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THE APPLICATION -OF THE COLLOCATION METHOD USING HERMITE CUBIC SPLINES 
TO NONLINEAR TRANSIENT ONE-DIMENSIONAL HEAT-CONDUCTION PROBLEMS 

by 

T. C. Chawla, G. Leaf, W. L. Chen, and M. A. Grolmes 

ABSTRACT 

A collocation method for the solution of one­
dimensional parabolic partial differential equations 
using Hermite splines as approximating functions and 
Gaussian quadrature poin~s as collocation points ls 
described. The method consists of expanding depen­
dent variables in terms of piecewise cubic Hermite 
splines in the space variable at each time step. The 
unknown coefficients in the expansion are obtained 
at every time step by requiring that the resultant 
differential equation be satisfied at a number of 
points (in particular, at the Gaussian quadrature 
points) in the field equal to the number of unknown 
coefficients. This collocation procedure reduces the 
partial differential equation to a system of ordinary 
differential equations which is solved as an initial­
value problem using the steady-state solution as the 
initial condition. The method thus developed is 
applied to a two-region nonlinear transient heat­
conduction problem and compared with a finite­
difference method. It is demonstrated that because 
of high-order accuracy only a small number of equa­
tions are needed to produce desirable accuracy. The 
method has the desirable characteristic of an analyt­
ical method in that it produced point values .as 
against nodal values in the finite-difference scheme. 

I. INTRODUCTION 

Various numerical methods have been devised for solutions to the 

problems of transient nonlinear heat conduction. The most common of these 

are finite-difference methods and finite-element methods using Galerkin or 

weighted residual procedures. Finite-difference methods are usually of 

low order and therefore require the solution of large systems of equations 

in order to achieve a satisfactory truncation error. A large system of 

equa~ions impll~s large storage requirements; consequently, time diff~r~ 

encing must be done with single-time-step methods whether explicit or 



8 

implicit. In an explicit method, the largest time step that can be taken 

is limited due to stability conditions. On the other hand, an implicit 

method will allow larger time steps, but only at a higher cost per time 

step.· In either case, substantial machine times are encountered in solving 

such large systems of equations. 

In contrast to low-order finite-difference methods, finite-element 

methods based on the use of a Galerkin or a weighted residual procedure 

can achieve high-order accuracy, thereby substantially reducing the size of 

the numerical system. Hence, the data-handling requirements are less 

severe and multistep time-differencing methods can be used in order to in­

crease the size of the time steps. On the other hand, for nonlinear prob­

lems, these methods usually require the computation of intP.gralR At. eA~h 

time step. This, in turn, implies considerably more arithmetic at each 

time step when compared to low-order finite-difference methods. Thus, in 

spite .of their greater accuracy, these higher-order Galerkin procedures 

when applied to nonlinear conduction problems may not be substantially 

~aster than finite-difference methods. 

A third method is based on collocation combined with the use of 

suitable approximating subspaces. For nonlinear problems, this approach 

has an advantage over a Galerkin-type procedure in that there is much less 

arithmetic at each time step. On the other hand, it has the disadvantage 

that, unless the collocation points arc suitably chosen, this method pro­

duces low~order accuracy regardless of the nature of the approximating 

subspaces. This implies large systems of equations in order to obtain 

suitable accuracy, just as in the case of low-order finite-difference 

methods. However, de Boor and Swartz 1 and Douglas and Depont2 have shown 

that if Gaussian quadrature points are selected as collocation points, 

high-order accuracy can be achieved with suitable approximating subspaces. 

Hence, in this case, the advan~ages ot a high-order Galerkin-type proce­

dure are achieved, namely, a small system of equations and the use of 

multistep ·time differencing. In.addition, like finite-difference methods, 

it requires only a small amount of arithmetic at ead1 time slep. In this 

report, we demonstrate an application of this method to the nonlinear heat­

conduction equation; nonlinearity is introduced by requiring the transport 

properties to be a function of temperature. 



II. DESCRIPTION OF T~E PROBLEM 

For this ~pplication, consider a single fuel pin for a nuclear 

reactor. This pin consists of a hollow cylindrical solid of mixed-oxide 

fuel encased in a cylindrical sheath of stainless-steel cladding. There 

is a finite contact resistance between the fuel and the clad, and the 

outer surface of the clad is cooled by convection. The fuel is heated by 

a uniform volume heat source which can vary with time. A schematic cross­

sectional-view of such a system is.shown in Fig. 1. The figure contains 

COOLANT 

Fig. 1. 
Cross-sectional View of a Fuel Pin Showing 
the Knot Sequences. 
ANL Neg. No. 900-4880. 

dimensional nomenclature. If the volume heat source in the fuel is de­

noted by q(t), and if axial and circumferential conduction terms are neg­

lected, then the heat-conduction equation can be written in cylindrical 

coordinates as 

p_(T) Cp(T) !!:_ =.! L (rK(T) !!:.) ~ q(t) at r ar ar 
(1) 

When the above equation is applied to the clad, the heat-source term is set 

equal to zero. The boundary conditions which must be satisfied are 

aTF 
0 R (2a) --= at r = 

ar 0 

-~ 
ClTF 

hg [ TF(Rf~t) - TC(a;,t)J ar 
at r ~ (2b) 

ClTF aTe 

~ (2c) ~ --= K- at r ;;; 

ar c ar 

9 
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(2d) 

Here, TF = TF(r,t) refers to the temperature distribution in the fuel and 

TC = TC(r,t) to the temperature distribution in the clad. The temperature 

of the external medium (sodium) surrounding the clad is denoted by TNa(t). 

