Extreme Adaptive Optics for the Thirty Meter Telescope

PDF Version Also Available for Download.

Description

Direct detection of extrasolar Jovian planets is a major scientific motivation for the construction of future extremely large telescopes such as the Thirty Meter Telescope (TMT). Such detection will require dedicated high-contrast AO systems. Since the properties of Jovian planets and their parent stars vary enormously between different populations, the instrument must be designed to meet specific scientific needs rather than a simple metric such as maximum Strehl ratio. We present a design for such an instrument, the Planet Formation Imager (PFI) for TMT. It has four key science missions. The first is the study of newly-formed planets on 5-10 ... continued below

Physical Description

PDF-file: 17 pages; size: 1.9 Mbytes

Creation Information

Macintosh, B & al., e May 2, 2006.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

Direct detection of extrasolar Jovian planets is a major scientific motivation for the construction of future extremely large telescopes such as the Thirty Meter Telescope (TMT). Such detection will require dedicated high-contrast AO systems. Since the properties of Jovian planets and their parent stars vary enormously between different populations, the instrument must be designed to meet specific scientific needs rather than a simple metric such as maximum Strehl ratio. We present a design for such an instrument, the Planet Formation Imager (PFI) for TMT. It has four key science missions. The first is the study of newly-formed planets on 5-10 AU scales in regions such as Taurus and Ophiucus--this requires very small inner working distances that are only possible with a 30m or larger telescope. The second is a robust census of extrasolar giant planets orbiting mature nearby stars. The third is detailed spectral characterization of the brightest extrasolar planets. The final targets are circumstellar dust disks, including Zodiacal light analogs in the inner parts of other solar systems. To achieve these, PFI combines advanced wavefront sensors, high-order MEMS deformable mirrors, a coronagraph optimized for a finely-segmented primary mirror, and an integral field spectrograph.

Physical Description

PDF-file: 17 pages; size: 1.9 Mbytes

Source

  • Presented at: Astronomical Telescopes and Instrumentation 2006, orlando, FL, United States, May 24 - May 31, 2006

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: UCRL-CONF-221361
  • Grant Number: W-7405-ENG-48
  • Office of Scientific & Technical Information Report Number: 898493
  • Archival Resource Key: ark:/67531/metadc878060

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • May 2, 2006

Added to The UNT Digital Library

  • Sept. 22, 2016, 2:13 a.m.

Description Last Updated

  • Dec. 7, 2016, 11:29 a.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 3

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Macintosh, B & al., e. Extreme Adaptive Optics for the Thirty Meter Telescope, article, May 2, 2006; Livermore, California. (digital.library.unt.edu/ark:/67531/metadc878060/: accessed April 27, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.