by

T. C. Chawla, G. Leaf,
W. L. Chen, and M. A. Grolmes

BASE TECHNOLOGY

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency Thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

DISCLAIMER

Portions of this document may be illegible in electronic image products. Images are produced from the best available original document.

The facilities of Argonne National Laboratory are owned by the United States Government. Under the terms of a contract (W-31-109-Eng-38) between the U. S. Energy Research and Development Administration, Argonne Universities Association and The University of Chicago, the University employs the staff and operates the Laboratory in accordance with policies and programs formulated, approved and reviewed by the Association.

MEMBERS OF ARGONNE UNIVERSITIES ASSOCIATION

The University of Arizona Carnegie-Mellon University Case Western Reserve University The University of Chicago University of Cincinnati Illinois Institute of Technology University of Illinois Indiana University Iowa State University The University of Iowa

Kansas State University
The University of Kansas Loyola University Marquette University Michigan State University The University of Michigan University of Minnesota University of Missouri Northwestern University University of Notre Dame

The Ohio State University Ohio University
The Pennsylvania State University
Purdue University
Saint Louis University
Southern Illinois University
The University of Texas at Austin Washington University
Wayne State University
The University of Wisconsin

NOTICE
This report was prepared as an account of work sponsored by the United States Government. Neither the United States nor the United States Energy Research and Development Administration, nor any of their employees, nor any of their contractors, subcontractors, or their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness or usefulness of any information, apparatus, product or process disclosed, or represents that its use would not infringe privately-owned rights. Mention of commercial products, their manufacturers, or their suppliers in this publication does not imply or connote approval or disapproval of the product by Argonne National Laboratory or the U. S. Energy Research and Development Administration.

Printed in the United States of America Available from
National Technical Information Service
U. S. Department of Commerce

5285 Port Royal Road Springfield, Virginia 22161
Price: Printed Copy $\$ 4.00$; Microfiche $\$ 2.25$

ARGONNE NATIONAL LABORATORY
 9700 South Class Avenue Argonne, Illinois 60439

THE APPLICATION OF THE COLLOCATION METHOD USING HERMITE CUBIC SPLINES TO NONLINEAR TRANSIENT ONE-DIMENSIONAL HEAT-CONDUCTION PROBLEMS
by
T. C. Chawla, G. Leaf,* W. L. Chen, and M. A. Grolmes

Reactor Analysis and Safety Division

July 1975
This report was prepared as an account of work
sponsored by the United States Government. Neither
the United States nor the United States Energy
Research and Development Administration, nor any of
their employees, nor any of their contractors,
subcontractors, or their employees, makes any
warranty, express or implied, or assumes any legal
lability or responsibility for the accuracy, completeness
or usefulness of any information, apparatus, product or
process disclosed, or represents that its use would not
infringe privately owned rights. process disclosed, of represent
infringe privately owned rights.

[^0]
THIS PAGE

WAS INTENTIONALLY
 LEFT BLANK

TABLE OF CONTENTS

PageNOMENCLATURE 6
ABSTRACT 7
I. INTRODUCTION 7
II. DESCRIPTION OF THE PROBLEM 9
III. A METHOD OF COLLOCATION 11
IV. NUMERICAL RESULTS 26
V. CONCLUSIONS 30
APPENDIX A - Transport Properties of Fuel and Cladding. 31
ACKNOWLEDGMENT 35
REFERENCES 36
No. Title Page
1 Cross-sectional View of a Fuel Pin Showing the Knot Sequences 9
2 Graphs of $v_{j-1}(x), v_{j-1}^{\prime}(x), v_{j}(x)$, and $V_{j}^{\prime}(x)$ 12
3 Graphs of $S_{j-1}(x), S_{j-1}^{\prime}(x), S_{j}(x)$, and $S_{j}^{\prime}(x)$ 13
4 Display of Matrix Equation (22) 25
5 Illustrative Comparison of a Finite-difference Solution with the Collocation Method at Time $=8: 0 \mathrm{sec}$ 30
LIST OF TABLES
No. Title Page
I Comparison of a Finite-difference Method wi.th the Collocation Method at Time $=4.0 \mathrm{sec}$. 27
II Comparison of a Finite-difference Methnd with the Collocation Method at Time $=8.0 \mathrm{sec}$ 28

THIS PAGE

WAS INTENTIONALLY LEFT BLANK

A $=$ Coefficient matrix
a $=$ Inner boundary
b $\quad=$ Outer boundary
$c_{i, k}=$ Defined by Eqs. 20
$C_{P}=$ Specific heat
$F_{i, k}=$ Defined by Eqs. 18
$h=$ Coolant heat-cransfer coefficient
$h_{g}=$ Gap heat-transfer coefficient
$h_{j} \quad=$ Step length in general and in fuel region
$H_{j}=$ Step length in clad region
$\mathrm{K}(\mathrm{T})=$ Thermal conductivity
$K_{0}=$ Thermal conductivity at reference temperature T_{0}
$N \quad=$ Number of intervals in clad region
$n \quad=$ Number of intervals in fuel region
$\dot{\mathrm{q}} \quad=$ Rate of power generation per unit volume in fuel pin
r \quad - Radial coordinate
$r_{j}=$ Knot points in fuel
$R_{C} \quad=$ External radius of clad
$\mathrm{R}_{\mathrm{F}}=$ External radius of fuel
$R_{j} \quad=\quad$ Knot points in clad
Ro = Tnternal radins of fine
$\mathrm{T}=$ Temperature
$\mathrm{T}_{\mathrm{Na}}=$ Coolant temperature
$\mathrm{t}=$ Time
$x_{j}=$ Knot points in general
$S_{j}(x)=$ Basis function defined by $E q$ 6b
$v_{j}(x)=$ Basis function defined by Eq; $6 a$

Greek Symbols
$\alpha \quad=$ Thermal diffusivity
$\beta, \gamma=$ Constants defined by Eqs. 15a
$\delta_{i j}=$ Kronecker delṭa function
$\eta_{i, k}=$ Collocation points in general and also in fuel region
$\theta \quad=$ Kirchoff's transformed temperature defined by Eq. 3
$\xi_{i, k}=$ Collocation points in clad region
$\rho \quad=$ Density
$\Phi_{j}(r)=v_{j}^{\prime \prime}(r)+\frac{1}{r} v_{j}^{\prime}(r)$
$\Psi_{j}(r)=S_{j}^{\prime \prime}(r)+\frac{1}{r} S_{j}^{\prime}(r)$

Subscripts
$\mathrm{C} \quad=$ Clad region
$\mathrm{F}=$ Fuel region
$\mathrm{i}, \mathrm{j}, \mathrm{k}=$ Indices

THE APPLICATION OF THE COLLOCATION METHOD USING HERMITE CUBIC SPLINES TO NONLINEAR TRANSIENT ONE-DIMENSIONAL HEAT-CONDUCTION PROBLEMS
by
T. C. Chawla, G. Leaf, W. L. Chen, and M. A. Grolmes

Abstract

A collocation method for the solution of onedimensional parabolic partial differential equations using Hermite splines as approximating functions and Gaussian quadrature points as collocation points is described. The method consists of expanding dependent variables in terms of piecewise cubic Hermite splines in the space variable at each time step. The unknown coefficients in the expansion are obtained at every time step by requiring that the resultant differential equation be satisfied at a number of points (in particular, at the Gaussian quadrature points) in the field equal to the number of unknown coefficients. This collocation procedure reduces the partial differential equation to a system of ordinary differential equations which is solved as an initialvalue problem using the steady-state solution as the initial condition. The method thus developed is applied to a two-region nonlinear transient heatconduction problem and compared with a finitedifference method. It is demonstrated that because of high-order accuracy only a small number of equations are needed to produce desirable accuracy. The method has the desirable characteristic of an analytical method in that it produced point values as against nodal values in the finite-difference scheme.

I. INTRODUCTION

Various numerical methods have been devised for solutions to the problems of transient nonlinear heat conduction. The most common of these are finite-difference methods and finite-element methods using Galerkin or weighted residual procedures. Finite-difference methods are usually of low order and therefore require the solution of large systems of equations in order to achieve a satisfactory truncation error. A large system of equarions tuplles large storage requirements; conscquently, time differencing must be done with single-time-step methods whether explicit or
implicit. In an explicit method, the largest time step that can be taken is limited due to stability conditions. On the other hand, an implicit method wịll allow larger time steps, but only at a higher cost per time step. In either case, substantial machine times are encountered in solving such large systems of equations.

In contrast to low-order finite-difference methods, finite-element methods based on the use of a Galerkin or a weighted residual procedure can achieve high-order accuracy, thereby substantially reducing the size of the numerical system. Hence, the data-handling requirements are less severe and multistep time-differencing methods can be used in order to increase the size of the time steps. On the other hand, for nonlinear problems, these methods usually require the computation of integral.s at earh time step. This, in turn, implies considerably more arithmetic at each time step when compared to low-order finite-difference methods. Thus, in spite of their greater accuracy, these higher-order Galerkin procedures when applied to nonlinear conduction problems may not be substantially faster than finite-difference methods.

A third method is based on collocation combined with the use of suitable approximating subspaces. For nonlinear problems, this approach has an advantage over a Galerkin-type procedure in that there is much less arithmetic at each time step. On the other hand, it has the disadvantage that, unless the collocation points are suitably chosen, this method produces low-order accuracy regardless of the nature of the approximating subspaces. This implies large systems of equations in order to obtain suitable accuracy, just as in the case of low-order finite-difference methods. However, de Boor and Swartz ${ }^{l}$ and Douglas and Depont ${ }^{2}$ have shown that if Gaussian quadrature points are selected as co11ocation points, high-order accuracy can be achieved with suitable approximating subspaces. Hence, in this case, the advantages of a high-order Galerkin-type procedure are achieved, namely, a small system of equations and the use of multistep time differencing. In. addition, like finite-difference methods, it requires only a small amount of arithmetic at each time slep. In this report, we demonstrate an application of this method to the nonlinear heatconduction equation; nonlinearity is introduced by requiring the transport properties to be a function of temperature.