The definition of the other symbols used is given in the Nomenclature. 

The above equations can be simplified somewhat by application of 

Kirchoff's transformation 

Upon the introduction of the variable e into Eqs. 1 .and 2, we obtain 

at r = R 
0 

At r 

(3) 

(4) 

(Sa) 

(Sc) 

(5d) 

Here the diffusivity a = K(T)/p(T)Cp(T) must be evaluated by means of the 

transformation T = T(G) which is the inverse of the transformation given 

in Eq .. 3 .. 



III. A METHOD OF COLLOCATION 

We shall seek an approximate solution of Eqs. 4 and 5 using the 

method of lines in conjunction with collocation. To this end, we assume 

.that at each fixed time the transformed temperature 0(r,t) can be approxi­

mated by a function which is a piecewise cubic polynomial in r and that the 

function together with its first derivative is continuous. More specifi­

cally, let [a,b] denote either the fuel region [R0 ,RF] or the clad region 

[~,RC]. Let this interval be subdivided by the set of points 

7T: a =X <X <•••< X 
1 2 n+l = b, h. = 

J 
X. - X. l . 

J J.-

Relative to this partition 7T, the approximating subspace.H
3

(7T) will consist 

of all functions f(x) such that 

(1). f(x) is equal to a cubic polynomial in each subinterval 

[xi,xi+l] for 1 ~ i ~ n , 

(2) f(x) and f'(x) are continuous at the points x. for 
l. 

2 ~ i ~ n,· and 

(3) f(x) satisfies the appropriate boundary conditions in 

Eqs. 5, depending on whether the interval [a,b] is the fuel 

or the clad. 

Since this problem has two regions, we will generate two approximating sets 

of functions: HjF)(7TF) and HjC)(7TC), one rela~ive to a partition 7TF of the 

fuel, the other relative to a partition 7TC of the clad. These two sets of 

functions are required to satisfy the common interface conditions (Sb) and 

(Sc). 

A convenient basis for generating either set of approximating func-

{ }n+l. 
tions is the sP.t. V. (x) , S. (x) . 

1
, whP.rP. 

J J J= 

11 
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V. (x) = 
J . 

S. (x) 
J 

1+ J 1 2 J 
( 

x- x.)
2 

[ (x- x.)] 
hj hj 

for x. 
1 

< x < x 
J- - -· j 

( 1 - X - Xj)

2 

[1 + 2 (X - X,)] for XJ, ~X~ XJ'+l 
' hj+l hj+l 

0 elsewhere 

X - l[, 
--~].._ 

h . 
j ]

2 

(
X - X ) ( X - X )

2 

hj+l hj+l 1 hj+l 

0 elsewhere 

for x. 1 < x < x. 
J- - - J 

for x. < x < x.+l 
J- - J 

(6a) 

(6b) 

The functions V. 1 (x), V_.(x), S. 1 (x), and S.(x) together with their first 
J- J J- . J . . . 

derivatives are shown in Figs. 2 and 3. It is assumed that v1 (x) and 

1.5~ 

I 
Xj-~ 

\ 

-1.0 . 

-1.5 

\ 
\ 

X-COLLOCdiiON ~OINIS 

\ I 
....... _/ 

\ I 
\ I ......__/ 

I 

lxj•l 
I 

Fig. 2. 

Grapha of~'. 
1

(x)_, V~ 
1

(x)_, 
J- J-

v . ( x) _, wul V ~ ( x) • 
J J 

ANL Neg. No. 900-4453 Rev. 1. 

s1 (x) vanish to the left of x1 , whereas Vn+l (x), and Sn+l(x) vanish to the 

_right of xn+l' From the defining equations, we observe that each of the 

functions has the following properties: 



X-COLLOCATION POINTS 
0.3 

0.2 

0!' Fig. 3. i . 
. Graphs of Sj-1 (x), Sj-1(x), 

Sj(x), and sj(x). 
ANL Neg. No. 900-4452 Rev. 1. 

(1) Each V. (x) and S. (x) is continuous together with its first 
J J 

derivative in the interval [a,b]. 

(2) Each V.(x) and S.(x) is a cubic polynomial in each subinter-
J J 

val, and they vanish outside the subintervai [xj-l' xj+l]. 

(3) V. (x.) cS •• ; V ~ (x.) - 0 

} 
l. J l.J l. J 

1 ~ i,j < n+l 

S. (x.) - O;Si_(xj) = cS •• 
l. J l.J 

The set {V. (x), S.(x)}~+11. will form a basis for the set of functions 
l. l. ~ . 

