Characterization of In-Situ Stress and Permeability in Fractured Reservoirs

PDF Version Also Available for Download.

Description

Fracture orientation and spacing are important parameters in reservoir development. This project resulted in the development and testing of a new method for estimating fracture orientation and two new methods for estimating fracture spacing from seismic data. The methods developed were successfully applied to field data from fractured carbonate reservoirs. Specific results include: the development a new method for estimating fracture orientation from scattered energy in seismic data; the development of two new methods for estimating fracture spacing from scattered energy in seismic data; the successful testing of these methods on numerical model data and field data from two fractured ... continued below

Creation Information

Burns, Daniel R. & Toksoz, M. Nafi June 30, 2006.

Context

This report is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this report can be viewed below.

Who

People and organizations associated with either the creation of this report or its content.

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this report. Follow the links below to find similar items on the Digital Library.

Description

Fracture orientation and spacing are important parameters in reservoir development. This project resulted in the development and testing of a new method for estimating fracture orientation and two new methods for estimating fracture spacing from seismic data. The methods developed were successfully applied to field data from fractured carbonate reservoirs. Specific results include: the development a new method for estimating fracture orientation from scattered energy in seismic data; the development of two new methods for estimating fracture spacing from scattered energy in seismic data; the successful testing of these methods on numerical model data and field data from two fractured carbonate reservoirs; and the validation of fracture orientation results with borehole data from the two fields. Researchers developed a new method for determining the reflection and scattering characteristics of seismic energy from subsurface fractured formations. The method is based upon observations made from 3D finite difference modeling of the reflected and scattered seismic energy over discrete systems of vertical fractures. Regularly spaced, discrete vertical fractures impart a ringing coda type signature to seismic energy that is transmitted through or reflected off of them. This signature varies in amplitude and coherence as a function of several parameters including: (1) the difference in angle between the orientation of the fractures and the acquisition direction, (2) the fracture spacing, (3) the wavelength of the illuminating seismic energy, and (4) the compliance, or stiffness, of the fractures. This coda energy is the most coherent when the acquisition direction is parallel to the strike of the fractures. It has the largest amplitude when the seismic wavelengths are tuned to the fracture spacing, and when the fractures have low stiffness. The method uses surface seismic reflection traces to derive a transfer function that quantifies the change in the apparent source wavelet before and after propagating through a fractured interval. When a 3D seismic survey is acquired with a full range of azimuths, the variation in the derived transfer functions allows identification of subsurface areas with high fracturing and determines the strike of those fractures. The method was calibrated with model data and then applied it to data from two fractured carbonate reservoirs giving results that agree with well data and fracture orientations derived from other measurements. In addition, two approaches for estimating fracture spacing from scattered seismic energy were developed. The first method relates notches in the amplitude spectra of the scattered wavefield to the dominant fracture spacing that caused the scattering. The second uses conventional frequency-wavenumber (FK) filtering to isolate the backscattered signals and then recovers an estimate of the fracture spacing from the dominant wavelength of those signals. The methods were applied to Emilio Field data, resulting in the fracture spacing estimates of about 30-40 meters in both cases.

Language

Item Type

Identifier

Unique identifying numbers for this report in the Digital Library or other systems.

  • Report No.: None
  • Grant Number: FC26-02NT15346
  • DOI: 10.2172/901008 | External Link
  • Office of Scientific & Technical Information Report Number: 901008
  • Archival Resource Key: ark:/67531/metadc878231

Collections

This report is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this report?

When

Dates and time periods associated with this report.

Creation Date

  • June 30, 2006

Added to The UNT Digital Library

  • Sept. 22, 2016, 2:13 a.m.

Description Last Updated

  • Nov. 22, 2016, 10:14 p.m.

Usage Statistics

When was this report last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 1

Interact With This Report

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Burns, Daniel R. & Toksoz, M. Nafi. Characterization of In-Situ Stress and Permeability in Fractured Reservoirs, report, June 30, 2006; United States. (digital.library.unt.edu/ark:/67531/metadc878231/: accessed November 22, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.