
positions in order to improve the accuracy. It should be noted that it is
not the selectidn of the knot positions which provides high-order accuracy
for this collocation procedure, but rather the choice of Gaussian colloca-

tion points relative to each subinterval determined by these knots.

For purposes of comparison, the solution to this problem was also

~approximated by a finite-difference type procedure as used in the THIB

program,L+ which is a general-purpose transient-heat-conduction program. In
this method, the spatial interval is subdivided into subintervals (called
nodes). For one-dimensional problems, the spatial approximation to the
conduction equation is essentially the same as the usual three-point ap-
proximation to the second derivative and is derived by means of an integral
heat balance over each node. The time derivative is approximated by an

implicit single-time-step difference procedure. The implicit time



Table I.

Comparison of a Finite-difference Method with the Collocation Method at Time = 4.0 sec.

TEMPERATURE °F

FINITE DIFFERENCE METHOD (TNTB CODE)

COLLOCATION METHOD

80 Nodes in Fuel 35 Nodes in Fuel & Nodes in‘'Fuel 4 Jodes in Fuel 2 Knots in Fuel | 3 Knots in Fuel 4 Knots in Fuel | £ Knots in Fuel 20 Knots {n Fuel
15 Nodes in Clad 6 Nodes in Clad 2 Nodes i{n Clad 2 Hodes in Clad 2 Knots in Clad | 2 Knots in Clad | 2 Knots {n Clad | 3 Knots in Clad 5 Knots in Clad
Position No. of Eqs. = 95 No. of Eqs. = 41 No. of Eqs, = 8 No. of Eqs. = 6 do, of Egs. = 4 | No. of Eqs. = 6 | No. of Eqs. = 8 | Yo. of Eqs. = 12 | No. of Eqs. = 46
< Time Step Time Step Tize Step Time Step Time Step
{Ilnches) Time Step (sec) Time Step (aec) Time Step (sec) Time Step (sec) Variable Variable Vacisble variable variable
.001 .005 .01 .co1 .05 .01 .201 .005 .01 .001 .005 .01 Relative Relative Relative Relative Relative
Tolerance (°F) Tolerance (°F) Tolerance (°F) Tolerance (°F) Error Error Exror Error Etror
0.1 x 1072 0.1 x 1072 0.1 x 1072 0.1 x 1072 0.1 x 1072 0.1 x 1072 0.1 x 1072 0.1 x 1072 0.1 x 1072
CPU Time (sec) CPU Time {sec) CPU Time ({sec) CPU Time (sec) CPU Time (sec) CPU Time (sec) CPU Time (sec) CPU Time (sec) CPU Time (sec)
1318 310 158 5C1 130 67 35 25 16 65 18 12 2 2 2 3 95
0.03¢1C 3490.1 ) 3491.8 3491.4 34€1.2 3491.3 3490.3 3438.3 l‘ 3488.0 3487.6 3517.1 3516.8 3516.5 3497.9 3433.8 3494.3 3492.9 3492.1
: - +.0487% }+.0372% | +.0I15% | +.G344% [+.0229% | -.0516% 1-.0602% [ -.0716% +,7736% | +.7650% | +.7564% +.22352 +.1260% +.12032 +.0802% +.0573%
0.05841 3039.9 | 3041.2 3040 8 30¢1.9 3C41.8 | 3041.5 3086.4 3086.1 3085.7 3084.9 3084.6 3084.2 3064.8 3043.2 3042.0 3042.1 3061.6
: - +.0428% |+.0296% | +.0€58% | +.C625% |+.0526% | +1.5297%1+1.8487% | +41.5066% | +1.4803%| +1.4704% | +1.45132 +.8191% +.1286% +.06912 +.07242 +.05592
0.08042 2331.0 | 2331.7 { 2331.4 2331.8 | 2331.7 | 2331.4 2331.2 2381.0 2380.7 2380.5 2380.3 2380.9 2343.3 2331.0 2331.8 2332.2 2331.9
: - +,0300% |+.0172%2 | +.0343% | +.G300% [+.0172% | +2.1536%|+2.1450% | +2.1321% | +2.1236%| +2.1150% | +2.10212 +.5277% - +.0343% +.05152 +.03862
0.09505 1772.2 | 1772.6 1772 4 17:3.3 1773.3 ] 17731 1732.8 | 1782.7 1782.6 1782.4 1782.3 1782.2 1774.6 1772.2 t772.7 1772.87 1772.6
M - +,0226% |+.0113% | +.0€21X ] +.0621% |+.0508% | +.5381% |+.5925% | +.58682 +.5756% | +.5643% | +.5643% +.1354% - +.0282% +.0339% +.02262
0.10%8C 740.8 740.8 740 8 700.8 740.8 740.8 750.1 | 740.1 740.1 740.1 740.1 740.1- 740.9 740.8 - 740.8 740.8 740.8
i —_ —_— - _ - - -.0364% ' -.0944% | -.0944% -.0944% | -.0944% [ -.09442 +.0135% - - - -
R
0.1122¢ 698.5 698.5 698 5 6S8.5 €98.5 698.5 638.0 °  698.0 698.0 698.0 698.0 697.3 698.6 638.5 598.5 698.5 698.5
A - - - - —_ - -.0716% . -.0716% |-.0716% -.0716% | -.0716% { -.0859% +.0143% - - - -