H 3 (~). Thus, we assume that the transformed temperature field has the form 

n+l 

G(x,t) = L 
j=l 

[ G(x.,t)V.(x) + G'(x.,t)S.(x)J, 
J J J J 

where {G(x.,t), G'(x.,t)}~+ll are the unknown coefficients. In view of 
J J J= 

property (3), these coefficients represent, respectively, the unknown 

temperature and spatial derivative of temperature at each of the kno·t 

points (x. ~ 1 .::_ j ~n+ 1). 
J 

Let 

r < .- •• < 
2 rn+l 

be a partition of the fuel and 

(7) 

13 
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a partition of the clad. We seek an approximation to the temperature 

field 8(r,t), of the form shown in Eq. 7, in the fuel and the clad. Sub­

stituting Eq. 7 into Eqs. 4 and 5, we obtain the following relation in the 

fuel: 

where 

Now. 

n+l 

::F =~ [ vj(r)eF(rj,t) + sj(r)e;<rj,t)J 

j=l 

If>. (r) 
J 

n+l 

1 
V~(r) +- V!(r),. !.(r) 

J r J J 
S'.'(r) + ..!_ S!(r.) 

J . r J 

~er- ="" [v!(r)8.,(r.,t) + S!(r)GF'(r.,t)J . 
a L...J J .rJ J .J 

(8) 

Since V~(r 1 ) ~ 0, Si(r1) = 1, and S~(r1) ~ 0 for j > 1, we find that the 

boundary condition (Sa) implies 

(9a) 

Differentiating this expression with respect to time, we find also 

(9b) 



Similarly, we find the following relations at r = rn+l from the boundary 

condition (Sb) : 

and 

. 
- :~F [TF (eF(rn+l't)) -Tc ( ec(Rl't)) J 

For the clad region (see Fig. 1), we find 

~. (r) 
J 

(9d) 

(10) 

(lla) 

15 
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(llb) 

or 

. . 
0C(~+l't) = fC + DC0C(~+l'L) • (ild) 

Here, in Eqs. 9d and lld, we have made the following substitutions: 

Ac. = .hKg ::c fc = _Kho.c [Tc (e_c<~+l't)) - TNa(t)J + Khoc TNa(t). 
OF - C 0 (R , t) . . . ' c 1 



Substituting Eqs. 9 into Eq. 8, we obtain 

t ( V/r)0F(rj't) + Sj (r)<if(rj ,t)) + v1 (r)0F(r1 ,t) 

j= 2 

= -

n 

~j(r) +~e;(rj,t) 
j=2 

'¥. (r) 
J . 

Substituting Eqs. 11b, 11c, and 11d into Eq. 10, we obtain 

N . 

~ [ vj (r)9c (Rj, t) + sj (rl&C (RJ' t)J + (s1 (r) 

j=2 

N+1 

x (~ ac(Rj ,t) 

j=l 

N 

~j (r) + ~ 0~(Rj ,t) '¥j (r) + 

j=2 

17 

(12) 
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N 

+ ~ec<Rj ,t) 

j=2 

K ) ~.(r) + ~l(r) F OF+ ~N+l(r) FC 
J . f Koc 

for R1 < r ~ ~+l . (13) 

The unknown coefficients contained in Eqs. 12 and 13 are: 

and 

whic~ add up to 2n + 2N unknowns. In order to obtain 2n + 2N equations, 

we can require that Eq. 12 be satisfied at 2n points in the fuel region and 

Eq. 13 be satisfied at 2N points in the clad region. Since there are n 

intervais in the fuel region and N intervals in the clad region, it there~ 

fore seems natural to locate two points in each interval. In accordance 

with the approximation theory as given by Douglas and D~pont2 and by 

de Boor and Swartz, 1 the Gauss-Legendre quadrature points of order 2 are 

chosen'as the collocation points in each subinterval [xi, xi+l]. Thus 

the collocation points are given by 

1 k h. 
n. k = -

2 
(x

1
._

1 
+ x.) + (-1) --

1
--

l., l. 213 2 < i ~ n+l, 1 < k ~ 2. .(14) 

Douglas and Dupont2 have shown that for a parabolic equation the use ot the 

above collo.cation points will result in accuracy up to 0 (h4 ) provided the 

thermal capa~ity an~ conductivity have bounded third-ord~r derivatives and 

the soluti~n 0(x,t) has bounded sixth-order spatial ·derivatives over a 

fixed time interval. 