II. DESCRIPTION OF THE PROBLEM

For this application, consider a single fuel pin for a nuclear reactor. This pin consists of a hollow cylindrical solid of mixed-oxide fuel encased in a cylindrical sheath of stainless-steel cladding. There is a finite contact resistance between the fuel and the clad, and the outer surface of the clad is cooled by convection. The fuel is heated by a uniform volume heat source which can vary with time. A schematic crosssectional view of such a system is shown in Fig. 1. The figure contains

Fig. 1.
Cross-sectional View of a Fuel Pin Showing the Knot Sequences. ANL Neg. No. 900-4880.
dimensional nomenclature. If the volume heat source in the fuel is denoted by $\dot{q}(t)$, and if axial and circumferential conduction terms are neglected, then the heat-conduction equation can be written in cylindrical coordinates as

$$
\begin{equation*}
\rho(T) C_{P}(T) \frac{\partial T}{\partial t}=\frac{1}{r} \frac{\partial}{\partial r}\left(r K(T) \frac{\partial T}{\partial r}\right)+\dot{q}(t) \tag{1}
\end{equation*}
$$

When the above equation is applied to the clad, the heat-source term is set equal to zero. The boundary conditions which must be satisfied are

$$
\begin{align*}
& \frac{\partial T_{F}}{\partial r}=0 \quad \text { at } \quad r=R_{0} ; \tag{2a}\\
& -K_{F} \frac{\partial T_{F}}{\partial r}=h_{g}\left[T_{F}\left(R_{F}^{-} ; t\right)-T_{C}\left(R_{F}^{+}, t\right)\right] \quad \text { at } r=R_{F} ; \tag{2b}\\
& K_{F} \frac{\partial T_{F}}{\partial r}=K_{C} \frac{\partial T_{C}}{\partial r} \quad \text { at } r=R_{F} ; \tag{2c}
\end{align*}
$$

$$
\begin{equation*}
-K_{C} \frac{\partial T_{C}}{\partial r}=h(t)\left[T_{C}\left(R_{C}, t\right)-T_{N a}(t)\right] . \tag{2d}
\end{equation*}
$$

Here, $T_{F}=T_{F}(r, t)$ refers to the temperature distribution in the fuel and $T_{C}=T_{C}(r, t)$ to the temperature distribution in the clad. The temperature of the external medium (sodium) surrounding the clad is denoted by $\mathrm{T}_{\mathrm{Na}}(\mathrm{t})$. The definition of the other symbols used is given in the Nomenclature.

The above equations can be simplified somewhat by application of Kirchoff's transformation.

$$
\begin{equation*}
\Theta=\frac{1}{K_{0}} \int_{T_{0}}^{T} K(T) d T \tag{3}
\end{equation*}
$$

Upon the introduction of the variable θ into Eqs. 1 and 2 , we obtain

$$
\begin{align*}
& \frac{\partial \theta}{\partial t}=\alpha\left(\frac{\partial^{2} \theta}{\partial r^{2}}+\frac{1}{r} \frac{\partial \theta}{r}\right)+\frac{\alpha \dot{q}}{K_{0}} ; \\
& \frac{\partial \theta_{F}}{\partial r}=0 \quad \text { at } r=R_{O} ; \tag{5a}\\
& -K_{O F} \frac{\partial \theta_{F}}{\partial r}=h_{g}\left[T_{F}\left(\theta_{F}\left(R_{F}^{-}, t\right)\right)-T_{C}\left(\theta_{C}\left(R_{F}^{+}, t\right)\right)\right] \quad a L r=R_{F} ; \tag{5b}\\
& K_{O F} \frac{\partial \theta_{F}}{\partial r}=K_{O C} \frac{\partial \theta_{C}}{\partial r} \quad \text { at } r=R_{F} ; \tag{5c}\\
& -K_{O C} \frac{\partial \theta_{C}}{\partial r}=h(t)\left[T_{C}\left(\theta_{C}\left(R_{C}, t\right)\right)-T_{N a}(t)\right] . \tag{5d}
\end{align*}
$$

Here the diffusivity $\alpha=K(T) / \rho(T) C_{P}(T)$ must be evaluated by means of the transformation $T=T(\theta)$ which is the inverse of the transformation given in Eq. 3.
III. A METHOD OF COLLOCATION

We shall seek an approximate solution of Eqs. 4 and 5 using the method of lines in conjunction with collocation. To this end, we assume that at each fixed time the transformed temperature $\theta(r, t)$ can be approximated by a function which is a piecewise cubic polynomial in r and that the function together with its first derivative is continuous. More specifically, let $[a, b]$ denote either the fuel region $\left[R_{0}, R_{F}\right]$ or the clad region $\left[R_{F}, R_{C}\right]$. Let this interval be subdivided by the set of points

$$
\pi: a=x_{1}<x_{2}<\cdots<x_{n+1}=b, h_{j}=x_{j}-x_{j-1}
$$

Relative to this partition π, the approximating subspace. $H_{3}(\pi)$ will consist of all functions $f(x)$ such that
(1) $f(x)$ is equal to a cubic polynomial in each subinterval $\left[x_{i}, x_{i+1}\right]$ for $1 \leq i \leq n$,
(2) $f(x)$ and $f^{\prime}(x)$ are continuous at the points x_{i} for $2 \leq i \leq n$, and
(3) $f(x)$ satisfies the appropriate boundary conditions in Eqs. 5, depending on whether the interval [a,b] is the fuel or the clad.

Since this problem has two regions, we will generate two approximating sets of functions: $H_{3}^{(F)}\left(\pi_{F}\right)$ and $H_{3}^{(C)}\left(\pi_{C}\right)$, one relative to a partition π_{F} of the fuel, the other relative to a partition π_{C} of the clad. These two sets of functions are required to satisfy the common interface conditions (5b) and (5c).

A convenient basis for generating either set of approximating functions is the set. $\left\{V_{j}(x), S_{j}(x)\right\}_{j=1}^{n+1}$, where.

$$
v_{j}(x)=\left\{\begin{array}{l}
\left(1+\frac{x-x_{j}}{h_{j}}\right)^{2}\left[1-2\left(\frac{x-x_{j}}{h_{j}}\right)\right] \text { for } x_{j-1} \leq x \leq x_{j} \tag{6a}\\
\left(1-\frac{x-x_{j}}{h_{j+1}}\right)^{2}\left[1+2\left(\frac{x-x_{j}}{h_{j+1}}\right)\right] \text { for } x_{j} \leq x \leq x_{j+1} \\
0 \text { elsewhere }
\end{array}\right.
$$

$$
S_{j}(x)=\left\{\begin{array}{ll}
h_{j}\left(\frac{x}{h_{j}} x_{j}\right. \tag{6b}\\
h_{j+1}\left(\frac{x-x_{j}}{h_{j+1}}\right)\left(1-\frac{x-x_{j}}{h_{j}}\right]^{2} & \text { for } x_{j-1} \leq x \leq x_{j} \\
h_{j+1}
\end{array}\right)^{2} \quad \text { for } x_{j} \leq x \leq x_{j+1} .
$$

The functions $V_{j-1}(x), V_{j}(x), S_{j-1}(x)$, and $S_{j}(x)$ together with their first derivatives are shown in Figs. 2 and 3. It is assumed that $V_{1}(x)$ and

Fig. 2.
Grophz of $V_{j-1}(x), V_{j-1}^{\prime}(x)$,
$V_{j}(x)$, urul $V_{j}^{\prime}(x)$.
ANL Neg. No. 900-4453 Rev. 1.
S_{1} (x) vanish to the left of x_{1}, whereas $V_{n+1}(x)$, and $S_{n+1}(x)$ vanish to the right of x_{n+1}. From the defining equations, we observe that each of the functions has the following properties:

Fig. 3. Graphs of $S_{j-1}(x), S_{j-1}^{i}(x)$, $S_{j}(x)$, and $S_{j}^{\prime}(x)$. ANL Neg. No. 900-4452 Rev. 1.
(1) Each $V_{j}(x)$ and $S_{j}(x)$ is continuous together with its first derivative in the interval [a,b].
(2) Each $V_{j}(x)$ and $S_{j}(x)$ is a cubic polynomial in each subinterval, and they vanish outside the subintervai $\left[x_{j-1}, x_{j+1}\right]$.
(3) $\left.\begin{array}{rl} & v_{i}\left(x_{j}\right) \\ & =\delta_{i j} ; v_{i}^{\prime}\left(x_{j}\right) \equiv 0 \\ S_{i}\left(x_{j}\right) \equiv 0 ; S_{i}^{\prime}\left(x_{j}\right)=\delta_{i j}\end{array}\right\} 1 \leq i, j \leq n+1$.

The set $\left\{V_{i}(x), S_{i}(x)\right\}_{i=1}^{n+1}$ will form a basis for the set of functions $H_{3}(\pi)$. Thus, we assume that the transformed temperature field has the form

$$
\begin{equation*}
\theta(x, t)=\sum_{j=1}^{n+1}\left[\theta\left(x_{j}, t\right) v_{j}(x)+\theta^{\prime}\left(x_{j}, t\right) s_{j}(x)\right] \tag{7}
\end{equation*}
$$

where $\left\{\theta\left(x_{j}, t\right), \theta^{\prime}\left(x_{j}, t\right)\right\}_{j=1}^{n+1}$ are the unknown coefficients. In view of property (3), these coefficients represent, respectively, the unknown temperature and spatial derivative of temperature at each of the knot points $\left(x_{j}, 1 \leq j \leq n+1\right)$.

