Mr. J. Z. Holland, Chief
Fallout Studies Branch
Atomic Energy Commission
Division of Biology and Medicine
Washington 25, D. C.

Subject: Report No. ARF 3127-10 (Letter Report)
Contract No. AT (11-1)-626

Dear Mr. Holland:

I. INTRODUCTION

This is the tenth letter report on ARF Project C 127, entitled "Preliminary Studies of Scavenging Systems Related to Radioactive Fallout." This report covers the period from October 1 to December 1, 1959.

II. PHASE I - AIR SAMPLING

During this report period two cyclone separator tests have been completed and sent to the New York Operations Office of the Atomic Energy Commission for analyses. The current Andersen sampler test has processed about 80,000 cu ft of air to date.

The radioactivity associated with the dry atmospheric particles classified by the Andersen samplers during the period from June 1 to September 8, 1959, is listed in Table 1. The total beta activity was 1935 μc/100,000 cu ft and the strontium-90 activity was 78.5 μc/100,000 cu ft. About 60% of the total activity was due to the fine particles passing the Andersen sampler and collected on the millipore filters. The average activity levels of three previous tests were 1655 μc/100,000 cu ft and 55.1 μc/100,000 cu ft for total beta and strontium-90, respectively.

The data in Table 2 give the radioactivity of dry particulate matter classified by the cyclone separators. These results are the first obtained on
DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.
DISCLAIMER

Portions of this document may be illegible in electronic image products. Images are produced from the best available original document.
weighed fractions of particles. The data show each gram of particulate matter has 5582 \(\mu \text{c} \) of total beta activity and 297\(\mu \text{c} \) of strontium-90 activity. On a volume basis the data show levels of 890\(\mu \text{c} \)/100,000 cu ft and 40.1\(\mu \text{c} \)/100,000 cu ft for total beta and strontium-90 activity, respectively. Previous data averaged 5367 and 34.5\(\mu \text{c} \)/100,000 cu ft, respectively.

Table 1

RADIOACTIVITY ASSOCIATED WITH DRY ATMOSPHERIC PARTICLES CLASSIFIED BY THE ANDERSEN SAMPLERS FROM JUNE 1 TO SEPTEMBER 8, 1959

<table>
<thead>
<tr>
<th>Particle Size</th>
<th>Total Beta Activity</th>
<th>Strontium-90 Activity</th>
</tr>
</thead>
<tbody>
<tr>
<td>(>7 \text{ microns})</td>
<td>28 (\mu \text{c})/100,000 cu ft</td>
<td>2.1 (\mu \text{c})/100,000 cu ft</td>
</tr>
<tr>
<td>5.5-10 microns</td>
<td>13 (\mu \text{c})/100,000 cu ft</td>
<td>1.1 (\mu \text{c})/100,000 cu ft</td>
</tr>
<tr>
<td>3.5-5.5 microns</td>
<td>23 (\mu \text{c})/100,000 cu ft</td>
<td>1.2 (\mu \text{c})/100,000 cu ft</td>
</tr>
<tr>
<td>2.0-3.5 microns</td>
<td>40 (\mu \text{c})/100,000 cu ft</td>
<td>3.3 (\mu \text{c})/100,000 cu ft</td>
</tr>
<tr>
<td>1.0-2.0 microns</td>
<td>363 (\mu \text{c})/100,000 cu ft</td>
<td>15.1 (\mu \text{c})/100,000 cu ft</td>
</tr>
<tr>
<td><1 micron</td>
<td>261 (\mu \text{c})/100,000 cu ft</td>
<td>11.9 (\mu \text{c})/100,000 cu ft</td>
</tr>
<tr>
<td>Millipore filter</td>
<td>1207 (\mu \text{c})/100,000 cu ft</td>
<td>43.8 (\mu \text{c})/100,000 cu ft</td>
</tr>
<tr>
<td>Total</td>
<td>1935</td>
<td>78.5</td>
</tr>
</tbody>
</table>

Table 2

RADIOACTIVITY ASSOCIATED WITH DRY ATMOSPHERIC PARTICLES CLASSIFIED BY CYCLONE SEPARATORS FROM JULY 28 TO AUGUST 17, 1959

<table>
<thead>
<tr>
<th>Particle Size</th>
<th>Total Beta Activity</th>
<th>Strontium-90 Activity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Separation Unit</td>
<td>Per 100,000 cu ft</td>
<td>Per gram</td>
</tr>
<tr>
<td>Rough cyclone</td>
<td>11.3 (\mu \text{c})</td>
<td>1.2</td>
</tr>
<tr>
<td>Small cyclone</td>
<td>72.7 (\mu \text{c})</td>
<td>8.2</td>
</tr>
<tr>
<td>Millipore filter</td>
<td>806.0 (\mu \text{c})</td>
<td>90.6</td>
</tr>
<tr>
<td>Total</td>
<td>890.0</td>
<td>100.0</td>
</tr>
</tbody>
</table>
III. PHASE II - LABORATORY STUDIES OF SCAVENGING SYSTEMS