If we let 

(lSa) 

in Eq. 14, we obtain 

n. 1 - x. n. 2 - X. 
J, J ;;: B; J , J "" - y 

h. - h. 
J J 

(lSb) 

n. 1 - x. 1 n. 2 - X. 1 
J 2 J- S; J! J- = y 

h. h. 
J J 

Using these relations in Eqs. 6 give the following expressions for the 

values of V. (x), S. (x), and their derivatives at the co11oca·ti~n points· 
J J 

n. k: 
l., 

v. 1 (n. 1) = V.(n. 2) 
J- J, J J, 

(1 - S) 2 (1 + 2S) = VS 

v. 1 <n. 2) = V.(n. 1 ) = (1- y) 2 (1 + 2y) v 
J- J, J J, y 

s. 1(n. 1) J- J, 

s. 1. (n. 2) 
J- J, 

= - s.(n. 
2

) 
J J, 

- s.(n. 
1

) 
J J, 

h.S(l - S) 2 
J 

h. (1- y) 2 h.S 
J J y 

(16a) 

19 
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v~ l(n. 1) = - V!(n. 2) = - 66(1 - 6)/h. ~ vs/hj 
J- J' J J' J 

v! l(n. ·2) -V!(n. 1) = - 6y(l - y)/h. = - V' /h. 
J- J' J J' J y J 

(16b) 

S! l(n. 1) S!(n. 2) = 1 - 46 + 362 = S' 
J- J' J J' 6 

S! l(n. 2) S!(n. 1 ) 1 - 4y + 3y2 = S' 
J- J, J J' ·Y 

V'.' 1 (n. 1) = v'.' (n. ) = - 6(1 -·26)/h~ = - V"/h~ 
J- J' J J,2 J y J 

v'.' 1 (n. 2) = V'.'(n. 
1

) = - 6(1 - 2y)/hj = - V"/h~ 
J- J' J J' . y J· 

(16c) 

s'.' 1 (n. 1) = - C'"( ) = (4 - 66) /h. = - Sf;/hj "· n. 2 J- J' J J' J 

Sj'-1 <nj ,2) s'.'(n. 1) = - (4 - 6y) /h; = - S"/h. 
J J' . J y J 

Evaluating Eq. 12 at the collocation points n. kin the fuel, and 
1, 

noting that each Vj(x) and Sj(x) has its support in [xj-l' xj+l] and, in 

particular, 

sn+l(r) 0 for r~(rn,rn+l], 

we obtain the following system of equations: 

Fori 2, k = 1 (i.e., n2 , 1) 

(17a) 



For i = 2, k = 2 (i.~ .• n2 , 2) 

(17b) 

In general for 3 .::_ i .::_ n, 1 ~ k ~ 2., 

V. l(n. k)~F(r. l,t) + V.(n. k)~F(r.,t) + S._l(h. k)~F'(r._l,t) 
].- ~. ].- ~ l., .. l. ~ l.,. l. . 

+ s. (n. k)GF'(r.,t) =F. k. 
~ ~. l. l., 

· (17c) 

Fori n+l, 1 < k < 2 (i.e., "n+l,k) 

where 

.. (17d) 

•z,k = "• (a.{n2,k'•l) (e.(r1,t) ~1<•2,k} + 9F<•z·•l ~<•z,kY 

+ e; (r2 ,t) • 2 (n2,k) + .j (t)/KOF) for ·1 < .k < 2 · (18a) · 

•i,k = "• (e•'"i,k'•l) ( 0•'"1-1'•1 ~i-1 <•i,kl + e.<•;_·•l ~r~•i,kl 

+ eF'(r._
1

,t) '¥._
1

(n. k) + eF'(r.,t) 'i'.(n .. k) +q(t)/K
0
F ... )·. 

. . l. . l. l., l. l. l., 

for 2 ~ i .::_ n, 1 < k < 2 (18b) 

21 
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+ eF(rn,t) <I>n(nn+l,k) + °F(rn+l't) <I>n+l (nn+l,k) 

+ e;.(rn ,t) ~n (nrt+l,k) + .j (t) /KOF) • (18c) 

. Similarly~ evaluating Eq. 13 at the collocations points which are denoted 

by 1;. k and given by Eq. 14 for the clad region, we obtain the fo1lowing 
l., 

system: 

for 1 < k < 2 (19a) 

+ s. <~. k)ec'<R.,t) =c. k. 
l. l., l. l., 

for 2 ~ i < B, 1 < k < 2 ; (19b) .•. 

fqr 1 < k < 2 (19t:) 



where 

for 1 < k < 2 (20a) 

ci,k ~ "c ( 6c"i,k't)) ( 6c<Ri-l't) ~i-1 <"i,k> + 0c<Ri't) 0 i <"i,k) 

+ ac'(R. 1,t) '· 1 <~. k) + ac'(R.,t) i.(~.k)) 1- 1- 1, 1 1 1, 

for 2 ~ i ~ N, 1 < k < 2 (20b) 

for 1 < k < 2 (20c) 

We note that the transformed temperature S(r,t) must be evaluated at th~ 

collocation points in order to evaluate the property functions, such as the 

diffusivity a. For this purpose, we use Eq. 7. For example, in the fuel 

at the collocation point n. ke(x. 1 , x.) we have 
1' 1- 1 . 
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0~(r. 1 ,t)V. 1 (n. k) + 0F(r.,t)V. (n.·k) 
~ 1- 1- 1, 1 1 1, 

+ eF'(r. 1. ,t)S. 1 cni k) + eF'(r.~t)S.(n. k) . (21) 
1-· . 1- ' 1 1 1, 

Substituting.for the values of the basis functions and their derivatives 

from Eqs. 16 into Eqs. 17 through 21 and rewriting the resulting equations 

in matrix form, we obtain 

G(U,t), (22) 

where U(t) is the 2rr + 2N dimensional vector 

and G(U,t) is the vector of the entire right-hand side. 1he details of. 

the above matrix equation are shown in Fig. 4. From an examination of 

Fig. 4 it is clear that the coefficient matrix [A] is a band matrix. Thi~ 

property is a consequence of the basis functions V.(x) and S.(x) having 
J J 

local support. It should be noted that, in general, the coefficient 

matrix [A] will depend on the temperature because of the convective intt:!r­

face and boundary conditions. This dependence is explicitly shown in 

Eqs. 9d and lld. Thus, the matrix [A] has to be inverted at each iteration 

of every time step. The band structure is utilized in this inversion 

proce.ss. 

