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ABSTRACT

Using the photometric parallax method, we estimate the distances to ∼48 million stars detected by
the Sloan Digital Sky Survey (SDSS), and map their three-dimensional number density distribution in
the Galaxy. The currently available data sample the distance range from 100 pc to 15 kpc and cover
6,500 deg2 of sky, mostly at high galactic latitudes (|b| > 25). These stellar number density maps allow
an investigation of the Galactic structure without any a priori assumptions about its components.
The data show strong evidence for a Galaxy consisting of an oblate halo, disk components, and a
number of localized overdensities. The number density distribution of stars in the Solar neighborhood
(D < 1.5kpc) favors a model having a “thin” and a “thick” exponential disk, with scale heights and
lengths of H1 ∼ 280pc and L1 ∼ 2400pc, and H2 ∼ 1200pc and L2 ∼ 3500pc, respectively, and local
thick-to-thin disk normalization ρthick(R⊙)/ρthin(R⊙) = 4%. Fits applied to the entire dataset are
significantly more uncertain due to the presence of clumps and overdensities. The halo power law
index is very poorly constrained, but we find an oblate halo with c/a ∼ 0.5 to be strongly preferred.
While roughly consistent with this simple model, the measured density distribution shows a number of
statistically significant deviations from the model predictions. In addition to known features, such as
the Monoceros stream, a remarkable density enhancement covering over a thousand square degrees of
sky is detected towards the constellation of Virgo, at distances of ∼5-15 kpc. Compared to counts in a
region symmetric with respect to the l = 0 line and with the same Galactic latitude, it is responsible for
a factor of 2 number density excess, and may be a nearby tidal stream or a low-surface brightness dwarf
galaxy merging with the Milky Way. The u − g color distribution of these stars implies metallicities
lower than those of the thick disk, and consistent with the halo metallicity distribution.
Subject headings:

1. INTRODUCTION

The formation of galaxies like the Milky Way was long
thought to be a steady process that created smooth dis-
tributions of stars, with the standard view of the Milky
Way’s main components exemplified by models of Bah-
call & Soneira (1980) and Gilmore, Wyse & Kuijken
(1989), and described in detail by Majewski (1993). But
for some time, starting with the pioneering work of Searle
& Zinn (1978) and most recently with the data from mod-
ern large-scale sky surveys (such as the Sloan Digital Sky
Survey (SDSS, York et al. 2000, see the next section),
The Two Micron All Sky Survey (2MASS, Majewski et
al. 2002), and QUEST (Vivas et al. 2001), to name but
a few), evidence has been mounting for a more compli-
cated picture of the Galaxy. Unlike the smooth models
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that involve simple components described by analytic ex-
pressions, new data argues for much more irregular sub-
structure, such as the Sgr dwarf tidal stream in the halo
(Ivezić et al. 2000, Yanny et al. 2000, Vivas et al. 2001,
Majewski et al. 2002), and the Monoceros stream closer
to the Galactic plane (Newberg et al. 2002, Rocha-Pinto
et al. 2003).

A common feature to most recent studies of the Milky
Way structure is selection of tracers for which reason-
ably accurate distance estimates are possible (e.g. RR
Lyrae stars, A-type stars, M giants). However, these
tracers represent only a tiny fraction of stars on the sky
because the vast majority of faint (V . 21 − 22) stars
are on the main sequence. While the distance to main
sequence stars can be determined from a photometric
parallax relation, the lack of large-area optical10 surveys
with sufficiently accurate photometry (see Section 2.2)
has prevented an efficient use of this method to constrain
the Milky Way structure. The largest Galactic structure
oriented data set to date to use accurate optical CCD
photometry (Siegel et al. 2002) covered only ∼ 15 deg2

large area, with ∼ 105 stars. All of the above limitations
(selection of tracers, small area and limited photomet-
ric accuracy) lead to a small number of observed stars,

10 For example, near-IR colors measured by the all-sky 2MASS
survey are not well suited for this purpose, because they only probe
the Rayleigh-Jeans tail of the stellar spectral energy distribution
and thus are not very sensitive to the effective temperature.



2 Jurić et al.

making it impossible to directly measure stellar number
density. Instead, to recover the Galactic density field,
studies have ordinarily had to resort to model fitting,
where the model was usually given by theoretical con-
siderations (e.g., Spitzer 1942) or empirical comparison
with external galaxies (e.g., Bahcall & Soneira 1980).