LT

&)



Table II.

Comparison of a Finite-difference Method with the Collccation Method at Time =

8.0 sec.

TEMPERATURL °F

FINITE UIFFERENCE METHOD (THTB CODE)

(OLLOCATION METHOD

80 Nodes in Fuel 35 Nedes in Fuel 6 Nodes in Fuel 4 Nodes in Fuel 2 Knots in Fuel 3 Knots in Fuel | 4 Knots in Fuel | 5 Knots in Fuel 20 Knots in Fuel
15 Nodes in Clad 6 Neodes in Clad 2 Nodes in Clad 2 Nodes {n Clad 2 Knots in Clad 2 Knots in Clad | 2 Knots {n Clad 3 Knots in Clad 5 Knots in Clad
Positicn No. of E3s. = 95 No. -»f Egs, = &1 No. of Eqs. = 8 No. of Eqs. = & No. of Eqs. = &4 io. of Eqs. = 6 No. of Eqs. = 8 | do. of Egs. = 12 No. of Egqs. = 46
- . ' Time Step Time Step Time Step Time Step Time Step
(Inches) Time $:ep (sec) Time Step (sec) Tine Step (sec) Time Step (sec) Variable Variable Variable variable Variable
.001 005 .01 JL01 .CC5 .02 .001 .005 .01 DCL .005 .01 Relative Relative Relative Relative Relative
Tolerance (°F) To.erarce (°F) Toierance (°F) Tolerance (°F) Error Error Error Error Error
0.1 x 1072 4.1 5 1077 0.1 x 107° 0.1 x 107° vl x 1677 0.1 x 1072 0.1 x 1072 0.1 x 1072 0.1 x 10~2
CPU Tine (sec) CP3 Time (sec) CPU Time (sec) CPU Time (sec) CPU Time (gec] CPLU Time (sec) CPU Time (sec) CPU Time (sec) CPU Time (sec)
1318 Jw 158 =01 130 67 95 25 1€ 5% 18 12 2 2 2 3 95
0.03410 4772.8 ] 477206 4772.0 4732.2 41,7 4771 4762.0 | 4761.5 | 476C.9 473:.9 4793.5 4792.¢ 4767.% 4777.7 4775.1 4773.3 4772.7
: - -.0042% | -.0168% | -.(326% -.0230% | -.0356% | —.2263% | -.2368% |-.2483% | +.4%21% [+.4337% [+.4190% -.1152% +.1027% +.0482% +.0105% -.0021%
0.05€41 4178.8 | 4178.5 4177.9 4139.8 | 4139.4 | 4178.7 4233.3 1 4232.8 | 423z.2 4223.8 | 4227.3 7| 4226.7 4195.% 4183.2 4178.6 4178.7 4178.5
: - -.0972% |-.0215% | +.02397% *+.0044% | -.002¢% | +1.3042%)+1,2922%|+2.2375 | +1.1326%[+1.1606% [+1.1463% +.3949% +.1053% -.0048% -.00242 -.0072%
0.08042 3194.9 3194.7 3194.1 3155.0 3164.7 319s.1 3241.3 § 3240.9 324C.4 32384 3238.0 3237.% 3202.7 3195.8 i 3195.2 3194.9 3194.8
- — -.0063% |-.0250% | +.G031% .-.UC63% | -.0250% | +1,4523%]41,4398%{+1.43432 | +1,3€15% |+1.3490% |+1,333¢£% +.2441T +.02812 +.0094% - -.00312
0.09509 2292.1 2291.9 2291.6 2%3.6 1 2293.31 2293.0 2318.7 2318.4 | 231E.1 2315.1 2316.8 | 2316.¢ 2292.3 2292.5 § 2292.4 2292,1 2292.0
: - -.0087% [-.0218% | +.0E54% :+.0524% 1+.0393% | +1.1605%[+1.14742)+1.13432 ] +1.2607%]+1.0776% |[+1.0645% +.0087% +.0174% +.0131% - -.006442
0.10280 778.6 778.6 778.5 778.6 «  778.5 778.5 777.8 777.8 | L1755 77:.1 177.7 777.¢€ 778.¢ 778.6 778.6 778.6 778.6
e - - -.01282 — i-.0128% |-.0128% | ~.1027% {-.1027% |-.11%6% | -.1156X |-.1156% (-.1284% - - — - -
0.11129 719.0 719.0 719.0 719.0 « 718.9 718.9 718.3 718.3 71€.2 71€.2 718.2 718.2 719.0 719.0 719.0 719.0 719.0
’ - - - - t-.6r39% |-.01392 | -.09742 I-.0974'£ =.1113% | -.11132 |-.1113% |-.1113% - - - - -

