A Preliminary Look at the Crust and Upper Mantle of North Africa Using Libyan Seismic Data

PDF Version Also Available for Download.

Description

In recent years, LLNL has been developing methods to jointly invert both surface wave dispersion data and teleseismic receiver functions. The technique holds great promise in accurately estimating seismic structure, including important tectonic parameters such as basin thickness, crustal thickness, upper mantle velocity, etc. We proposed applying this method to some recently available data from several Libyan stations, as we believe the technique has not been applied to any stations in Libya. The technique holds the promise of improving our understanding of the crust and upper mantle in Libya and North Africa. We recently requested seismic data from stations GHAR ... continued below

Physical Description

PDF-file: 6 pages; size: 1.8 Mbytes

Creation Information

Pasyanos, M August 5, 2005.

Context

This report is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this report can be viewed below.

Who

People and organizations associated with either the creation of this report or its content.

Author

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this report. Follow the links below to find similar items on the Digital Library.

Description

In recent years, LLNL has been developing methods to jointly invert both surface wave dispersion data and teleseismic receiver functions. The technique holds great promise in accurately estimating seismic structure, including important tectonic parameters such as basin thickness, crustal thickness, upper mantle velocity, etc. We proposed applying this method to some recently available data from several Libyan stations, as we believe the technique has not been applied to any stations in Libya. The technique holds the promise of improving our understanding of the crust and upper mantle in Libya and North Africa. We recently requested seismic data from stations GHAR (Gharyan) and MARJ (Al Marj) in Libya for about 20 events. The events were large events at regional distances suitable for making dispersion measurements. An example of waveforms recorded at the two stations from an earthquake in Italy is shown in Figure 1. The paths traverse the Ionian Sea. Notice the slow short period group velocities of the surface waves across the Mediterranean, particularly to the easternmost station MARJ. However, because of data availability, signal-to-noise ratio, etc. we were unable to make measurements for every one of these events at both stations. Figure 2 shows a map of paths for 20 sec Rayleigh waves in the eastern Mediterranean region. Paths measured at the two Libyan stations are shown in green. Rayleigh wave dispersion measurements at 20 sec period are sensitive to velocities in the upper 20 km or so, and reveal sediment thickness, crustal velocity, and crustal thickness. Tomographic inversions reveal the sharp group velocity contrast between regions with deep sedimentary basins and those without. Figure 3, the result of an inversion made before adding the new dispersion measurements, shows slow group velocities in the Black Sea, Adriatic Sea, and Eastern Mediterranean. In general, these features correspond well with the sediment thickness model from Laske, shown in Figure 4. Details in and around the Sirt (Sirte) Basin in northern Libya, however, are poorly defined.

Physical Description

PDF-file: 6 pages; size: 1.8 Mbytes

Language

Item Type

Identifier

Unique identifying numbers for this report in the Digital Library or other systems.

  • Report No.: UCRL-TR-214397
  • Grant Number: W-7405-ENG-48
  • DOI: 10.2172/877766 | External Link
  • Office of Scientific & Technical Information Report Number: 877766
  • Archival Resource Key: ark:/67531/metadc877926

Collections

This report is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this report?

When

Dates and time periods associated with this report.

Creation Date

  • August 5, 2005

Added to The UNT Digital Library

  • Sept. 21, 2016, 2:29 a.m.

Description Last Updated

  • Nov. 30, 2016, 6:08 p.m.

Usage Statistics

When was this report last used?

Yesterday: 0
Past 30 days: 2
Total Uses: 4

Interact With This Report

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Pasyanos, M. A Preliminary Look at the Crust and Upper Mantle of North Africa Using Libyan Seismic Data, report, August 5, 2005; Livermore, California. (digital.library.unt.edu/ark:/67531/metadc877926/: accessed December 11, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.