The large area covered by the SDSS, with accurate
photometric measurements and faint flux limits (r < 22),
allow for a novel approach to study of the Galaxy: us-
ing a photometric parallax relation appropriate for main
sequence stars, it is possible to estimate distances for
the large majority of observed stars, and thus directly
map the Galactic stellar number density. Here we de-
scribe such a study based on ∼48 million stars detected
by the SDSS in ∼ 6500 deg2 of sky. A particular advan-
tage of this method is that the number density of stars
as a function of position in the Galaxy can be measured
without any model assumptions (e.g. luminosity func-
tion and functional forms that describe the density laws
for disks and halo). Rather, the computed number den-
sity directly constrains the required Galaxy components
and their properties.

We describe the SDSS data and photometric paral-
lax relation used in this work, and the construction of
the stellar number density maps in the following Sec-
tion. Analysis of these maps is described in Section 3,
and in Section 4 we discuss in detail a remarkably large
overdensity of stars discovered in these maps. Our main
results are discussed and summarized in Section 5.

2. DATA AND METHODOLOGY

In this Section we list the basic characteristics of the
SDSS imaging survey, discuss the adopted photomet-
ric parallax relation used to estimate the distance to
each star, and describe a method for determining three-
dimensional number density distribution as a function of
Galactic coordinates.

2.1. The Basic Characteristics of the SDSS Imaging
Survey

The SDSS is a digital photometric and spectroscopic
survey which will cover up to one quarter of the Celestial
Sphere in the North Galactic cap, and produce a smaller
area (∼ 225 deg2) but much deeper survey in the South-
ern Galactic hemisphere11 (York et al. 2000, Stoughton
et al. 2002, Abazajian et al. 2003, Gunn et al. 2005,
Tucker et al. 2005). The flux densities of detected ob-
jects are measured almost simultaneously in five bands
(u, g, r, i, and z) with effective wavelengths of 3540 Å,
4760 Å, 6280 Å, 7690 Å, and 9250 Å (Fukugita et al.
1996, Gunn et al. 1998, Smith et al. 2002, Hogg et
al. 2002). The completeness of SDSS catalogs for point
sources is ∼99.3% at the bright end (r ∼ 14, where the
SDSS CCDs saturate, (Ivezić et al. 2001), and drops to
95% at magnitudes12 of 22.1, 22.4, 22.1, 21.2, and 20.3
in u, g, r, i and z, respectively. All magnitudes are given
on the ABν system (Oke & Gunn 1983, for additional
discussion regarding the SDSS photometric system see
Fukugita et al. 1996, and Fan 1999). The final survey

11 See also http://www.astro.princeton.edu/PBOOK/welcome.htm
12 These values are determined by comparing multiple scans of

the same area obtained during the commissioning year. Typical
seeing in these observations was 1.5±0.1 arcsec.

sky coverage of about 8,000 deg2 will result in photomet-
ric measurements to the above detection limits for about
80 million stars and a similar number of galaxies. As-
trometric positions are accurate to about 0.1 arcsec per
coordinate for sources brighter than r ∼20.5m (Pier et
al. 2003), and the morphological information from the
images allows robust point source-galaxy separation to
r ∼ 21.5m (Lupton et al. 2002). The SDSS photometric
accuracy is 0.02 mag (root-mean-square, at the bright
end), with well controlled tails of the error distribution
(Ivezić et al. 2003a). The absolute zero point calibration
of the SDSS photometry is accurate to within ∼ 0.02 mag
(Ivezić et al. 2004). A compendium of technical details
about SDSS can be found in Stoughton et al. (2002),
and on the SDSS web site (http://www.sdss.org).

2.2. The Photometric Parallax Method

SDSS is superior to previous optical sky surveys be-
cause of its high catalog completeness and accurate
multi-band photometry to faint flux limits over a large
sky area. The majority of stars detected by SDSS
are main-sequence stars (∼98%, Finlator et al. 2000),
which have a fairly well-defined color-luminosity rela-
tion13. Thus, accurate SDSS colors can be used to es-
timate luminosity, and hence, distance, for each individ-
ual star. While these estimates are incorrect for a small
fraction of stars such as multiple systems and non-main
sequence stars, the overall contamination is small.