Let

$$
\pi_{F}: R_{0}=r_{1}<r_{2}<\cdots<r_{n+1}=R_{F}
$$

be a partition of the fuel and

$$
\pi_{C}: R_{F}=R_{1}<R_{2}<\cdots<R_{N+1}=R_{C}
$$

a partition of the clad. We seek an approximation to the temperature field $\theta(r, t)$, of the form shown in Eq. 7, in the fuel and the clad. Substituting Eq. 7 into Eqs. 4 and 5, we obtain the following relation in the fuel:

$$
\begin{align*}
\frac{\partial \Theta_{F}}{\partial t} & =\sum_{j=1}^{n+1}\left[v_{j}(r) \dot{\theta}_{F}\left(r_{j}, t\right)+S_{j}(r) \dot{\theta}_{F}^{\prime}\left(r_{j}, t\right)\right] \\
& =\alpha_{F}\left(\theta_{F}(r, t)\right)\left\{\sum_{j=1}^{n+1}\left[\theta_{F}\left(r_{j}, t\right) \Phi_{j}(r)+\theta_{F}^{\prime}\left(r_{j}, t\right) \psi_{j}(r)\right]\right\} \\
& +\alpha_{F}\left(\theta_{F}(r, t)\right) \dot{q}(t) / K_{O F} \quad \text { for } r_{1} \leq r \leq r_{n+1}, \tag{8}
\end{align*}
$$

where

$$
\Phi_{j}(r)=V_{j}^{\prime \prime}(r)+\frac{1}{r} v_{j}^{\prime}(r), \psi_{j}(x)=s_{j}^{\prime \prime}(r)+\frac{1}{r} s_{j}^{\prime}(r)
$$

Now.

$$
\frac{\partial \theta}{\partial r}=\sum_{j=1}^{n+1}\left[V_{j}^{\prime}(r) \theta_{F}\left(r_{j}, t\right)+s_{j}^{\prime}(r) \theta_{F}^{\prime}\left(r_{j}, t\right)\right]
$$

Since $V_{j}^{\prime}\left(r_{1}\right) \equiv 0$, $S_{1}^{\prime}\left(r_{1}\right)=1$, and $S_{j}^{\prime}\left(r_{1}\right) \equiv 0$ for $j>1$, we find that the boundary condition (5a) implies

$$
\begin{equation*}
\theta_{F}^{\prime}\left(r_{1}, t\right) \equiv 0 . \tag{9a}
\end{equation*}
$$

Differentiating this expression with respect to time, we find also

$$
\begin{equation*}
\dot{\theta}_{F}^{\prime}\left(r_{1}, t\right) \equiv 0: \tag{9b}
\end{equation*}
$$

Similarly, we find the following relations at $r=r_{n+1}$ from the boundary condition (5b):

$$
\begin{equation*}
\Theta_{F}^{\prime}\left(r_{n+1}, t\right)=-\frac{h_{g}}{K_{O F}}\left[T_{F}\left(\Theta_{F}\left(r_{n+1}, t\right)\right)-T_{C}\left(\Theta_{C}\left(R_{1}, t\right)\right)\right]=F_{f} \tag{9c}
\end{equation*}
$$

and

$$
\begin{align*}
\dot{\theta}_{F}^{\prime}\left(r_{n+1}, t\right)= & -\frac{\dot{h}_{g}}{K_{O F}}\left[T_{F}\left(\theta_{F}\left(r_{n+1}, t\right)\right)-T_{C}\left(\theta_{C}\left(R_{1}, t\right)\right)\right] \\
& -\frac{h_{g}}{K_{O F}}\left[\left.\frac{d T_{F}}{d \theta_{F}}\right|_{\theta_{F}\left(r_{n+1}, t\right)} \dot{\theta}_{F}\left(r_{n+1}, t\right)-\left.\frac{d T_{C}}{d \theta_{C}}\right|_{\theta_{C}}\left(R_{1}, t\right)\right. \\
& \left.\times \dot{\theta}_{C}\left(R_{1}, t\right)\right] \\
= & f_{F}+A_{F} \dot{\theta}_{F}\left(r_{n+1}, t\right)+A_{C} \dot{\theta}_{C}\left(R_{1}, t\right) . \tag{9d}
\end{align*}
$$

For the clad region (see Fig. 1), we find

$$
\begin{align*}
\frac{\partial \theta_{C}(r, t)}{\partial t}= & \sum_{j=1}^{N+1}\left[v_{j}(r) \dot{\theta}_{C}\left(R_{j}, t\right)+S_{j}(r) \dot{\theta}_{C}^{\prime}\left(R_{j}, t\right)\right] \\
= & \alpha_{C}\left(\theta_{C}(r, t)\right) \sum_{j=1}^{N+1}\left[\theta_{C}\left(R_{j}, t\right) \Phi_{j}(r)\right. \\
& \left.+\theta_{C}^{\prime}\left(R_{j}, t\right) \Psi_{j}(r)\right] \quad \text { for } R_{1} \leq r \leq R_{N+1} ; \tag{10}\\
\theta_{C}^{\prime}\left(R_{1}, t\right)= & \frac{K_{O F}}{K_{O C}} \theta_{F}^{\prime}\left(r_{n+1}, t\right)=\frac{K_{O F}}{K_{O C}} F_{f} ; \tag{11a}
\end{align*}
$$

$$
\begin{align*}
\dot{\theta}_{C}^{\prime}\left(R_{1}, t\right)= & \frac{K_{0 F}}{K_{O C}} \dot{\theta}_{F}^{\prime}\left(r_{n+1}, t\right) \\
= & \frac{K_{O F}}{K_{O C}}\left[f_{F}+A_{F} \dot{\theta}_{F}\left(r_{n+1}, t\right)+A_{C} \dot{\theta}_{C}\left(R_{1}, t\right)\right] ; \tag{11b}\\
\theta_{C}^{\prime}\left(R_{N+1}, t\right)= & -\frac{h}{K_{O C}}\left[T_{C}\left(\theta_{C}\left(R_{N+1}, t\right)\right)-T_{N a}(t)\right]=F_{C} ; \\
\dot{\theta}_{C}^{\prime}\left(R_{N+1 .}, t\right)= & -\frac{\dot{h}}{K_{O C}}\left[T_{C}\left(\theta_{C}\left(R_{N+1}, t\right)\right)-T_{N a}(t)\right] \\
& -\frac{h}{K_{O C}}\left[\left.\frac{d T_{C}}{d \theta_{C}}\right|_{\theta_{C}}\left(R_{N+1}, t\right) \cdot \dot{\theta}_{C}\left(R_{N+1}, t\right)-\dot{T}_{N a}(t)\right] . \tag{11c}
\end{align*}
$$

or

$$
\begin{equation*}
\dot{\dot{\theta}}_{C}^{\prime}\left(R_{N+1}, t\right)=f_{C}+B_{C} \dot{\theta}_{C}\left(R_{N+1}, l\right) \tag{ild}
\end{equation*}
$$

Here, in Eqs. 9d and 11d, we have made the following substitutions:

$$
\begin{aligned}
& f_{F}=-\frac{\dot{h}_{g}}{K_{O F}}\left[T_{F}\left(\theta_{F}\left(r_{n+1}, t\right)\right)-T_{C}\left(\theta_{C}\left(R_{1}, t\right)\right)\right] ; A_{F}=-\left.\frac{l_{1}}{K_{O F}} \frac{d T_{F}}{d \theta_{F}}\right|_{\theta_{F}\left(r_{n+1}, t\right)} ; \\
& A_{C}=\left.\frac{h_{g}}{K_{O F}} \frac{d T_{C}}{d \theta_{C}}\right|_{\theta_{C}\left(R_{1}, t\right)} ; f_{C}=-\frac{\dot{h}}{K_{O C}}\left[T_{C}\left(\theta_{C}\left(R_{N+1}, t\right)\right)-T_{N a}(t)\right]+\frac{h}{K_{O C}} \dot{T}_{N a}(t) ;
\end{aligned}
$$

$$
B_{C}=-\left.\frac{h}{K_{O C}} \frac{d T_{C}}{d \theta_{C}}\right|_{\Theta_{C}\left(R_{N+1}, t\right)}
$$

Substituting Eqs. 9 into Eq. 8, we obtain

$$
\sum_{j=2}^{n}\left(v_{j}(x) \dot{\theta}_{F}\left(r_{j}, t\right)+s_{j}(r) \dot{\theta}_{F}^{\prime}\left(r_{j}, t\right)\right)+v_{1}(r) \dot{\theta}_{F}\left(r_{1}, t\right)
$$

$$
\begin{align*}
& +\left[v_{n+1}(r)+S_{n+1}(r) A_{F}\right] \dot{\theta}_{F}\left(r_{n+1}, t\right)+S_{n+1}(r) A_{C} \dot{\theta}_{C}\left(R_{1}, t\right) \\
= & -S_{n+1}(r) f_{F}+\frac{\alpha_{F}\left(\theta_{F}(r, t)\right) \dot{q}(t)}{K_{O F}}+\alpha_{F}\left(\theta_{F}(r, t)\right) \\
& \times\left(\sum_{j=1}^{n+1} \theta_{F}\left(r_{j}, t\right) \Phi_{j}(r)+\sum_{j=2}^{n} \theta_{F}^{\prime}\left(r_{j}, t\right) \psi_{j}(r)\right. \\
& \left.+F_{f} \Psi_{n+1}(r)\right) \text { for } r_{1} \leq r \leq r_{n+1} \tag{12}
\end{align*}
$$

Substituting Eqs. lb, lld, and lld into Eq. 10, we obtain

$$
\begin{aligned}
& \sum_{j=2}^{N}\left[v_{j}(r) \dot{\theta}_{C}\left(R_{j}, t\right)+s_{j}(r) \dot{\theta}_{C}^{\prime}\left(R_{j}, t\right)\right]+\left(S_{1}(r) A_{C} \frac{K_{O F}}{K_{O C}}+v_{1}(r)\right) \dot{\theta}_{C}\left(R_{1}, t\right) \\
& \\
& +\left({ }_{C}{ }_{C} S_{N+1}(r)+\cdot v_{N+1}(r)\right) \dot{\theta}_{C}\left(R_{N+1}, t\right)+S_{1}(r) A_{F} \frac{K_{O F}}{K_{O C}} \dot{\theta}_{F}\left(r_{n+1}, t\right) \\
& = \\
& \quad-f_{F} S_{1}(r) \frac{K_{O F}}{K_{O C}}-f_{C} S_{N+1}(r)+\alpha_{C}\left(\theta_{C}(r, t)\right) \\
& \quad \times\left(\sum_{j=1}^{N+1}{ }_{C} \Theta_{j}\left(R_{j}, t\right) \Phi_{j}(r)+\sum_{j=2}^{N} \theta_{C}^{\prime}\left(R_{j}, t\right) \Psi_{j}(r)+\right.
\end{aligned}
$$

$$
\begin{align*}
& \left.+\sum_{j=2}^{N} \Theta_{C}^{\prime}\left(R_{j}, t\right) \Psi_{j}(r)+\Psi_{1}(r) F_{f} \frac{K_{O F}}{K_{O C}}+\Psi_{N+1}(r){ }^{F_{C}}\right) \\
& \text { for } R_{1} \leq r \leq R_{N+1} \tag{13}
\end{align*}
$$

