Large deformation solid-fluid interaction via a level set approach.

PDF Version Also Available for Download.

Description

Solidification and blood flow seemingly have little in common, but each involves a fluid in contact with a deformable solid. In these systems, the solid-fluid interface moves as the solid advects and deforms, often traversing the entire domain of interest. Currently, these problems cannot be simulated without innumerable expensive remeshing steps, mesh manipulations or decoupling the solid and fluid motion. Despite the wealth of progress recently made in mechanics modeling, this glaring inadequacy persists. We propose a new technique that tracks the interface implicitly and circumvents the need for remeshing and remapping the solution onto the new mesh. The solid-fluid ... continued below

Physical Description

65 p.

Creation Information

Schunk, Peter Randall; Noble, David R.; Baer, Thomas A.; Rao, Rekha Ranjana; Notz, Patrick K. & Wilkes, Edward Dean December 1, 2003.

Context

This report is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. It has been viewed 13 times . More information about this report can be viewed below.

Who

People and organizations associated with either the creation of this report or its content.

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this report. Follow the links below to find similar items on the Digital Library.

Description

Solidification and blood flow seemingly have little in common, but each involves a fluid in contact with a deformable solid. In these systems, the solid-fluid interface moves as the solid advects and deforms, often traversing the entire domain of interest. Currently, these problems cannot be simulated without innumerable expensive remeshing steps, mesh manipulations or decoupling the solid and fluid motion. Despite the wealth of progress recently made in mechanics modeling, this glaring inadequacy persists. We propose a new technique that tracks the interface implicitly and circumvents the need for remeshing and remapping the solution onto the new mesh. The solid-fluid boundary is tracked with a level set algorithm that changes the equation type dynamically depending on the phases present. This novel approach to coupled mechanics problems promises to give accurate stresses, displacements and velocities in both phases, simultaneously.

Physical Description

65 p.

Language

Item Type

Identifier

Unique identifying numbers for this report in the Digital Library or other systems.

  • Report No.: SAND2003-4649
  • Grant Number: AC04-94AL85000
  • DOI: 10.2172/918218 | External Link
  • Office of Scientific & Technical Information Report Number: 918218
  • Archival Resource Key: ark:/67531/metadc878074

Collections

This report is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this report?

When

Dates and time periods associated with this report.

Creation Date

  • December 1, 2003

Added to The UNT Digital Library

  • Sept. 22, 2016, 2:13 a.m.

Description Last Updated

  • Nov. 29, 2016, 6:12 p.m.

Usage Statistics

When was this report last used?

Yesterday: 0
Past 30 days: 1
Total Uses: 13

Interact With This Report

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Schunk, Peter Randall; Noble, David R.; Baer, Thomas A.; Rao, Rekha Ranjana; Notz, Patrick K. & Wilkes, Edward Dean. Large deformation solid-fluid interaction via a level set approach., report, December 1, 2003; United States. (digital.library.unt.edu/ark:/67531/metadc878074/: accessed December 14, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.