8¢
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differencing leads to-a linear system which must be solved at every time
step. This system is solved iteratively by means of the point Gauss-
Seidel iterative method. With this program, four calculations were made.

The first calculation used NF = 4 and NC = 2, where NF denotes the number

of nodes in fuel and NC denotes the number of nodes in clad; the second

calculation used NF = 6 and NC = 2; the third calculation was made with
NF 35 and NC = 63 the fourth calculation was made with NF = 80 and
NC 15. The choice of nodal boundaries as used in the above four calcu-

lations is also given in Appendix A. 1In addition to the effect of spatial

mesh size, the effect of the size of the time steps was also investigated.
For this purpose three time éteps, namely, 0.01, 0.005, and 0.001 sec, were

used with this finite difference program.

In Tables I and II we have compared temperature distributions as
calculated by the two methods. In Table I, the time is 4 sec and in
Table II, 8 sec after the initiation of the power tranéient. The six
positions at which the temperature is shown in these tables are the node

positions corresponding to the case of N_ = 4 and Nc = 2 for the THTB

calculation. In the case of the other tiree calculations, the subintervals
were selected such that the original nodal positions corresponding to the
case of NF = 4 and NC = 2 were included among these nodes. Thus, the
temperatures for the THTIB calculations shown in Tables I and II did not
have to be interpolated. For the method of collocation, the temperature

at these six pbsitions is calculated by means of Eq. 7 which provideé an
interpolation procedure entirely consistent with the approximation pro-
cedure. We have taken the THIB calculation with NF = 80 and NC = 15 cor-
responding to time step 0.00l sec as the benchmark calculation for these
tables. The relative per cent deviation from this benchmark is shown
under the corresponding temperatures in the tables. The number of equa-
tions solved for each case both with the collocation method and the
finite-difference method (note that in case of THTB the number of equations
is equal to the total number of’nodes);Zrc also shown in these tables.

From these tables, we note that for the same number of equations solved,
the method of collocation is substantially more accurate than the finite-
.difference method. In fact, we see that the accuracy obtained with only

12 equations in the collocation method is comparable with the accuracy

obtained with 41 equations in the finite-difference method corresponding to
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time step of 0.01 sec. These ‘tables also show the corresponding CPU times
on IBM 195/360 computer for the various time steps displayed in the tables.

It may be seen that CPU time for the collocation method with 12 equations

is less by one order of magnitude than for the case of the THTB calcula-

tion employing 41 equations yielding the same order of accuracy as the

collocation method.

We may also note from these tables that the collocation method
with four equations provides a relative accuracy in the temperature at
these times of less than 1% which is more than adequate for many engineer-

ing calculations.

- Figure 5 shows the temperature distribution at time = 8 sec,

5300 | L [ —

2700 |- : —
) Q’N\
gzmo—— —
2
2 FINITE_DIEFERENCE METHOD
& 1500 |— ~— 35 NODES IN FUEL, 6 NODES IN CLAD —
= © 4 NODES IN FUEL, 2 NODES IN CLAD

COLLOCATION MLTHOD f
900 — 5 2KNOTSINFUEL, 2 KNOTSIN CLAD ! ]
TIME =80 sec : .
300 L L | | [
04 0.8 12 16 2.0 24 28
HAUIUS, mm

Fig. 5. Illustrative Comparison of a Finite-différence Solution with the
Collocation Method at Time = 8.0 sec. ANL Neg. No. 900-4882.

illustrating the comparative accuracies for the two methods. In addition,

the figure shows the jump in the temperature at the fuel-clad interface.