The unknown coefficients contained in Eqs. 12 and 13 are:

$$
\begin{aligned}
& \left\{\theta_{F}\left(r_{j}, t\right)\right\}_{j=1}^{n+1},\left\{\theta_{F}^{\prime}\left(r_{\cdot j}, t\right)\right\}_{j=2}^{n},\left\{\theta_{C}\left(R_{j}, t\right)\right\}_{j=1}^{N+1}, \quad \text { and } \\
& \left\{\theta_{C}^{\prime}\left(R_{j}, t\right)\right\}_{j=2}^{N},
\end{aligned}
$$

which add up to $2 n+2 N$ unknowns. In order to obtain $2 n+2 N$ equations, we can require that Eq. 12 be satisfied at $2 n$ points in the fuel region and Eq. 13 be satisfied at 2 N points in the clad region. Since there are n intervais in the fuel region and N intervals in the clad region, it therefore seems natural to locate two points in each interval. In accordance with the approximation theory as given by Douglas and Dupont ${ }^{2}$ and by de Boor and Swartz, ${ }^{1}$ the Gauss-Legendre quadrature points of order 2 are chosen as the collocation points in each subinterval [x_{i}, x_{i+1}]. Thus the collocation points are given by

$$
\begin{equation*}
\eta_{i, k}=\frac{1}{2}\left(x_{i-1}+x_{i}\right)+(-1)^{k} \frac{h_{i}}{2 \sqrt{3}} \quad 2 \leq i \leq n+1,1 \leq k \leq 2 . \tag{14}
\end{equation*}
$$

Douglas and Dupont ${ }^{2}$ have shown that for a parabolic equation the use ot the above collocation points will result in accuracy up to $O\left(h^{4}\right)$ provided the thermal capacity and conductivity have bounded third-order derivatives and the solution $\theta(x, t)$ has bounded sixth-order spatial derivatives over a fixed time interval.

If we let

$$
\begin{equation*}
\beta=\frac{1}{2}\left(1-\frac{1}{\sqrt{3}}\right) \text { and } \gamma=\frac{1}{2}\left(1+\frac{1}{\sqrt{3}}\right) \tag{15a}
\end{equation*}
$$

in Eq. 14, we obtain

$$
\left.\begin{array}{ll}
\frac{\eta_{j, 1}-x_{j}}{h_{j}}=-\beta ; & \frac{\eta_{j, 2}-x_{j}}{h_{j}}=-\gamma \tag{15b}\\
\frac{\eta_{j, 1}-x_{j-1}}{h_{j}}=\beta ; & \frac{\eta_{j, 2}-x_{j-1}}{h_{j}}=\gamma
\end{array}\right\}
$$

Using these relations in Eqs. 6 give the following expressions for the values of $V_{j}(x), S_{j}(x)$, and their derivatives at the collocation points $\eta_{i, k}:$

$$
\left.\begin{array}{l}
v_{j-1}\left(\eta_{j, 1}\right)=v_{j}\left(n_{j, 2}\right)=(1-\beta)^{2}(1+2 \beta)=v_{\beta} \\
v_{j-1}\left(\eta_{j, 2}\right)=v_{j}\left(n_{j, 1}\right)=(1-\gamma)^{2}(1+2 \gamma)=v_{\gamma} \\
s_{j-1}\left(\eta_{j, 1}\right)=-s_{j}\left(n_{j, 2}\right)=h_{j} \beta(1-\beta)^{2}=h_{j} s_{\beta} \tag{16a}\\
s_{j-1}\left(\eta_{j, 2}\right)=-s_{j}\left(\eta_{j, 1}\right)=h_{j}(1-\gamma)^{2}=h_{j} s_{\gamma}
\end{array}\right\} ;
$$

$$
\left.\begin{array}{l}
v_{j-1}^{\prime}\left(n_{j, 1}\right)=-v_{j}^{\prime}\left(n_{j, 2}\right)=-6 \beta(1-\beta) / h_{j}=-v_{\beta}^{\prime} / h_{j} \\
v_{j-1}^{\prime}\left(n_{j, 2}\right)=-v_{j}^{\prime}\left(n_{j, 1}\right)=-6 \gamma(1-\gamma) / h_{j}=-v_{\gamma}^{\prime / h_{j}} \\
s_{j-1}^{\prime}\left(n_{j, 1}\right)=s_{j}^{\prime}\left(n_{j, 2}\right)=1-4 \beta+3 \beta^{2}=s_{\beta}^{\prime} \\
s_{j-1}^{\prime}\left(n_{j, 2}\right)=s_{j}^{\prime}\left(\eta_{j, 1}\right)=1-4 \gamma+3 \gamma^{2}=s_{\gamma}^{\prime} \tag{16c}\\
v_{j-1}^{\prime \prime}\left(n_{j, 1}\right)=v_{j}^{\prime \prime}\left(n_{j, 2}\right)=-6(1-2 \beta) / h_{j}^{2}=-v_{\gamma}^{\prime \prime} / h_{j}^{2} \\
v_{j-1}^{\prime \prime}\left(n_{j, 2}\right)=v_{j}^{\prime \prime}\left(n_{j, 1}\right)=-6(1-2 \gamma) / h_{j}^{2}=-v_{\gamma}^{\prime \prime} / h_{j}^{2} \\
s_{j-1}^{\prime \prime}\left(n_{j, 1}\right)=-s_{j}^{\prime \prime}\left(n_{j, 2}\right)=-(4-6 \beta) / h_{j}=-s_{\beta}^{\prime \prime / h_{j}} \\
s_{j-1}^{\prime \prime}\left(n_{j, 2}\right)=-s_{j}^{\prime \prime}\left(n_{j, 1}\right)=-(4-6 \gamma) / h_{j}=-s_{\gamma}^{\prime \prime / h_{j}}
\end{array}\right\} ;
$$

Evaluating Eq. 12 at the collocation points $\eta_{i, k}$ in the fuel, and noting that each $V_{j}(x)$ and $S_{j}(x)$ has its support in $\left[x_{j-1}, x_{j+1}\right]$ and, in particular,

$$
v_{1}(r)=0 \text { for } r \notin\left[r_{1}, r_{2}\right) ; v_{n+1}(r)=S_{n+1}(r)=0 \text { for } r \notin\left(r_{n}, r_{n+1}\right]
$$

we obtain the following systefin of equarions:

$$
\begin{aligned}
&\text { For } \left.i=2, k=1 \text { (i.e., } n_{2,1}\right) \\
& \quad v_{1}\left(n_{2,1}\right) \dot{\theta}_{F}\left(r_{1}, t\right)+v_{2}\left(n_{2,1}\right) \dot{\theta}_{F}\left(r_{2}, t\right)+s_{2}\left(n_{2,1}\right) \dot{\theta}_{F}\left(r_{2}, t\right)=F_{2,1}
\end{aligned}
$$

$$
\begin{align*}
& \text { For } i=2, k=2\left(i . e ., \eta_{2,2}\right) \\
& v_{1}\left(\eta_{2,2}\right) \dot{\theta}_{F}\left(r_{1}, t\right)+v_{2}\left(n_{2,2}\right) \dot{\theta}_{F}\left(r_{2}, t\right)+S_{2}\left(n_{2,2}\right) \dot{\theta}_{F}^{\prime}\left(r_{2}, t\right)=F_{2,2} \tag{17b}
\end{align*}
$$

$$
\begin{align*}
& \text { In general for } 3 \leq i \leq n, 1 \leq k \leq 2, \\
& \qquad \begin{array}{l}
V_{i-1}\left(n_{i, k}\right) \dot{\theta}_{F}\left(r_{i-1}, t\right)+V_{i}\left(n_{i, k}\right) \dot{\theta}_{F}\left(r_{i}, t\right)+S_{i-1}\left(n_{i, k}\right) \dot{\theta}_{F}^{\prime}\left(r_{i-1}, t\right) \\
\\
+S_{i}\left(n_{i, k}\right) \dot{\theta}_{F}^{\prime}\left(r_{i}, t\right)=F_{i, k}
\end{array}
\end{align*}
$$

$$
\begin{align*}
& \text { For } i=n+1,1 \leq k \leq 2\left(i . e ., \eta_{n+1, k}\right) \\
& V_{n}\left(n_{n+1, k}\right) \dot{\theta}_{F}\left(r_{n}, t\right)+\left[V_{n+1}\left(n_{n+1, k}\right)+S_{n+1}\left(n_{n+1, k}\right) A_{F}\right] \dot{\theta}_{F}\left(r_{n+1}, t\right) \\
&+S_{n}\left(n_{n+1, k}\right) \dot{\theta}_{F}^{\prime}\left(r_{n}, t\right)+S_{n+1}\left(n_{n+1, k}\right) A_{C} \dot{\theta}_{C}\left(R_{1}, t\right)=F_{n+1, k}, \tag{17~d}
\end{align*}
$$

where

$$
\begin{align*}
& F_{2, k}=\alpha_{F}\left(\Theta_{F}\left(\eta_{2, k}, t\right)\right)\left(\Theta_{F}\left(r_{1}, t\right) \Phi_{1}\left(n_{2, k}\right)+\Theta_{F}\left(r_{2}, t\right) \Phi\left(n_{2, k}\right)\right. \\
& \left.+\theta_{F}^{\prime}\left(r_{2}, t\right) \Psi_{2}\left(n_{2, k}\right)+\dot{q}(t) / K_{O F}\right) \quad \text { for } 1 \leq k \leq 2 ; \tag{18a}\\
& F_{i, k}=\alpha_{F}\left(\Theta_{F}\left(n_{i, k}, t\right)\right)\left(\Theta_{F}\left(r_{i-1}, t\right) \Phi_{i-1}\left(\eta_{i, k}\right)+\Theta_{F}\left(r_{i}, t\right) \Phi_{i}\left(n_{i, k}\right)\right. \\
& \left.+\theta_{F}^{\prime}\left(r_{i-1}, t\right) \Psi_{i-1}\left(\eta_{i, k}\right)+\theta_{F}^{\prime}\left(r_{i}, t\right) \Psi_{i}\left(\eta_{i, k}\right)+\dot{q}(t) / K_{0 F}\right) \text {. }
\end{align*}
$$

for $2 \leq i \leq n, 1 \leq k \leq 2$;

$$
\begin{align*}
F_{n+1, k}= & -S_{n+1}\left(\eta_{n+1, k}\right) f_{F}+\alpha_{F}\left(\theta_{F}\left(\eta_{n+1, k}, t\right)\right)\left(F_{f} \Psi_{n+1}\left(\eta_{n+1, k}\right)\right. \\
& +\theta_{F}\left(r_{n}, t\right) \Phi_{n}\left(\eta_{n+1, k}\right)+\theta_{F}\left(r_{n+1}, t\right) \Phi_{n+1}\left(\eta_{n+1, k}\right) \\
& \left.+\theta_{F}^{\prime}\left(r_{n}, t\right) \Psi_{n}\left(n_{n+1, k}\right)+\dot{q}(t) / K_{0 F}\right) \tag{18c}
\end{align*}
$$