The results of a laboratory study on the scavenging of aerosol particles by evaporating and condensing water droplets are presented in Table 3. A fluorescent zinc sulfide aerosol was used. The mean particle diameter by count was 1.14 microns and the mean volume diameter 1.34 microns. The percentage capture is based on the number of particles captured divided by the total number of the particles which passed beneath the cross sectional area of the droplet projected at a right angle to the direction of flow. The number of particles which theory predicts would have been captured by interception, inertia, and Brownian motion are listed also for comparison with the number actually captured.

To effect changes in droplet size, several conditions of humidity were used. Relatively dry air was used for evaporation tests and almost saturated air for static growth tests. To make the droplet grow it was necessary to cool the droplet and line the chamber with wet blotting paper in addition to using humid air.

The aerosol was generated with the Wright dry dust feeder and drawn through a 57-mm-diameter glass chamber at a rate of 0.5 cm/sec. The aerosol was sampled with a Strong-Ficklen oscillating thermal precipitator. The water droplet was hung in the chamber from an electrically grounded gold wire 0.02 in. in diameter. The change in droplet diameter was observed with a telescope fitted with a calibrated Filar-type micrometer eyepiece. After exposure to the aerosol the droplet was collected on a black millipore filter and the water removed immediately by suction. The captured particles on the surface of the filter were counted by visual observation at 160x magnification under reflected ultraviolet light in the 4000-Å region. The aerosol concentration was estimated from thermal precipitator slides observed under the same magnification and light source.

The sizes and distributions of the aerosol and the captured particles are shown in Fig. 1. The loss of large aerosol particles in the aerosol handling system prior to the test chamber is apparent from the skewed curve of the aerosol particle distribution. The presence of larger particles among the captured particles is the result of particle aggregation on the surface of the droplet. Photomicrographs from which these distributions were obtained are shown in Fig. 2.

Plots of droplet diameter versus time produced fairly straight lines, the slopes of which represent rate of growth or rate of evaporation of the droplet. A negative slope indicates an evaporating droplet and a positive slope a condensing droplet. The slopes are listed in Table 3. Figure 3 shows the relationship between the slope of the droplet growth curves and the percentage of particles captured. Collection efficiency increases sharply for condensing droplets but is relatively low when the droplet is evaporating. Thus, it appears that capture is extremely sensitive to changes in the growth rate of a droplet.
Table 3
CAPTURE OF ZINC SULFIDE AEROSOLS BY WATER DROPLETS