V. CONCLUSIONS

The application of this collocation method for this type of non-
linear parabolic equation shows that this method can provide a very
accurate numerical solution with a very small number of equatibns. The
method ‘is far more accurate and faster than the usual finite—difference

methods.
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APPENDIX A

Transport Properties of Fuel and Cladding
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o

it

@]
i

PF

Properties of

0.0160528/ (14.17943 + 0.01183T) Btu/(ft sec °F)

for 932 ;_TF(°F) < 2552
0.0003612‘ﬁtu/(ft sec °F) for Tp 2 2552°F
651.2 1b_/ft?.
[12.54 + 0.0170TF(°K) - 0.117 x 107" T§(°K)

+ 0.307 x 1078 T§(°K)]/269.7664<Btu/(lbm °F)

cladding
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|

PC

Heat-transfer

2.22 x 1073 + 1.25 x 1076 T, (°F) Btu/(ft sec °F)
485.26 lbm/ft3

0.1105 + 2.632 x 1077 T, (°F) Dru/lb °T

=g
0

-
I

coefficients
0.2778 Btu/(ft? sec °F)

6.944 Btu/(ft2 sec °F)
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Power transient

a(t) = q_ exp(0.1t) ,

where d, is the initial steady-state power set at 45266.32 Btu/(ft3 sec)

and t is the time in seconds.

Dimensions of fuel pin

R =r, = 0.02 in.

=
L}
]

¥ rn+1 0.1 in.

¢~ Rwn

' 0.115 in.

)
1]

Position of knots (in inches)

Let (r1 - rn+l) denote the set of knots in the fuel region and
(Rl > RN+1) denote the set of knots in the clad region.

Forn=1, N=1,

(rl - gz) = 0.02, 0.1; (R1 > RZ_) = 0.1, 0.115:
forn= 2, N = },

(rl > r3) = 0.02, 0.07, 0.1; (Rl > Rz) = 0.1, 0.115;
forn= 3, N=1,

(x, > r,) = 0.02, 0.05, 0.08, 0.1;

(R1'+ R2) = 0.1, 0.115;



for n = 4, N = 2,
(rl - rS) = 0.02, 0.04, 0.065, 0.085, 0.1;
(Rl > R3) = 0.1, 0.1075, 0.115;
for n = 19, N = 4,
(rl +‘r20).= 0.02, 0.025, 0.031, 0.035, 0.039, 0.043, 0.047, 0.051,

0.055, 0.059, 0.063, 0.067, 0.071, 0.075, 0.079,
0.083, 0.089, 0.093, 0.097, 0.1;

(Rl > RS) = 0.1, 0.10625, 0.11125, 0.11375, 0.115.

Subinterval boundaries for the THTB conduction code (in inches)

Let N_ denote the number of nodes in fuel and N, denote the number

F c
of nodes in clad, and let Trs (0<1i §_NF) and Ros (0 <1 E_NC) denote the

position of node boundaries in fuel and clad, respectively.

]

P~

2
I

=]

For NF c
(rFO - rFA) = 0.02, 0.045, 0.07, 0.09, 0.1;
(RCO - RCZ) = 0.1, 0.1Q75,_0.115;
for NF = 6, NC = 2,
(rFO > rF6) = 0.02, 0.03, 0.0377574, 0.045, 0.07, 0.Q90, 0.1;
(RCo - RCZ) = 0.1, 0.1075, 0.115; |

33



for N, = 35, N

(rFO -> rF35) = 0.02, 0.022, 0.025, 0.028, 0.031, 0.034, 0.0341997,

' 0.04, 0.043, 0.045, 0.048, 0.051, 0.054, 0.057,
0.0597868, 0.062, 0.064, 0.066, 0.068, 0.07, 0.072,
0.074, 0.076, 0.078, 0.08, 0.0808378, 0.084, 0.086,
0.088, 0.09, 0.092, 0.094, 0.0961617, 0.098, 0.099,
0.1;

(RCO +.RC6) = 0.1, 0.1025, 0.105074, 0.1075, 0.11, 0.112569,

' ‘ 0.115; ’

.(tFO -+ rFlé) = 0.02 - 0.0?4 with ArF = 0.01? Toys = 0.0341997;

(rF16->rF60) = 0.036 » 0.08 with ArF = 0.01, rF6l = 0.0808378;

(rF62-+rF75) = 0.082 + 0.095 with ArF = 0.01, To76 = 0.0951739;

(rF77_>rF80) = 0.097 - 0.1 with ArF = 0.01;

(RCO > RCB) =A0fl -+ 0.103 with ARC = 0.001, Rc4 = (0.104584;

A(RCS > RCll) = 0.105 » 0.111 with ARC'= 0.001, RC12 = (0.111583;

(RC13 > RCiS) = 0,113 » 0.115 with ARC = 0.091
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