Similarly, evaluating Eq. 13 at the collocations points which are denoted by $\xi_{i, k}$ and given by Eq. 14 for the clad region, we obtain the following system:

$$
\begin{align*}
& {\left[S_{1}\left(\xi_{2, k}\right) A_{C} \frac{K_{O F}}{K_{O C}}+V_{1}\left(\xi_{2, k}\right)\right] \dot{\oplus}_{C}\left(R_{1}, t\right) I V_{2}\left(\zeta_{2, k}\right) \dot{@}_{C}\left(\dot{R}_{2}, t\right)} \\
& +S_{2}\left(\xi_{2, k}\right) \dot{\theta}_{\dot{C}}^{\prime}\left(R_{2}, t\right)+S_{1}\left(\xi_{2, k}\right) A_{F} \frac{K_{0 F}}{K_{O C}} \dot{\theta}_{F}\left(r_{n+1}, t\right)=C_{2, k} \\
& \text { for } 1 \leq k \leq 2 \text {; } \tag{19a}\\
& V_{i-1}\left(\xi_{i, k}\right) \dot{\theta}_{C}\left(R_{i-1}, t\right)+v_{i}\left(\xi_{i, k}\right) \dot{\theta}_{C}\left(\mathbb{R}_{1}, t\right)+s_{i-1}\left(\xi_{i, k}\right) \dot{\theta}_{C}^{\prime}\left(R_{i-1}, l\right) \\
& +S_{i}\left(\xi_{i, k}\right) \dot{\theta}_{C}^{\prime}\left(R_{i}, t\right)=C_{i, k} \\
& \text { for } 2 \leq i \leq N, 1 \leq k \leq 2 ; \tag{19b}\\
& V_{N}\left(\xi_{N+1, k}\right) \ddot{\theta}_{C}\left(R_{N}, t\right)+\left(B_{C} S_{N+1}\left(\xi_{N+1, k}\right)+v_{N+1}\left(\xi_{N+1, k}\right)\right) \dot{\theta}_{C}\left(R_{N+1}, t\right) \\
& +\mathrm{S}_{\mathrm{N}}\left(\xi_{\mathrm{N}+1, \mathrm{k}}\right) \dot{\theta}_{\mathrm{C}}^{\prime}\left(\mathrm{R}_{\mathrm{N}}, \mathrm{t}\right)=\mathrm{C}_{\mathrm{N}+1, \mathrm{k}}
\end{align*}
$$

$$
\begin{equation*}
\text { for } 1 \leq k \leq 2 \text {, } \tag{19c}
\end{equation*}
$$

where

$$
\begin{align*}
& C_{2, k}=-S_{1}\left(\xi_{2, k}\right) f_{F} \frac{K_{O F}}{K_{O C}}+\alpha_{C}\left(\Theta_{C}\left(\xi_{2, k}, t\right)\right)\left[\Theta_{C}\left(R_{1}, t\right) \Phi_{1}\left(\xi_{2, k}\right)\right. \\
& \left.+\theta_{C}\left(R_{2}, t\right) \Phi_{2}\left(\xi_{2, k}\right)+\theta_{C}^{\prime}\left(R_{2}, t\right) \Psi_{2}\left(\xi_{2, k}\right)+\Psi_{1}\left(\xi_{2, k}\right) F_{f} \frac{K_{O F}}{K_{O C}}\right] \\
& \text { for } 1 \leq k \leq 2 \text {; } \tag{20a}\\
& C_{i, k}=\alpha_{C}\left(\Theta_{C}\left(\xi_{i, k}, t\right)\right)\left(\theta_{C}\left(R_{i-1}, t\right) \Phi_{i-1}\left(\xi_{i, k}\right)+\theta_{C}\left(R_{i}, t\right) \Phi_{i}\left(\xi_{i, k}\right)\right. \\
& \left.+\theta_{C}^{\prime}\left(R_{i-1}, t\right) \cdot \Psi_{i-1}\left(\xi_{i, k}\right)+\theta_{C}^{\prime}\left(R_{i}, t\right) \Psi_{i}\left(\xi_{i, k}\right)\right) \\
& \text { for } 2 \leq i \leq N, 1 \leq k \leq 2 ; \tag{20b}\\
& C_{N+1, k}=-f_{C} S_{N+1}\left(\xi_{N+1, k}\right)+\alpha_{C}\left(\theta_{C}\left(\xi_{N+1, k}\right)\right)\left(\Theta_{C}\left(R_{N}, t\right) \Phi_{N}\left(\xi_{N+1, k}\right)\right. \\
& +\theta_{C}\left(R_{N+1}, t\right) \Phi_{N+1}\left(\xi_{N+1, k}\right)+\theta_{C}^{\prime}\left(R_{N}, t\right) \Psi_{N}\left(\xi_{N+1, k}\right) \\
& \left.+\Psi_{N+1}\left(\xi_{N+1, k}\right) F_{C}\right) \\
& \text { for } 1 \leq k \leq 2 . \tag{20c}
\end{align*}
$$

We note that the transformed temperature $\theta(r, t)$ must be evaluated at the collocation points in order to evaluate the property functions, such as the diffusivity α. For this purpose, we use Eq. 7. For example, in the fuel at the collocation point $\eta_{i, k} \varepsilon\left(x_{i-1}, x_{i}\right)$ we have

$$
\begin{align*}
\theta_{F}\left(\eta_{i, k}, t\right)= & \theta_{F}\left(r_{i-1}, t\right) v_{i-1}\left(\eta_{i, k}\right)+\theta_{F}\left(r_{i}, t\right) V_{i}\left(\eta_{i, k}\right) \\
& +\theta_{F}^{\prime}\left(r_{i-1}, t\right) s_{i-1}\left(\eta_{i, k}\right)+\theta_{F}^{\prime}\left(r_{i}, t\right) s_{i}\left(\eta_{i, k}\right) \tag{21}
\end{align*}
$$

Substituting.for the values of the basis functions and their derivatives from Eqs. 16 into Eqs. 17 through 21 and rewriting the resulting equations in matrix form, we obtain

$$
\begin{equation*}
[A] \cdot\{\dot{U}\}=\dot{G}(U, t) \tag{22}
\end{equation*}
$$

where $U(t)$ is the $2 n+2 N$ dimensional vector

$$
\left\{\theta_{F}\left(r_{j}, t\right)\right\}_{j=1}^{n+1} U\left\{\theta_{F}^{\prime}\left(r_{j}, t\right)\right\}_{j=2}^{n} U\left\{\theta_{C}\left(R_{j}, t\right)\right\}_{j=1}^{N+1} U\left\{\theta_{C}^{\prime}\left(R_{j}, t\right)\right\}_{j=2}^{N}
$$

and $G(U, t)$ is the vector of the entire right-hand side. The details of the above matrix equation are shown in Fig. 4. From an examination of Fig. 4 it is clear that the coefficient matrix [A] is a band matrix. This property is a consequence of the basis functions $V_{j}(x)$ and $S_{j}(x)$ having local support. It should be noted that, in general, the coefficient matrix [A] will depend on the temperature because of the convective interface and boundary conditions. This dependence is explicitly shown in Eqs. 9d and 11d. Thus, the matrix [A] has to be inverted at each iteration of every time step. The band structure is utilized in this inversion process.

With given initial values $\{U(0)\}$, the system (22) represents a system of nonlinear ordinary differential equations. This system is solved with the ordinary-differential-equation subroutine GEAR. ${ }^{3}$

Fig. 4. Display of Matrix Equation (22). -ANL Neg. No. 900-4879.

IV. NUMERICAL RESULTS

The method of collocation as described previously was used for the solution of the transient conduction problem for the cylindrical fuelclad pin configuration shown in Fig. 1. The transport properties of the materials and the dimensions of the pin are given in Appendix A. The transient was initiated by permitting the volumetric heat source in the fuel to increase exponentially with time as specified in Appendix A. The initial temperature distribution was obtained by a steady-state solution of Eq. 4 with boundary conditions (5) and an initial uniform heat source $\dot{q}(t=0)$. The effect of step size or the number of knots placed in fuel and clad regions on the accuracy of the solution was investigated. A set of five calculations were made. In the first calculation, two knots were used in the fuel and two in the clad. Since two knots correspond to one subinterval, the temperature distribution in this calculation was approximated with one cubic polynomial in the fuel and another in the clad. The second calculation used three knots in the fuel, while the fourth calculation used four knots in the fuel, with both calculations using two knots in the clad. The fourth calculation used five knots in the fuel and three knots in the clad. The last calculation was made with 20 knots in the fuel and five knots in the clad. The positions of knots chusen both in fuel and cladding for the above five examples are given in Appendix A. In the choice of these positions, no attempt was made to adjust these positions in order to improve the accuracy. It should be noted that it is not the selection of the knot positions which provides high-order accuracy for this collocation procedure, but rather the choice of Gaussian collocation points relative to each subinterval determined by these knots.