<table>
<thead>
<tr>
<th>Test No.</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
</tr>
</thead>
<tbody>
<tr>
<td>Air Velocity, cm/min</td>
<td>29</td>
<td>29</td>
<td>29</td>
<td>29</td>
<td>30</td>
<td>32</td>
<td>32</td>
<td>27</td>
<td>28</td>
<td>28</td>
<td>28</td>
<td>28</td>
<td>28</td>
</tr>
<tr>
<td>Temperature, °F</td>
<td>83</td>
<td>83</td>
<td>83</td>
<td>85</td>
<td>79</td>
<td>80</td>
<td>82</td>
<td>76</td>
<td>81</td>
<td>80</td>
<td>78</td>
<td>30</td>
<td>80</td>
</tr>
<tr>
<td>Relative Humidity, %</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>30</td>
<td>90</td>
<td>90</td>
<td>90</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>Test Duration, min</td>
<td>13</td>
<td>15</td>
<td>12</td>
<td>12</td>
<td>12</td>
<td>15</td>
<td>14</td>
<td>13</td>
<td>10</td>
<td>12.5</td>
<td>10</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>Av. Droplet Diam., mm</td>
<td>1.71</td>
<td>1.85</td>
<td>2.10</td>
<td>1.90</td>
<td>2.10</td>
<td>1.78</td>
<td>1.81</td>
<td>2.10</td>
<td>1.87</td>
<td>1.69</td>
<td>2.10</td>
<td>2.05</td>
<td>2.10</td>
</tr>
<tr>
<td>Slope of Growth Curve, mm/min</td>
<td>-.057</td>
<td>-.047</td>
<td>-.037</td>
<td>-.039</td>
<td>.037</td>
<td>-.0043</td>
<td>-.0023</td>
<td>+.00008</td>
<td>+.009</td>
<td>+.011</td>
<td>+.014</td>
<td>+.019</td>
<td>+.013</td>
</tr>
<tr>
<td>Aerosol Conc., particles/cc</td>
<td>1300</td>
<td>64000</td>
<td>2515</td>
<td>5305</td>
<td>3520</td>
<td>5740</td>
<td>2238</td>
<td>752</td>
<td>3350</td>
<td>3550</td>
<td>2715</td>
<td>3720</td>
<td>699</td>
</tr>
<tr>
<td>Particles Captured: Number</td>
<td>101</td>
<td>4850</td>
<td>500</td>
<td>351</td>
<td>124</td>
<td>1103</td>
<td>455</td>
<td>306</td>
<td>1110</td>
<td>891</td>
<td>1751</td>
<td>2095</td>
<td>495</td>
</tr>
<tr>
<td>%</td>
<td>.90</td>
<td>.65</td>
<td>1.64</td>
<td>.67</td>
<td>.29</td>
<td>1.50</td>
<td>1.76</td>
<td>3.34</td>
<td>4.28</td>
<td>3.15</td>
<td>6.61</td>
<td>6.05</td>
<td>9.60</td>
</tr>
<tr>
<td>Theor. Particles Captured, number: Interception</td>
<td>27</td>
<td>1624</td>
<td>59</td>
<td>111</td>
<td>82</td>
<td>156</td>
<td>58</td>
<td>18</td>
<td>56</td>
<td>67</td>
<td>51</td>
<td>68</td>
<td>9</td>
</tr>
<tr>
<td>Inertia</td>
<td>0</td>
</tr>
<tr>
<td>Brownian motion</td>
<td>0</td>
<td>8</td>
<td>0</td>
</tr>
</tbody>
</table>
Fig. 1. PARTICLE SIZE DISTRIBUTION OF ZINC SULFIDE AEROSOL PARTICLES AND OF AEROSOL PARTICLES CAPTURED BY WATER DROPLETS
Fig. 2. PHOTOMICROGRAPHS OF ZINC SULFIDE AEROSOL PARTICLES AND OF AEROSOL PARTICLES CAPTURED BY WATER DROPLETS
Fig. 3. EFFECT OF VAPOR GRADIENT ON PARTICLE CAPTURE.
IV. FUTURE WORK

Air sampling with both the Andersen and the cyclone samplers will continue. The effect of condensation or evaporation of water droplets on capture of 0.1- to 1-micron particles will be evaluated.

V. LOGBOOKS AND PERSONNEL

The data reported here are contained in ARF Logbooks C 9230, C 9560, and C 9032. Mr. Sheldon Bernsen contributed to this project.

Respectfully submitted,

ARMOUR RESEARCH FOUNDATION
of Illinois Institute of Technology

John Stockham, Associate Chemist
Fine Particles Research

John Rosinski, Senior Engineer
Fine Particles Research

Approved by:

M. A. Fisher, Supervisor
Fine Particles Research

JS/JR: jw
Mr. J. Z. Holland

December 18, 1959

Copy No. 1 - 6

Recipient

Mr. J. Z. Holland, Chief
Fallout Studies Branch
Division of Biology and Medicine
U. S. Atomic Energy Commission
Washington 25, D. C.

7 - 9

Chicago Operations Office
P. O. Box 59
Lemont, Illinois

10

Technical Information Service Extension
U. S. Atomic Energy Commission
Oak Ridge, Tennessee

11

Dr. Lyle T. Alexander
Soil Conservation Service
U. S. Department of Agriculture
Beltsville, Maryland

12

Dr. Earl W. Barrett
Department of Meteorology
The University of Chicago
Chicago 37, Illinois

13

Dr. L. J. Beaufait, Jr.
Tracerlab, Incorporated
2030 Wright Avenue
Richmond 3, Virginia

14

Dr. Bert Bolin
Institute of Meteorology
University of Stockholm
Lindagensagatan 124
Stockholm, Sweden

15

Dr. Wallace S. Broecker
Lamont Geological Observatory
Columbia University
Palisades, New York