There are a number of proposed photometric parallax
relations in the literature. They differ in the methodol-
ogy used to derive them (e.g. geometric parallax mea-
surements, fits to globular cluster color-magnitude se-
quences), photometric systems, and the absolute magni-
tude and metallicity range for which they are applicable.
Not all of them are mutually consistent, and all exhibit
significant intrinsic scatters of order a half a magnitude
or more.

In Fig. 1 we compare several recent photometric paral-
lax relations found in the literature. They are all based
on geometric parallax measurements, but the stellar
colors are measured in different photometric systems.
In order to facilitate comparison, we use photometric
transformations from Fukugita et al. (1996) and fits to
the stellar locus in SDSS color-color diagrams (Ivezić
et al. 2004). As evident, different photometric parallax
relations are discrepant at the level of several tenths to
a magnitude. Furthermore, the relation proposed by
Williams et al. (2002) is a piece-wise fit to restricted
color ranges, and results in a discontinuous relation. An
analysis of Kurucz model atmospheres suggests that
these discontinuities are probably unphysical (Ivezić et
al., in prep).

We constructed a fit that attempts to reconcile the
differences between these relations. We require a low-
order polynomial fit that is roughly consistent with the
two relations at the red end, and properly reproduces the
SDSS observations of the position of the turn-off (Mr = 5
at r−i = 0.10) for globular cluster M13 (using a distance

13 The uniqueness of color-luminosity relation breaks down for
stars at main sequence turn-off (r − i ∼ 0.11 mag for disk, and
r − i ∼ 0.06 for halo stars, Chen et al. 2001). Those are outside of
all but the bluest bin of the r − i range studied here.

http://www.astro.princeton.edu/PBOOK/welcome.htm
http://www.sdss.org
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of 7.1 kpc, Harris 1996). The adopted relation

Mr = 4.0 + 11.86 (r − i) − 10.74 (r − i)2 (1)

+5.99 (r − i)3 − 1.20 (r − i)4

is similar to the Williams et al., Hawley et al. and West
et al. relations at the red end, and agrees well with the
Siegel et al. relation at the blue end.

This relation is quite steep, for example, ∆Mr/∆(r −
i) ∼ 10 mag/mag at the blue end (r − i ∼ 0.1). Be-
cause of this steepness, very accurate photometry (0.01-
0.02 mag) is required to reach the intrinsic accuracy of
the photometric relation (about 0.3 mag). Older photo-
graphic surveys have photometric errors of ∼ 0.1-0.2 mag
(Sesar et al. 2005), which result in Mr errors exceeding
∼1mag. Hence, with the SDSS, the intrinsic accuracy of
the photometric parallax method can be approached to
a faint flux limit (implying a large number of stars) and
over a large sky area for the first time.

2.2.1. A Test of the Photometric Parallax Relation with
Resolved Binary Stars

The number of close stellar pairs in the SDSS survey
with distances in the range 2-4 arcsec shows an excess
relative to the extrapolation from larger distances (Sumi
et al., in prep). Statistically, ∼70% of these pairs are
physically associated binary systems. Since they typi-
cally have different r − i colors, they also have different
absolute magnitudes. The difference in absolute mag-
nitudes, ∆M , can be computed from the adopted pho-
tometric parallax relation without the knowledge of the
system’s distance, and should agree with the measured
difference of their apparent magnitudes, ∆m. The dis-
tribution of the difference, δ = ∆m − ∆M should be
centered on zero and should not be correlated with color
if the shape of photometric parallax relation is correct
(the overall normalization is not constrained, but this is
not an important issue since the relation can be anchored
at the red end using nearby stars with geometric paral-
laxes). The width of the δ distribution provides an upper
limit for the intrinsic error of the photometric parallax
method.

We have performed a preliminary test using a sample
of 87 probable binaries from a 60 deg2 large high Galactic
latitude (b = 52 deg) field with 15 < i < 18, as described
in detail by Sumi et al. The median value of δ is -0.11,
with comparable values for medians computed in 0.2 mag
wide r − i bins. This result places an upper limit on the
systematic errors as a function of color in the adopted
relation to ∼ 0.1 mag. The root-mean-square width of
δ distribution without accounting for likely interlopers
is 0.4 mag. This implies a distance error of 20%. The
distribution is more centrally peaked than a Gaussian,
which indicates that the intrinsic magnitude scatter of
the photometric parallax method is probably smaller.