For purposes of comparison, the solution to this problem was also approximated by a finite-difference type procedure as used in the THTB program, ${ }^{4}$ which is a general-purpose transient-heat-conduction program. In this method, the spatial interval is subdivided into subintervals (called nodes). For one-dimensional problems, the spatial approximation to the conduction equation is essentially the same as the usual three-point approximation to the second derịative and is derived by means of an integral heat balance over each node. The time derivative is approximated by an implicit single-time-step difference procedure. The implicit time

Table I. Comparison of a Finite-difference Method with the Collocation Method at Time $=4.0$ sec.

	temperature *F																
	fiatte difference method (tutb code)												collocailoy method				
Position	80 Nodes In Fuel 15 Nodes in Clad No. of Eqs. = 95			35 Nodes in Fuel 6 Niodes In Clad No. of Eqs. - 41			6 Nodes in'Fuel 2 Nodes in Clad No. of Eqs. $=8$			4 2odes in Fuel 2 Modes in Clad No. of Eqs. $=6$			$\begin{aligned} & 2 \text { Knots in Fuel } \\ & 2 \text { Knots in Clad } \\ & \text { No, of Eqs. }=4 \end{aligned}$	3 Knots in Fued 2 Knots in Clad No. of Eqs. = 6	4 Knots in Fuel 2 Knots in Clad N No. of Eqs. -	$\begin{aligned} & \text { Knots in Fuel } \\ & \text { Knots in Clad } \\ & \text { Ho. of Eqs. = } 12 \end{aligned}$	$\begin{array}{\|r} 20 \\ 5 \\ 5 \text { Knots } \text { in Fuel } \\ \text { Ko. in Clad } \\ \text { No. Oq Eqs. } \\ \hline \end{array}$
(Inches)				$\begin{aligned} & \text { Time Step (} \mathrm{sec} \text {) } \\ & 01 \quad . \cos \quad .01 \\ & \text { Tolerance }\left({ }^{\circ} \mathrm{F}\right) \\ & 0.1 \times 10^{-2} \\ & \text { CPU Time (sec) } \end{aligned}$									Time Step Variable Relative Error 0.1×10^{-2} CPU Time (sec)	Time Step Variable Relative Errar 0.1×10^{-2} CPU Time (sec)	Tire Step Variable Kelative Error 0.1×10^{-2} CPU Time (sec)	Tine Step Variable Relative Errot 0.1×10^{-2} CPU Time (sec)	Time Step Variable Relative Error 0.1×10^{-2} CPU Time (sec)
	1318	310	158	561	130	67	35	25	16	65	18	12	2	2	2	3	95
0.03416	3490.1	[$\begin{array}{r}3491.8 \\ +.04872\end{array}$	$\begin{array}{r} 3491.4 \\ +.0372 \% \\ \hline \end{array}$	$\begin{array}{r} 34 \leq 1.2 \\ +.0: 152 \\ \hline \end{array}$	$\begin{array}{r} 3491.3 \\ +.0344 \% \\ \hline \end{array}$	$\begin{array}{r} 3490.9 \\ +.0229 \% \end{array}$	$\begin{array}{r} 3438.3 \\ -.0516 \% \\ \hline \end{array}$	$\begin{array}{r} 3488.0 \\ -.0602 \% \end{array}$	$\begin{array}{r} 3487.6 \\ -.0716 \% \\ \hline \end{array}$	$\begin{array}{r} 3517.1 \\ +.7736 \% \\ \hline \end{array}$	$\begin{array}{r} 3516.8 \\ +.7650 \% \\ \hline \end{array}$	$\begin{array}{r} 3516.5 \\ +\quad .75642 \\ \hline \end{array}$	$\begin{array}{r} 3497.9 \\ +.2235 z \\ \hline \end{array}$	$\begin{array}{r} 3493.8 \\ +.1360 \% \\ \hline \end{array}$	$\begin{array}{r} 3494.3 \\ +-12038 \\ \hline \end{array}$	$\begin{array}{r} 3492.9 \\ +.08 כ 22 \\ \hline \end{array}$	$\begin{array}{r} 3492.1 \\ +.05732 \\ \hline \end{array}$
0.05641	$\stackrel{3039.9}{ }$	$\begin{array}{r} 3041.2 \\ +.0428 \% \end{array}$	$\begin{array}{r} 30408 \\ +.0296 z \end{array}$	$\begin{array}{r} 30<1.9 \\ +.0658 \% \end{array}$	$\begin{array}{r} 3641.8 \\ +. .6625 \% \\ \hline \end{array}$	$\begin{array}{r} 3041.5 \\ +.0526 z \end{array}$	$\begin{array}{r} 3036.4 \\ +1.52972 \end{array}$	$\begin{gathered} 3086.1 \\ +1.8487 \% \end{gathered}$	$\begin{array}{r} 3085.7 \\ +1.5066 \% \\ \hline \end{array}$	$\begin{gathered} 3084.9 \\ +1.48032 \\ \hline \end{gathered}$	$\begin{array}{c\|} 3084.6 \\ +1.47042 \\ \hline \end{array}$	$\begin{gathered} 3084.2 \\ +1.4513 \% \\ \hline \end{gathered}$	$\begin{array}{r} 3064.8 \\ +.81912 \\ \hline \end{array}$	$\begin{array}{r} 3043.2 \\ +.1586 \% \end{array}$	$\begin{array}{r} 3042.0 \\ +.06912 \end{array}$	$\begin{array}{r} 3042.1 \\ +.07248 \end{array}$	$\begin{array}{r} 3041.6 \\ +.05592 \end{array}$
0.08642	$\stackrel{2331.0}{ }$	$\begin{array}{r} 2331.7 \\ +.0300 \% \end{array}$	$\begin{array}{r} 2331.4 \\ +.01728 \end{array}$	$\begin{array}{r} 23: 1.8 \\ +.0 \equiv 433 \end{array}$	$\begin{array}{r} 2331.7 \\ +.0300 \% \end{array}$	$\begin{array}{r} 2331.4 \\ +.0172 z \end{array}$	$\begin{array}{\|} 2331.2 \\ +2.1536 x \\ \hline \end{array}$	$\begin{gathered} 2381.0 \\ +2.1450 z \end{gathered}$	$\begin{gathered} 2380.7 \\ +2.1321 z \end{gathered}$	$\begin{gathered} 2380.5 \\ +2.1236 x \end{gathered}$	$\begin{gathered} 2380.3 \\ +2.1150 z \end{gathered}$	$\left\|\begin{array}{c} 2380 . \mathrm{J} \\ +2.10212 \end{array}\right\|$	$\begin{array}{r} 2343.3 \\ +.5277 \% \end{array}$	2331.0	$\begin{array}{r} 2331.8 \\ +.03432 \end{array}$	$\begin{array}{r} 2332.2 \\ +.0515 \% \end{array}$	$\begin{array}{r} 2331.9 \\ +.0386 \% \end{array}$
0.095.09	${ }^{1772.2}$	$\begin{array}{r} 1772.6 \\ +.0226 \% \end{array}$	$\begin{array}{r} 17724 \\ +.01132 \end{array}$	$\begin{array}{r} 17: 3.3 \\ +.06212 \end{array}$	($\begin{array}{r}1773.3 \\ +.0621 \%\end{array}$	$\left\lvert\, \begin{array}{r} 1773.1 \\ +.0508 \% \end{array}\right.$	$\begin{array}{r} 1732.8 \\ +.57812 \\ \hline \end{array}$	$\begin{array}{r} 1782.7 \\ +.5925 \% \\ \hline \end{array}$	$\begin{array}{r} 1782.6 \\ +.5868 \% \\ \hline \end{array}$	$\begin{array}{r} 1782.4 \\ +.57562 \\ \hline \end{array}$	$\begin{array}{r} 1782.3 \\ +.56432 \\ \hline \end{array}$	$\begin{array}{r} 1782.2 \\ +.5643 z \\ \hline \end{array}$	$\begin{array}{r}1774.6 \\ +.1354 \% \\ \hline\end{array}$	1772.2	1772.7 $+.0282 \%$	1772.8 +.0398	$\begin{array}{r} 1772.6 \\ +.0226 \% \end{array}$
0.1038 C	${ }^{740.8}$	140.8	7408	${ }^{760.8}$	$\stackrel{740.8}{ }$	${ }^{740.8}$	$\begin{array}{r}740.1 \\ -.0344 \% \\ \hline\end{array}$	$\left\{\begin{array}{r} 740.1 \\ -.09462 \end{array}\right.$	$\begin{array}{r} 740.1 \\ -.09442 \end{array}$	$\begin{array}{r} 740.1 \\ -.09442 \end{array}$	$\begin{array}{r} 740.1 \\ -.09442 \end{array}$	$\begin{array}{r} 740.1 \\ -.0944 z \end{array}$	$\begin{array}{r} 740.9 \\ +.0135 \% \end{array}$	740.8	740.8	${ }^{740.8}$	740.8
0.11:29	${ }^{698.5}$	698.5	${ }_{698}$	${ }^{6 \subseteq 8.5}$	698.5	${ }^{698.5}$	$\begin{array}{r} 678.0 \\ -.07162 \\ \hline \end{array}$	$\begin{array}{r} 698.0 \\ -.07162 \\ \hline \end{array}$	$\begin{array}{r} 698.0 \\ -.0716 \% \end{array}$	$\begin{array}{r} 698.0 \\ -.0716 \% \end{array}$	$\begin{array}{r} 698.0 \\ -.07168 \end{array}$	$\begin{array}{r} 697.3 \\ -.0859 \% \end{array}$	$\begin{array}{r} 698.6 \\ +.0143 \% \end{array}$	$\stackrel{678.5}{-}$	${ }^{598.5}$	${ }^{698.5}$	698.5

Table II. Comparison of a Finite-difference Method with the Collccation Method at Time $=8.0$ sec.