16

Mr. Fred Cowan
Brookhaven National Laboratory
Upton, Long Island
New York

17

Dr. Nelson A. Dingle
Department of Physics
University of Michigan
Ann Arbor, Michigan
<table>
<thead>
<tr>
<th>Copy No.</th>
<th>Recipient</th>
</tr>
</thead>
</table>
| 18 | Dr. Charles L. Dunham, Director
Division of Biology and Medicine
U. S. Atomic Energy Commission
Washington 25, D. C. |
| 19 | Dr. K. Edvarson
Research Institute of National Defense
2nd Division
Stockholm 80, Sweden |
| 20 | Dr. Melvin H. Feldman
Defense Atomic Support Agency
Department of Defense
Washington 25, D. C. |
| 21 | Dr. Robert Goeckermann
University of California Radiation Laboratory
Livermore, California |
| 22 | Dr. F. T. Hagemann
Argonne National Laboratory
P. O. Box 299
Lemont, Illinois |
| 23 | Dr. J. H. Harley
Health and Safety Laboratory
New York Operations Office
U. S. Atomic Energy Commission
70 Columbus Avenue
New York 23, New York |
| 24 | Lt. Col. James B. Hartgering
Office of Chief R & D
Department of the Army
Room 3D 442 - The Pentagon
Washington 25, D. C. |
| 25 | Mr. Jack Healy
Hanford Atomic Products Operation
Richland, Washington |
| 26 | Dr. Wallace Howell
Mount Washington Observatory
Gorham, New Hampshire |
| 27 | Mr. Sam P. Jones
General Mills Incorporated
2003 East Hennepin Avenue
Minneapolis 13, Minnesota |
| 28 | Dr. W. W. Kellogg
The Rand Corporation
1000 Connecticut Avenue, N. W.
Washington 25, D. C. |
<table>
<thead>
<tr>
<th>Copy No.</th>
<th>Recipient</th>
</tr>
</thead>
</table>
| 23 | Dr. Paul Kruger
 | Nuclear Science and Engineering Corporation
 | P. O. Box 10901
 | Pittsburgh 36, Pennsylvania |
| 24 | Dr. Paul K. Kuroda
 | University of Arkansas
 | Fayetteville, Arkansas |
| 25 | Dr. Wright Langham
 | Los Alamos Scientific Laboratory
 | P. O. Box 1663
 | Los Alamos, New Mexico |
| 26 | Mr. Kermit Larson
 | USAEC Project, UCLA
 | P. O. Box 4164
 | West Los Angeles, California |
| 27 | Dr. Luther B. Lockhart, Jr.
 | Chemistry Division
 | Naval Research Laboratory
 | Washington 25, D. C. |
| 28 | Dr. S. Allan Lough
 | New York Operations Office
 | U. S. Atomic Energy Commission
 | 376 Hudson Street
 | New York 14, New York |
| 29 | Dr. Lester Machta
 | U. S. Weather Bureau
 | Washington 25, D. C. |
| 30 | Dr. W. G. Marley
 | Atomic Energy Research Establishment Harwell, Didcot, Berks, England |
| 31 | Dr. Edward A. Martell
 | Air Force Cambridge Research Center
 | Bedford, Massachusetts |
| 32 | Mr. Harry Moses
 | Argonne National Laboratory
 | P. O. Box 299
 | Lemont, Illinois |
| 33 | Mr. Doyle L. Northrup
 | AFTAC, DSC/0, USAF
 | Temp. T. Bldg.
<pre><code> | Washington 25, D. C. |
</code></pre>
<table>
<thead>
<tr>
<th>Copy No.</th>
<th>Recipient</th>
</tr>
</thead>
</table>
| 34 | Dr. T. A. Rafter
Department of Scientific
and Industrial Research
Wellington, New Zealand |
| 35 | Mr. Jack Reed
Sandia Corporation
Albuquerque, New Mexico |
| 36 | Dr. L. Silverman
Harvard University
Boston 15, Massachusetts |
| 37 | Dr. Hans A. Suess
Scripps Institution of Oceanography
La Jolla, California |
| 38 | Professor Victor Starr
Department of Meteorology
Massachusetts Institute of Technology
Cambridge, Massachusetts |
| 39 | Dr. Herbert Volchok
Isotopes, Incorporated
123 Woodland Avenue
Westwood, New Jersey |
| 40 | Dr. Francis Weber
U. S. Public Health Service
Washington 25, D. C. |
| 41 | Armour Research Foundation
Division C Files |
| 42 | Armour Research Foundation
Editors, G. S. Gordon, K. F. Beal,
F. Schossberger, L. C. Kinney, Main Files |
| 43 | Armour Research Foundation
K. W. Miller, Report Library |
| 44 - 47 | Armour Research Foundation
John Rosinski |