The Injection Laser System on the National Ignition Facility

PDF Version Also Available for Download.

Description

The National Ignition Facility (NIF) is currently the largest and most energetic laser system in the world. The main amplifiers are driven by the Injection Laser System comprised of the master oscillators, optical preamplifiers, temporal pulse shaping and spatial beam formatting elements and injection diagnostics. Starting with two fiber oscillators separated by up to a few angstroms, the pulse is phase modulated to suppress SBS and enhance spatial smoothing, amplified, split into 48 individual fibers, and then temporally shaped by an arbitrary waveform generator. Residual amplitude modulation induced in the preamplifiers from the phase modulation is also precompensated in the ... continued below

Physical Description

PDF-file: 22 pages; size: 0.9 Mbytes

Creation Information

Bowers, M; Burkhart, S; Cohen, S; Erbert, G; Heebner, J; Hermann, M et al. December 13, 2006.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

The National Ignition Facility (NIF) is currently the largest and most energetic laser system in the world. The main amplifiers are driven by the Injection Laser System comprised of the master oscillators, optical preamplifiers, temporal pulse shaping and spatial beam formatting elements and injection diagnostics. Starting with two fiber oscillators separated by up to a few angstroms, the pulse is phase modulated to suppress SBS and enhance spatial smoothing, amplified, split into 48 individual fibers, and then temporally shaped by an arbitrary waveform generator. Residual amplitude modulation induced in the preamplifiers from the phase modulation is also precompensated in the fiber portion of the system before it is injected into the 48 pre-amplifier modules (PAMs). Each of the PAMs amplifies the light from the 1 nJ fiber injection up to the multi-joule level in two stages. Between the two stages the pre-pulse is suppressed by 60 dB and the beam is spatially formatted to a square aperture with precompensation for the nonuniform gain profile of the main laser. The input sensor package is used to align the output of each PAM to the main laser and acquire energy, power, and spatial profiles for all shots. The beam transport sections split the beam from each PAM into four main laser beams (with optical isolation) forming the 192 beams of the NIF. Optical, electrical, and mechanical design considerations for long term reliability and availability will be discussed.

Physical Description

PDF-file: 22 pages; size: 0.9 Mbytes

Source

  • Presented at: SPIE Photonics West, San Jose, CA, United States, Jan 20 - Jan 25, 2007

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: UCRL-PROC-226945
  • Grant Number: W-7405-ENG-48
  • Office of Scientific & Technical Information Report Number: 902363
  • Archival Resource Key: ark:/67531/metadc878174

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • December 13, 2006

Added to The UNT Digital Library

  • Sept. 22, 2016, 2:13 a.m.

Description Last Updated

  • Dec. 5, 2016, 9:22 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 2

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Bowers, M; Burkhart, S; Cohen, S; Erbert, G; Heebner, J; Hermann, M et al. The Injection Laser System on the National Ignition Facility, article, December 13, 2006; Livermore, California. (digital.library.unt.edu/ark:/67531/metadc878174/: accessed September 24, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.