With given initial values {U(O)}, the system (22) represents a 

system of nonlinear ordinary differential equations. This system is solved 

with the ordinary-differential~equation subroutine GEAR. 3 
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IV. NUMERICAL RESULTS 

The method of collocation as described previously was used for 

the solution of the transient conduction problem for the cylindrical fuel­

clad pin configuration shown in Fig. 1. The transport properties of the 

materials and the dimensions of.the pin are given in Appendix A. The 

transient was initiated by permitting the volumetric heat source in the 

fuel to increase exponentially with time as specified in Appendix A. The 

initial temperature distribution was obtained by a steady-state solution 

of Eq. 4 with boundary conditions (5) and an initial uniform heat source 

q(t = 0). The effect of step size or the number of knots plac.:~tl lu fuel 

and clad regions on the accuracy of the solution was investigated. A set 

of five calculations were made. In the first calculation, two knots were 

used in the fuel and two in the clad. Since two knots correspond to one 

subinterval, the temperature distribution in this calculation was approxi­

mated with one cubic polynomial in the fuel and another. in the clad. The 

second calculation used three knots in the fuel, while the fourth calcula­

tion used four knots in the fuel, with both calculations using two knots 

in the clad. The fourth calculation used five knots in the fuel and three 

knots in the clad. The last calculation was made with 20 .knots in the 

fuel and five knots in the clad. The positions of knots chosen both in 

fuel and cladding for the .above five examples are given in Appendix A. In 

the choice of these positions, no attempt was made to adjust these 

positions in order to improve the accuracy. It should be noted that it is 

not the selection of the knot positions which provides high-order accuracy 

for this collocation procedure, but rather the choice of Gaussian colloca­

tion points relative to each subinterval determined by these knots. 

For purposes of comparison, the solution to this problem was also 

approximate~ by a finite-difference type procedure as used in the THTB 

program, 4 which is a general-purpose transient-heat-conduction program. In 

this method, the spatial interval is subdivided into subintervals (called 

nodes). For one-dimensional problems, the spatial approximation to the 

conduction equation is essentially the same as the usual three-point ap­

proximation to the second derivative and is derived by means of an integral 

heat balance over each node. The time derivative is approximated by an 

implicit single-time-step difference procedure. The implicit time 



Position 

(Inches) 

0.03LlC 

0.05S4l 

0.08(•42 

o.o9oog 

0.1038C 

0.11:2~ 

Table I. Co::n?arison of a Finite-difference Method with the Collocation Method at Time 4.0 sec. 

TEMPERATURE • F 

FIH!TE 01 FFERENCE METIOD (TIITU CODE) COLL0CA1 10~ METHOD 

80 Nodes in Fuel 35 Nodes. in Fuel 6 Nodes in· Fuel 4 aodes in Fue 1 2 Knots in Fuel 3 Knots in Fuel 4 Kno"ts in Fuel ~ Knots in Fuel 20 Knots in Fuel 

15 Nodes in Clad 6 Nodes. in Clad 2 Nodes in Clad 2 Nodes in Clad 2 Knots in Clad 1. Knots in Clad 2 Knots in Clad 3 Knots in Clad 5 Knots in Chd 

No. of Eqs. • 95 No. of Eqs . .;, 41 No. of Eqs • ., 8 No. of Eqs. • 6 . ~o. of t::qs. • 4 No. of Eqs. • b No. of Eqs, - 8 t•o . of Eqs, - 12 No. of Eqs. - 4b 

Time Step (sec) Time ~tep (sec) Ti:ne Step (sec) n.me Step (sec) 
Time Step Time Step Ti:te Step rime Step Time Step 

Variable Variable Variable Variable Variable 

.001 .005 .01 .COl .(•05 .01 .JOl .005 .01 .001 .005 .01 Rtdative Relulve kelative Relative Relative 

Tolerance ("F) Tolerance ("F) Tolerance ("F) Tolerance ("F) Error Err.)r Error ErroT Error 

0.1 X w-2 0.1 X 10-2 l>.1 X 10-2 0.1 X 10-2 0.1 X 10- 2 o.t K w-2 0.1 X lQ-2 0.1 x lo- 2 0.1 X 10- 2 

CPU Time (sec) CPU TJme (sec) CPU Time (sec) CPU Time (sec) CPU Time (sec) CPU Time (sec) CPU Time (sec) CPU Time (sec) CPU Time (sec) 