2.2.2. The Pitfalls of the Photometric Parallax Method

The photometric parallax method is not without pit-
falls, even when applied to the SDSS data. Tradition-
ally, the application of this method was prone to sig-
nificant errors due to sample contamination by evolved
stars (subgiants and giants, hereafter giants for simplic-
ity), and their underestimated distances. This effect is
also present in this study, but at a much less significant

level because of the faint magnitudes probed by SDSS.
At these flux levels, the distances corresponding to gi-
ants are large and sometimes even beyond the edge of
the Galaxy (up to ∼100 kpc). The stellar density at
these distances is significantly smaller than at distances
corresponding to main sequence stars with the same ap-
parent magnitude, and thus the contamination becomes
fairly insignificant.

A quantitative illustration of this effect is shown in
Fig. 2 for a fiducial Galaxy model. The worst case sce-
nario corresponds to G giants with g − r ∼ 0.4 and
r − i ∼ 0.15, and their most probable fraction is about
5%. This color range and the fraction of giants was deter-
mined using the SDSS data for the globular cluster M13
(the data for the globular cluster Pal 5 imply similar be-
havior). To be conservative, we have also tested a model
with a twice as large fraction of giants. This analysis
(see bottom panel) shows that the effect of misidentify-
ing giants as main sequence stars is an overall bias in
estimated number density of ∼4% (∼8 % when the frac-
tion of giants is 10%), with little dependence on distance
from the Galactic plane beyond 500 pc. This is the dis-
tance range probed by stars this blue, and thus the worst
effect of contamination by giants is a small overall over-
estimate of the density normalization. Shorter distances
are probed by redder stars, M dwarfs, for which the con-
tamination by M giants is negligible because the giant –
main sequence luminosity difference is exceedingly large
(e.g. there are tens of millions of M dwarfs in our sam-
ple, while the 2MASS survey revealed only a few thou-
sand M giants in the same sky region, Majewski et al.
2003). Hence, the misidentified giants are not expected
to significantly affect our analysis. This is in agreement
with conclusions of a more detailed analysis by Siegel et
al. (2002). Since this effect is fairly small, we do not
explicitly correct for it.

Another source of systematic errors is the dependence
of photometric parallax relation on metallicity. For ex-
ample, Siegel et al. (2002) address this problem by
adopting different relations for low- and high-metallicity
stars (cf. Fig. 1). Since the SDSS photometry is not suffi-
cient to reliably estimate metallicity for all the stars con-
sidered here, we adopted a single relation. However, the
adopted relation does account for metallicity effects to
some extent. The distant (∼10 kpc) stars, with presum-
ably low metallicities, are blue and for them the adopted
relation is fit to the low-metallicity globular cluster M13.
Thus, in some loose “mean” sense, the adopted relation
smoothly varies from a relation appropriate for nearby,
red, high-metallicity stars to a relation appropriate for
more distant, blue, low-metallicity stars14. To further
control the metallicity (and other systematic) effects, we
perform analysis in narrow color bins, as described in
more detail below.

Binarity may also play a significant role by systemat-
ically making unresolved binary stars, when misidenti-
fied as a single star, appear closer then they truly are.
As discussed in detail by Siegel et al. (2002), the ef-
fect of binarity on derived distance scales, such as scale

14 When the adopted photometric parallax relation is applied to
the Sun (r−i = 0.10), the resulting absolute magnitude is too faint
by about 0.5 mag. This is an expected result, because the relation
is anchored to a low-metallicity globular cluster at the blue end.
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height and scale length, is to underestimate them by up
to ∼20%. They also show that the value of this bias is
only weakly dependent on the actual composition of the
binaries (e.g. their color difference and luminosity ra-
tio), but it is dependent on the fraction of binaries in the
Galaxy. Since this fraction is not well constrained, we
do not take this correction explicitly into account, and
thus distance scales discussed in this work are effectively
lower limits. Note that this uncertainty cannot affect
the shapes of various density features discussed below,
unless the properties of binary stars vary greatly with
the position in the Galaxy.

Perhaps more of a disadvantage, rather than a pitfall,
is the inability of this method, when applied to main se-
quence stars, to probe distances as large as those probed
by RR Lyrae and M giants (15 kpc vs. 100 kpc). How-
ever, a significant advantage of using main sequence stars
is the vastly larger number of stars (the number ratio
of main sequence to RR Lyrae stars in the SDSS sam-
ple is ∼10,000, and even larger for M giants, Ivezić et
al. 2003bc, 2005). This large number of stars allows us
to study their number density distribution with a high
spatial resolution, and without being limited by Poisson
noise.