	temperature ${ }^{\circ} \mathrm{F}$																		
	Finite lifflerace method (thti cooe)											Фllocation method							
Positien	80 Nodes in Fuel 15 Nodes in Clad No. of Eqs. $=95$			35 Nades in Fuel 6 Nades in Clad No. of Éçs. = 41		6 Nodes in Fuel 2 :odes in clad No. of Eqs. $=8$			4 Nodes in Fuel 2 sodes in Clad No. of Eqs. - 6			2 Nots in Fuel 2 Nnots in Clad No. of Egs. $=4$	3 Knots in Fuel 2 Knots in Clad :io. of Eqs. $=6$	4 Knots in Zuel 2 Knots in clad No. of Eqs. $=8$	5 Knots in Fuel 3 Knots in Clad No. of Eqs. - 12	$\begin{array}{r} 20 \text { Knots in Fuel } \\ 5 \text { Knocs in Clad } \\ \text { No. of Eqs. } 46 \\ \hline \end{array}$			
(Inches)												Time Step Variablg Relative Error 0.1×10^{-i} CPC Time (sec:	Time Step Variable Relative Error 0.1×10^{-2} CPL Time (sec)	Time Step Variable Relative Error 0.1×10^{-2} CPU Time (sec)	$\begin{gathered} \text { Time Step } \\ \text { Variable } \\ \text { Relative } \\ \text { Error } \\ 0.1 \times 10^{-2} \\ \text { CPU Time (sec) } \end{gathered}$	Time Step Variable Relative Error 0.1×10^{-2} CPU Time (sec)			
	1318	310	158			2	2	2				3	95						
0.03410	4772.8			772.2 4771.7 -.01262 -.02302	$\begin{array}{r} 477.1 \\ -.0356 \% \end{array}$				$\begin{array}{r} 4762.0 \\ -.22632 \end{array}$	47615 -.2368		$\begin{array}{r} 473 \vdots .9 \\ +.4 \div<1 \% \end{array}$	$\begin{array}{r} 4793.5 \\ +.43372 \\ \hline \end{array}$	$\begin{array}{r} 4792 . \varepsilon \\ +.41902 \end{array}$	$\begin{array}{r} 4767 \% \\ -.1152 \end{array}$	$\begin{array}{r} 4777.7 \\ +.1027 \% \end{array}$	$\begin{array}{r} 4775.1 \\ +.04828 \end{array}$	$\begin{array}{r} 4773.3 \\ +.0105 \% \end{array}$	$\begin{array}{r} 4772.7 \\ -.00212 \end{array}$
0.05841	4178.8	128.5 -.01722	\|r	r	rin7.9	$\begin{array}{c:c} 41: 9.8 & 4179.4 \\ +.0639 \% & +0144 \% \end{array}$	$\begin{array}{r\|} \hline 4178.7 \\ -.00 \geq 4 \% \end{array}$	$\begin{gathered} 4233.3 \\ +1.3042 z \end{gathered}$	$\begin{gathered} 4232.8 \\ +1.2922 \% \end{gathered}$	$\begin{array}{r} 4232.2 \\ +1.2 .79 \end{array}$	$\begin{gathered} 422: 8 \\ +1.1: 26 \% \end{gathered}+$	$\begin{array}{\|c\|} \hline 4227.3 \\ +1.1606 \% \\ \hline \end{array}$	$\begin{gathered} 4226 . \vdots \\ +1.1465 \% \end{gathered}$	$\begin{array}{r} 4195 . \vdots \\ +.3949 \therefore \end{array}$	$\begin{array}{r} 4183.2 \\ +.1053 \% \end{array}$	$\begin{array}{r} 4178.6 \\ -.0048 \% \end{array}$	$\begin{array}{r} 4178.7 \\ -.00242 \end{array}$	$\begin{array}{r} 4178.5 \\ -.0072 \% \end{array}$	
0.08042	3194.9	\|r $\begin{array}{r}\text { 3194.7 } \\ -.00632\end{array}$		(1) $\begin{array}{rr}3155.0 & 3194.7 \\ +.04312 & -.06632\end{array}$	$\begin{array}{r} 3199.1 \\ -.0250 \% \end{array}$	$\begin{array}{r} 3241.3 \\ +1.45238 \end{array}$	$\begin{array}{\|c\|} \hline 3240.9 \\ +1.4398 z \\ \hline \end{array}$	$\begin{gathered} 324 C .4 \\ +1.46412 \end{gathered}$	$\begin{array}{r} 323 \varepsilon .4 \\ +1.3 E 15 z \end{array}$	$\begin{array}{\|c\|} \hline 3238.0 \\ +1.3490 \% \\ \hline \end{array}$	$\begin{array}{r} 3237.5 \\ +1.333<\% \end{array}$	$\begin{array}{r}302.7 \\ +.2441 \\ \hline\end{array}$	$\begin{array}{r} 3195.8 \\ +.0281 \% \end{array}$	$\begin{array}{r} 3195.2 \\ +.00942 \end{array}$	${ }^{3194.9}$	$\begin{array}{r} 3194.8 \\ -.00312 \end{array}$			
0.09509	2292.1	\|rer 2291.9			$\begin{array}{r} 2293.0 \\ +.0393 \% \end{array}$	$\begin{gathered} 2318.7 \\ +1.1605 \% \end{gathered}$	$\begin{array}{\|c\|} \hline 2318.4 \\ +1.1474 z \\ \hline \end{array}$	$\begin{gathered} 2318.1 \\ +1.1365 \end{gathered}$	$\begin{gathered} 231: .1 \\ +1.3507 \% \\ \hline \end{gathered}$	$\begin{array}{r} 2316.8 \\ +1.0776 \% \\ \hline \end{array}$	$\begin{array}{r} 2316.5 \\ +1.0645 \% \end{array}$	$\begin{array}{r} 2292.3 \\ +.008 \% \end{array}$	2292.5 $+.0174 \%$	$\begin{array}{r} 2292.4 \\ +.0131 \% \end{array}$	${ }^{2292.1}$	$\begin{array}{r} 2292.0 \\ -.0044 \% \end{array}$			
0.10380	$\stackrel{178.6}{ }$	${ }^{788} 8$	778.5 -.01282	778.6:r	$\begin{array}{r} 778.5 \\ -.01282 \end{array}$	$\begin{array}{r} 777.8 \\ -.10272 \end{array}$	$\begin{array}{r} 777.8 \\ -.10272 \\ \hline \end{array}$	$\begin{array}{r} 77 . \% \\ -.115 .62 \end{array}$	$\begin{array}{r} 77: .7 \\ -.11 \leq 62 \end{array}$	$\begin{array}{r}777.7 \\ -.1156 \% \\ \hline\end{array}$	- 7178.6	$778 . e$	${ }^{778.6}$	${ }^{178.6}$	${ }^{718.6}$	$\stackrel{778.6}{-}$			
0.11129	719.0	719.0	719.0		\|r $\begin{array}{r}718.9 \\ -.01398\end{array}$	$\begin{array}{r} 718.3 \\ -.09742 \end{array}$	$\begin{array}{r} 718.3 \\ -.0974 \% \\ \hline \end{array}$	- $\begin{array}{r}716.2 \\ -.11132\end{array}$	$\begin{array}{r} 71 \varepsilon .2 \\ -.1113 z \end{array}$	\|r $\begin{array}{r}118.2 \\ -.11132\end{array}$	$\begin{array}{r} 718.2 \\ -.11132 \end{array}$	${ }^{719.0}$	119.0	${ }^{719.0}$	$\stackrel{719.0}{-}$	${ }^{719.0}$			

differencing leads to a linear system which must be solved at every time step. This system is solved iteratively by means of the point GaussSeidel iterative method. With this program, four calculations were made. The first calculation used $N_{F}=4$ and $N_{C}=2$, where N_{F} denotes the number of nodes in fuel and N_{C} denotes the number of nodes in clad; the second calculation used $N_{F}=6$ and $N_{C}=2$; the third calculation was made with $N_{F}=35$ and $N_{C}=6$; the fourth calculation was made with $N_{F}=80$ and $N_{C}=15$. The choice of nodal boundaries as used in the above four calculations is also given in Appendix A. In addition to the effect of spatial mesh size, the effect of the size of the time steps was also investigated. For this purpose three time steps, namely, $0.01,0.005$, and 0.001 sec , were used with this finite difference program.

In Tables I and II we have compared temperature distributions as calculated by the two methods. In Table I, the time is 4 sec and in Table II, 8 sec after the initiation of the power transient. The six positions at which the temperature is shown in these tables arc the node positions corresponding to the case of $N_{F}=4$ and $N_{C}=2$ for the THTB calculation. In the case of the other three calculations, the subintervals were selected such that the original nodal positions corresponding to the case of $N_{F}=4$ and $N_{C}=2$ were included among these nodes. Thus, the temperatures for the THTB calculations shown in Tables I and II did not have to be interpolated. For the method of collocation, the temperature at these six positions is calculated by means of Eq. 7 which provides an interpolation procedure entirely consistent with the approximation procedire. We have taken the THTB calculation with $N_{F}=80$ and $N_{C}=15$ civresponding to time step 0.001 sec as the benchmark calculation for these tables. The relative per cent deviation from this benchmark is shown under the corresponding temperatures in the tables. The number of equations solved for each case both with the collocation method and the finite-difference method (note that in case of THTB the number of equations is equal to the total number of nodec) arc also shown in these tables. From these tables, we note that for the same number of equations solved, the method of collocation is substantially more accurate than the finitedifference method. In fact, we see that the accuracy obtained with only 12 equations in the collocation method is comparable with the accuracy obtained with 41 equations in the finite-difference method corresponding to
time step of 0.01 sec . These tables also show the corresponding CPU times on IBM 195/360 computer for the various time steps displayed in the tables. It may be seen that CPU time for the collocation method with 12 equations is less by one order of magnitude than for the case of the THTB calculation employing 41 equations yielding the same order of accuracy as the collocation method.

We may also note from these tables that the collocation method with four equations provides a relative accuracy in the temperature at these times of less than 1% which is more than adequate for many engineering calculations.

Figure 5 shows the temperature distribution at time $=8 \mathrm{sec}$,

Fig. 5. Illustrative Comparison of a Finite-difference Solution with the Collocation Method at Time $=8.0 \mathrm{sec}$. ANL Neg. No. 900-4882.
illustrating the comparative accuracies for the two methods. In addition, the figure shows the jump in the temperature at the fuel-ciad interface.