1318 310 158 5(1 130 b) ~5 25 lb b5 18 12 2 2 2 3 95 

3490.1 J49l.8 3491.4 34S l. 2 3491.3 3490 -~ 34.38. 3 \ 3488.0 3487.6 3517.1 351&.8 351&.5 3497.9 34~3.8 3494.3 3492.9 3492 .l 

- +.0487% +.o3n% +.0:15% +.G344% +.0229% -.051&% ! -.0602% -.01lb% +. 773&% +. 7650% +. 75&4% +.2235% +.1J60% +.1203% + .08J2% +.0573% 

3039.9 J04l. 2 3040 8 30l l. 9 3041.8 3041.5 3M6.4l 3086.1 3085.7 3084.9 3084 .b 3084.2 30&4.8 3043.2 3042.0 3042.1 304l.b 

- +.0428% +.029>% +.0€58% +.Cb25% +.0526% +1.5297% +1.8487% +I.50bb% +1.48031 +1.4704% +1.4513% +.8191% +. D8b% +.0691% +.0724% +.0559% 

2 331.0 2331.7 2331.4 23,1.8 2;31. 7 2331.4 2331.21 2381.0 2380.7 2380.5 2380.3 2380.0 2343.3 2331.0 2331.8 2332.2 2 331.9 

- +.0300% +.017~% +.0,43% +.G300% +.0172% +2 .l53b% +2 .1450% +2 .1321% +2 .123&1 +2 .1150% +2 .1021% +.5277% - +.0343% +.0515% +.038&% 

1772.2 1772.& 1772 4 17:3.3 li/3. 3 1773.1 1732.811782.7 1782.& 1782.4 1782.3 1782.2 1774.& 1772.2 1772.7 1772.8 1772 .b 

- +.022&% +.01U% +.0€21% +.0&21% +.0508% +.5l8l% . +.5925% +.5868% +.575&% + .5643% +.5&43% + .135li~ ' - +.0282X +.0339% +.022&% 

740.8 740.8 740 8 7G0.8 i40.8 740.8 7'0 .l I 740.1 740.1 740.1 740.1 740.1. 740.9 7'0.8 . 740.8 740.8 740.8 

- - - - - - -.Ol44% -.0944% -.0944% -.0944% -.0944% -.0944: +.0135% - - - -
' 

&98. 5 698.5 b98 5 bS8.5 698.5 698.5 bl8.0 : &98.0 &98.0 &98.0 &98.0 b97 ."l o98.& bl8.5 598.5 &98. 5 &98.5 

- - - - - - - .01Ib% . -.0716% -.071&% -.071&% -.071&% -.0859% +.0143% - - - -

N 
-.....1 



Pas 1 t ion 

{Inches) 

0.03410 

0.05E4l 

0.08042 

0.09509 

0.10)80 

0.11129 . 

Table II. Comparison of a Finite-difference :Method with the Collccation Method at Time = 8.0 sec. 

TE~PER.:\TURt: 0 f 

rn:rn; UIFFERE!:ICI:: :-tETHOD (THTB COO£) t:)LLOCA no;.; METHOD 

80 Nodes in fuel 35 N•des in Fuel 0 Nodes in Fuel 4 Sodes in Fuel 2 Knots in Fuel 3 Knots in Fuel 4 Knots in ?uel S Knots in Fuel 20 Knots in Fuel 
15 Nodes in Clad 6 N.a~des in Clad 2 :;oHes in <.:lad 2 :..;odes in Clad 2 Mots in L:lad 2 Knots in Clad 2 Knots in Clad 3 Knots in Clad 5 Knots in Clad 
No. of t:·~S • • 95 No. ·>f Cc;s. • 41 :-io. of Eqs. • 8 :o;o. of Eqs. • 6 :-oo. of E<J.S. • 4 ;Jo. of Eos. • 6 No. of Eqs. • 8 1~0. of Eos. . 12 No. of Eos. • 46 

Time S :ep (sec) Title Step (sec) Tint' Step {sec) Time Step (sec) Time Step Time Step Time Step Time Step Time St.!p 
Variab!G Variable Variable Variable Variable 

;oo1 .0~5 .01 ..001 .CC5 .01 .001 .005 .OJ .•JCI .005 .01 Relati~ Kelative Relative Relative Relative 
Tolerance ("F) To.erar:ce ( 0 F) Tole ranee ( 0 F) Tolerance 1:Fl Error Error Error Error Error 

0.1 X 10-2 4,1 ). 10-2 0.1 X 10-: 0.1 X 10 U.l ~ 
10 __ , 

0.1 X 
10_, 0,1 X 10-:? 0.1 x w-2 0.1 X 10-2 

CPU Tiae (sec) CP"J Time (sec) CPU Time (sec} t:PU Time (sec) t:rr Time (sec: CPt.: Time (sec} CPU Time (sec) CPU Time (sec} CPU.Time (sec} 

lll8 3LU 158 Sl)l 130 67 95 25 IE 1: 18 12 95 

4772.8 4712.6 4772.0 4 ?;2 .2 4/;},7 477:.1 4762.0 4 761.5 476C.9 47l;.9 4793.5 4792 ·'· 4767. ~ 4777.7 4775.1 4773.3 4 772.7 
-.Oil42: -.0168% -.0126% -.0230% -.03~E-% -.2263% -.2368% -.24SJ:c: +,4!.:;1% +.4337% +.4190~ - .1152~ +.1027% + .0482% + .0105% -.0021% 

4178.8 4118.5 4177.9 41;9.8 41i9.4 4178.7 4233.3 4232.8 42):;,2 422; .8 4227.3 422b.; 4195.:. 4183.2 4178.6 4178.7 4178.5 
-.0072% -.0215% +.CG39% '+.0144% - .00:!~% +1. 3042% +1.2922% +1.2;79 +1.1 ;26% +1.1606% +1.14&:~4 +. 3949: +.1053% -.0048% -.0024% -.0072% 

3194.9 31,4. 7 Jl94 .I 3155.0 3194.7 319'1o .1 3241.3 3240.9 324C .4 323f.4 3238.0 3237. =· 3202. ~ Jl95. 8 3195.2 3194.9 3194.8 
-.0063% -.0250% +.OOJl% .-.OC63% -.OHC•% +1.4523% +1.4398% +1.4<41% +1. 3€15% +I. 3490% +1. 333£~ +,2441':.: +.0281% + .0094% -.0031% 

2292.1 22•1.9 2291.6 2253.6 ' 2293.3 2293.0 2Jl8. 7 2318.4 231E.l 2Jl;.l 2316.8 23lb. ~ 2292.; 2292.5 2292.4 2292.1 2292.0 
-.0087% -.0218% +.Of54% ; +.0524% +.0)~)% +1.1605% +1.1474% +1.1,.4,.% +1.·)~07% +1.0770~ +l.OM~l +.0087:; +.0174% +.0131% -.0044% 

778.6 718,0 778.5 ?;8.6 li8.5 778.5 777.8 777.8 . 77i.i 77:.7 777.7 777 .f 778.f 778.6 778.6 778.6 778.6 
-.0128% ~-.01284 -.01:!8% -.1027% -.1027% -.11501 -.ll:6% -.1156% -.1284::. 

719.0 H9.0 719.0 ?19 .0 : 718.9 718.9 718.3 718.3 71E.:: 71f.2 718.2 718 .• 719.0 719.0 i 719 .o 719.0 719 .o 
·-.GIJ9% -.Oll~% -.0974% i-.0974~ -.1113l -.1113% -.1113% -.1113l 

N 
00 



differencing leads to a linear system which must be solved at every time 

step. This system is solved iteratively by means of the point Gauss­

Seidel iterative method. With this program, four calculations were made. 

The first calculation used NF = 4 and Nc = 2, where NF denotes the number 

of nodes in fuel and NC denotes the number of nodes in clad; the second 

calculation used N = 6 
F and Nc = 2; the third calculation was made with 

NF = 35 and NC = 6; the fourth calculation was made with NF = 80 and 

NC 15. The choice of nodal boundaries as used in the above four calcu­

lations is also given in Appendix A. In addition to the effect of spatial 

mesh size, the·effect of the size of the time steps was also investigated. 

For this purpose three time steps, namely, 0.01, 0.005, and 0.001 sec, were 

used with this finite difference program. 

In Tables I and II we have compared temperature distributions as 

calculated by the two methods. In Table I, the time is 4 sec and in 

Table II, 8 sec after the initiation of the power transient. The six 

positions at which the temperature is shown in these tables arc the node 

positions corresponding to the case of NF = 4 and NC = 2 for the THTB 

calculation. In the case of the other three calculations, the subintervals 

were selected such that the original nodal positions corresponding to the 

case of NF = 4 and NC = 2 were included among these nodes. Thus, the 

temperatures for the THTB calculations shown in Tables I and II did not 

have to be interpolated. For the method of collocation, the temperature 

at these six positions is calculated by means of Eq. 7 which provides an 

interpolation procedure entirely consistent with the approximation pro­

c-.P.clure. WP h::~ve taken thQ THTB calcul.::ttion 'l.d th N "" 80 and N ... 15 c.o:t:-
F C 

responding to time step 0.001 sec as the benchmark calculation for these 

tables. The relative per cent deviation from this benchmark is shown 

under the corresponding temperatures in the tables. The number of equa­

tions solved for each case both with the collocation method and the 

finite-difference method (note that in case of THTB the number of equations 
;;' 

i:;; equal to the total number of nodco) arc also shown in these tables. 

From these tables, we note that for the same number of equations solved, 

the method of collocation is substantially more accurate than the finite-

. difference method. In fact, we see that the accuracy obtained with only 

12 equations in the collocation method is comparable with the accuracy 

obtained with 41 equations in the finite-difference method corresponding to 

29 
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time step of 0.01 sec. These ·tables also show the corresponding CPU times 

on IBM 195/360 computer ·for the various time steps displayed in the tables. 

It may b7 seen that CPU time for the collocation method with 12 equations 

is less by one order of magnitude than for the case of the THTB calcula-

tion employing 41 equations yielding the same order of accuracy as the 

collocation method. 