V. CONCLUSIONS

The application of this collocation method for this type of nonlinear parabolic equation shows that this method can provide a very accurate numerical solution with a very small number of equations. The method is far more accurate and faster than the usual finite-difference methods.

APPENDIX A

Transport Properties of Fuel and Cladding

Properties of fuel

$$
\begin{aligned}
& \mathrm{K}_{\mathrm{F}}=\left\{\begin{array}{l}
0.0160528 /\left(14.17943+0.01183 \mathrm{~T}_{\mathrm{F}}\right) \mathrm{Btu} /\left(\mathrm{ft} \mathrm{sec}{ }^{\circ} \mathrm{F}\right) \\
\text { for } 932 \leq \mathrm{T}_{\mathrm{F}}\left({ }^{\circ} \mathrm{F}\right)<2552 \\
0.0003612 \mathrm{Btu} /\left(\mathrm{ft} \mathrm{sec}{ }^{\circ} \mathrm{F}\right) \\
\text { for } \mathrm{T}_{\mathrm{F}} \geq 2552^{\circ} \mathrm{F}
\end{array}\right. \\
& \rho_{F}=651.2 \mathrm{Ib}_{\mathrm{m}} / \mathrm{ft}^{3} \\
& C_{P F}=\left[12.54+0.0170 \mathrm{~T}_{\mathrm{F}}\left({ }^{\circ} \mathrm{K}\right)-0.117 \times 10^{-4} \cdot \mathrm{~T}_{\mathrm{F}}^{2}\left({ }^{\circ} \mathrm{K}\right)\right. \\
& +0.307 \times 10^{-8} \mathrm{~T}_{\mathrm{F}}^{3}\left({ }^{\circ} \mathrm{K}\right) \mathrm{J} / 269.7664 \mathrm{Btu} /\left(\mathrm{lb}_{\mathrm{m}}{ }^{\circ} \mathrm{F}\right)
\end{aligned}
$$

Properties of cladding

$$
\begin{aligned}
& \mathrm{K}_{\mathrm{C}}=2.22 \times 10^{-3}+1.25 \times 10^{-6} \mathrm{~T}_{\mathrm{C}}\left({ }^{\circ} \mathrm{F}\right) \mathrm{Btu} /\left(\mathrm{ft} \mathrm{sec}{ }^{\circ} \mathrm{F}\right) \\
& \rho_{\mathrm{C}}=485.261 \mathrm{~b}_{\mathrm{m}} / \mathrm{ft}^{3} \\
& \mathrm{C}_{\mathrm{PC}}-0.1105+2.632 \times 10^{-5} \mathrm{~T}_{\mathrm{C}}\left({ }^{\circ} \mathrm{F}\right) \mathrm{Btu} / 1 \mathrm{~b}_{\mathrm{m}}{ }^{\circ} \mathrm{F}
\end{aligned}
$$

Heat-transfer coefficients

$$
\begin{aligned}
\mathrm{h}_{\mathrm{g}} & =0.2778 \mathrm{Btu} /\left(\mathrm{ft}^{2} \mathrm{sec}{ }^{\circ} \mathrm{F}\right) \\
\mathrm{h} & =6.944 \mathrm{Btu} /\left(\mathrm{ft}^{2} \mathrm{sec}{ }^{\circ} \mathrm{F}\right)
\end{aligned}
$$

$$
\dot{q}(t)=\dot{q}_{0} \exp (0.1 t)
$$

where q_{o} is the initial steady-state power set at $45266.32 \mathrm{Btu} /\left(\mathrm{ft}^{3} \mathrm{sec}\right)$ and t is the time in seconds.

Dimensions of fuel pin

$$
\begin{aligned}
& R_{o}=r_{1}=0.02 \mathrm{in} . \\
& R_{H^{\prime}}=r_{\mathrm{n}+1}=0.1 .1 \mathrm{in} . \\
& R_{\mathrm{C}}=\mathrm{R}_{\mathrm{N}+1}=0.115 \mathrm{in} .
\end{aligned}
$$

Position of knots (in inches)

Let ($r_{1} \rightarrow r_{n+1}$) denote the set of knots in the fuel region and $\left(R_{1} \rightarrow R_{N+1}\right)$ denote the set of knots in the clad region.

For $\mathrm{n}=1, \mathrm{~N}=1$,

$$
\left(r_{1} \rightarrow r_{2}\right)=0.02,0.1 ;\left(R_{1} \rightarrow R_{2}\right)=0.1,0.115 ;
$$

for $\mathrm{n}=2, \mathrm{~N}=1$,

$$
\left(r_{1} \rightarrow r_{3}\right)=0.02,0.07,0.1 ;\left(R_{1} \rightarrow R_{2}\right)=0.1,0.115 ;
$$

for $n=3, N=1$,

$$
\begin{aligned}
& \left(r_{1} \rightarrow r_{4}\right)=0.02,0.05,0.08,0.1 ; \\
& \left(R_{1} \rightarrow R_{2}\right)=0.1,0.115 ;
\end{aligned}
$$

for $\mathrm{n}=4, \mathrm{~N}=2$,

$$
\begin{aligned}
& \left(r_{1} \rightarrow r_{5}\right)=0.02,0.04,0.065,0.085,0.1 ; \\
& \left(R_{1} \rightarrow R_{3}\right)=0.1,0.1075,0.115
\end{aligned}
$$

for $\mathrm{n}=19, \mathrm{~N}=4$,

$$
\begin{aligned}
\left(r_{1} \rightarrow r_{20}\right)= & 0.02,0.025,0.031,0.035,0.039,0.043,0.047,0.051, \\
& 0.055,0.059,0.063,0.067,0.071,0.075,0.079, \\
& 0.083,0.089,0.093,0.097,0.1 ; \\
\left(R_{1} \rightarrow R_{5}\right)= & 0.1,0.10625,0.11125,0.11375,0.115 .
\end{aligned}
$$

Subinterval boundaries for the THTB conduction code (in inches)

Let N_{F} denote the number of nodes in fuel and N_{C} denote the number of nodes in clad, and let $r_{F i}\left(0 \leq i \leq N_{F}\right)$ and $R_{C i}\left(0 \leq i \leq N_{C}\right)$ denote the position of node boundaries in fucl and clad, respectively.

For $N_{F}=4, N_{C}=2$,

$$
\begin{aligned}
& \left(r_{F O}+r_{F 4}\right)=0.02,0.045,0.07,0.09,0.1 ; \\
& \left(R_{C O} \rightarrow R_{C 2}\right)=0.1,0.1075,0.115 ;
\end{aligned}
$$

$$
\text { for } \begin{aligned}
N_{F}= & 6, N_{C}=2, \\
& \left(r_{F O} \rightarrow r_{F 6}\right)=0.02,0.03,0.0377574,0.045,0.07,0.090,0.1 ; \\
& \left(R_{C O} \rightarrow R_{C 2}\right)=0.1,0.1075,0.115 ;
\end{aligned}
$$

for $N_{F}=35, N_{C}=6$,

$$
\begin{aligned}
\left(r_{\mathrm{FO}} \rightarrow \mathrm{r}_{\mathrm{F} 35}\right)= & 0.02,0.022,0.025,0.028,0.031,0.034,0.0341997, \\
& 0.04,0.043,0.045,0.048,0.051,0.054,0.057, \\
& 0.0597868,0.062,0.064,0.066,0.068,0.07,0.072, \\
& 0.074,0.076,0.078,0.08,0.0808378,0.084,0.086, \\
& 0.088,0.09,0.092,0.094,0.0961617,0.098,0.099, \\
& 0.1 ; \\
\left(R_{\mathrm{CO}} \rightarrow \mathrm{R}_{\mathrm{C} 6}\right)= & 0.1,0.1025,0.105074,0.1075,0.11,0.112569, \\
& 0.115 ;
\end{aligned}
$$

for $N_{F}=80, N_{C}-15$,
$\left(r_{\mathrm{FO}} \rightarrow \mathrm{r}_{\mathrm{F} 14}\right)=0.02 \rightarrow 0.034$ with $\Delta \mathrm{r}_{\mathrm{F}}=0.01, \mathrm{r}_{\mathrm{F} 15}=0.0341997$;
$\left(r_{F 16} \rightarrow r_{F 60}\right)=0.036 \rightarrow 0.08$ with $\Delta r_{F}=0.01, r_{F 61}=0.0808378 ;$
$\left(r_{F 62} \rightarrow r_{F 75}\right)=0.082 \rightarrow 0.095$ with $\Delta r_{F}=0.01, r_{F 76}=0.0951739$;
$\left(\mathrm{r}_{\mathrm{F} 77} \rightarrow \mathrm{r}_{\mathrm{F} 80}\right)=0.097 \rightarrow 0.1$ with $\Delta \mathrm{r}_{\mathrm{F}}=0.01$;
$\left(R_{C 0} \rightarrow R_{C 3}\right)=0.1 \rightarrow 0.103$ with $\Delta R_{C}=0.001, R_{C 4}=0.104584 ;$
$\left(R_{C 5} \rightarrow R_{C 11}\right)=0.105 \rightarrow 0.111$ with $\Delta R_{C}=0.001, R_{C 12}=0.111583 ;$
$\left(\mathrm{R}_{\mathrm{Cl} 3} \rightarrow \mathrm{R}_{\mathrm{Cl} 5}\right)=0.113 \rightarrow 0.115$ with $\Delta \mathrm{R}_{\mathrm{C}}=0.001$

ACKNOWLEDGMENT

The authors wish to express their sincere thanks to George Hauser for his invaluable help in programming and the data preparation.

REFERENCES

1. C. de Boor and B. Swartz, Collocation at Gaussian Points, SIAM J. Numerical Analysis, 10, 582 (1973).
2. J. Douglas and T. Dupont, A Finite Element Collocation Method for Quasilinear Parabolic Equations, Math. Comp., 27, 17 (1973).
3. A. C. Hindmarsh, GEAR: Ordinary Differential Equation System Solver, UCID-30001, Rev. 1 (1972).
4. G. L. Stephens and D. J. Campbe11, Program THTB - For Analysis of General. Transient Heat Transfer Systems, R60FPD647, General Electric Company (April 1961).

[^0]: *

 Applied Mathematics Division
 Argonne National Laboratory