We may also note from these tables that the collocation method 

w.ith four equations provides a relative accuracy in the temperature at 

these times of less than 1% which is more than adequate for many engineer­

ing calculations. 

Figure 5 shows the temperature distribution at time 

2700 

u.i 2100 
a: 
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~ 1500 
u.J 
f--

900 

FINITE DIFFERENCE METHOD 
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TIME' 8.0 sec 
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Fig. 5. Illustrative Comparison of a Finite-difference Solution with the 
Collocation Method at Time= 8.0 sec. ANL Neg. No. 900-4882. 

illustrating the comparative accuracies for the two methods. In addition, 

the figure shows the jump in the temperature at the fuel-clad interface. 

V. CONCLUSIONS 

The application of .this collocation method for this type of non­

linear parabolic equation shows that this method can provide a very 

accurate numerical solution with a very small number of equations. The 

method is far more accurate and faster than the usual finite-?ifference 

methods. 



APPENDIX A 

Transport Properties of Fuel and Cladding 

Properties of fuel 

0.0160528/(14.17943 + 0.01183TF) Btu/(ft se~ °F) 

ior 932 < T (°F) < 2552 - F 

0.0003612 Btu/(ft sec °F) 

651.2 lb /ft3 
m 

[12.54 + 0.0170TF(°K) - 0.117 X 10-4 T~(°K) 

+ 0.307 x 10-8 T~(°K)]/269.7664 Btu/(lbm °F) 

Properties of cladding 

485.26 lb /ft3 
m 

Heat-transfer coefficients 

h 0.2778 Btu/(ft2 sec °F) 
g 

h 6.944 Btu/(ft2 sec °F) 
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Power transient 

q exp(O.l t) 
0 

where q
0 

is the initial steady-state power set at 45266.3i Btu/(ft 3 sec) 

and t is the time in seconds. 

Dimensions of fuel pin 

R r = 0.02 in. 
0 1 

R!t, "' r n+.l = 0.1 in. 

Rc ~+1 = 0.115 in. 

Position of knots (in inches) 

Let (r
1 

+ rn+l) denote the set of knots in the fuel region and 

(R
1 

+ ~+l) denote the set of knots in the clad region. 

For n = 1, N = 1, 

0.1, 0.115; 

for n 2, N 1, 

0.02, 0.07, 0.1; (R
1 

+ R2) 0.):, 0.115; 

for n = 3, N = 1, 

0.02, 0.05, 0.08, 0.1; 

0.1, 0.115; 



for n = 4, N = 2, 

(rl-+ r5) 

. (Rl -+ R3) 

for n - 19, N = 4, 

0.02, 0.04, 0.065, 0.085, 0.1; 

0.1, 0.1075, 0.115; 

0.02, 0.025, 0.031, 0.035, 0.039, 0.043, 0.047, 0.051, 

0.055, 0.059, 0.063, 0.067, 0.071, 0.075, 0.079, 

0.083, 0.089, 0.093, 0.097, 0.1; 

0.1, 0~10625, 0.11125, 0.11375, 0.115. 

Subinterval boundaries for the THTB conduction code (in inches) 

Let NF denote the number of nodes in fuel and Ne denote the number 

of nodes in clad, and let rFi (0 ~ i ~ NF) and Rei (0 ~ i ~ Ne) denote the 

position of node boundaries in fuel ~nd clad, respectively. 

For NF = 4, Ne = 2, 

(rFO -+ rF4) 

(Reo -+ Re2) 

6, Ne = 2, 

(rFO -+ rF6) 

(Reo -+ Re2) 

0.02, 0.045, 0.07, 0.09, 0.1; 

0.1, 0.1075, 0.115; 

0.02, 0.03, 0.0377574, 0.045, 0.07, 0.090, 0.1; 

0.1, 0.1075, 0.115; 
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for NF = 35, Ne = 6, 

0.02, 0.022, 0.025, 0.028, 0.031, 0.034, 0.0341997, 

0.04, 0.043, 0.045, 0.048, 0.051, 0.054, 0.057, 

0.0597868, 0.062, 0.064, 0.066, 0.068, 0.07, 0.072, 

0.074, 0.076, 0.078, 0.08, 0.0808378, 0.084, 0.086, 

0.088, 0.09, 0.092, 0.094, 0.0961617, 0.098, 0.099, 

0.1; 

0.1, 0.1025, 0.105074, 0.1075, 0.11, 0.112569, 

0.115; 

0.02 + 0.034 with ~rF = 0.01, rFlS 0.0341997; 

0.036 + 0.08 with ~rF = 0.01, rF6l = 0.0808378; 

(rF62 +rF75) = 0~082 + 0.095 with ~rF = 0.01, rF 76 = 0.0951739; 

(Reo+ Re3) = 0.1 + 0.103 with ~RC = 0.001, Re4 = 0.104584; 

(ReS + Re11) = 0.105 + 0.111 with ~Re = 0.001, Re12 = 0.111583; 

.. 
(Re13 + RelS) = 0.113 + 0.115 with ~Re = 0.001 
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