2.3. Determination of the Stellar Number Density

In this Section we describe the stellar sample utilized
in this work, and the methods used to construct three-
dimensional number density maps.

2.3.1. The SDSS stellar sample

We utilize observations from 248 SDSS imaging runs
obtained in a 5 year period through September 2003,
which cover 6, 538 deg2 of the sky. This is a superset of
imaging runs described in SDSS Data Release 3 (Abaza-
jian et al. 2003), complemented by a number of runs
from SDSS Data Release 4 (Adelman et al. 2006) and
the so called “Orion” runs (Finkbeiner et al. 2004). The
sky coverage of these 248 runs is shown in figure 3. They
cover 5450 deg2 in the northern Galactic hemisphere, and
1088 deg2 in the south.

We start the sample selection with 122 million obser-
vations classified as point sources (stars) by the SDSS
photometric pipeline, Photo (Lupton et al. 2002, Lup-
ton et al. 2005). For a star to be included in the starting
sample, we require that r < 22, and that it is also de-
tected (above 5σ) in at least the g or i band. The latter
requirement is necessary to be able to compute either
the g − r or r − i color. The two requirements reduce
the sample to 87 million observations. For each magni-
tude measurement, Photo also provides a fairly reliable
estimate of its accuracy (Ivezić et al. 2003a), hereafter
σg, σr and σi. We correct all measurements for the in-
terstellar dust extinction using the Schlegel, Finkbeiner
& Davis (1998, SFD) maps.

2.3.2. The Effects of Errors in Interstellar Extinction
Corrections

The SFD maps are believed to be correct within 10%,
or better. This uncertainty plays only a minor role in this
work because the interstellar extinction is fairly small at
the high galactic latitudes analyzed here (|b| > 25): the
median value of the extinction in the r band, Ar, is 0.08,

with 95% of the sample with Ar < 0.23 and 99% of the
sample with Ar < 0.38. Thus, only about 5% of stars
could have extinction correction uncertain by more than
the photometric accuracy of SDSS data (∼0.02 mag).
The SFD maps do not provide the wavelength depen-
dence of the interstellar correction, only its magnitude.
The extinction corrections in the five SDSS photometric
bands are computed from the SFD maps using conver-
sion coefficients derived from an RV = 3.1 dust model.
Analysis of the position of the stellar locus in the SDSS
color-color diagrams suggests that these coefficients are
satisfactory at the level of accuracy and galactic latitudes
considered here (Ivezić et al. 2004).

We apply full SFD extinction correction to all stars in
the sample. This is inappropriate for the nearest stars
because they are not beyond all the dust. Distances to
the nearest stars in our sample, those with r − i = 1.5
(the red limit) and r ∼ 14 (approximately the SDSS r
band saturation limit), are ∼30 pc (distance determina-
tion is described in the next two sections). Even when
these stars are observed at high galactic latitudes, it is
likely that they are overcorrected for the effects of in-
terstellar extinction. To estimate at what distances this
effect becomes important, we have examined the depen-
dence of the g − r color on apparent magnitude for red
stars, selected by the condition r − i > 0.9, in the re-
gion defined by 210 < l < 240 and 25 < b < 30. The
distribution of the intrinsic g − r color for these stars is
practically independent of their r − i color, with a me-
dian of 1.40 and a standard deviation of only 0.06 mag
(Ivezić et al. 2004). This independence allows us to test
at what magnitude (i.e. distance) the applied SFD ex-
tinction corrections become an overestimate because, in
such a case, they result in g−r colors that are bluer than
the expected value of ∼ 1.40. We find that for r > 15
the median g − r color is nearly constant – it varies by
less than 0.02 mag over the 15 < r < 20 range. On
the other hand, for stars with r < 15 the median g − r
color becomes much bluer – at r = 14.5 the median value
is 1.35. This demonstrates that stars at r > 15 are al-
ready behind most of the dust column. With the median
r− i color of 1.17, the implied distance corresponding to
r = 15 is ∼80 pc. For the probed galactic latitude range,
this indicates that practically all the dust is confined to
a region within ∼70 pc from the galactic midplane (here
we define midplane as a plane parallel to the galactic
plane that has Z=-25 pc, because the Sun is offset from
the midplane towards the NGP by ∼25 pc; for more de-
tails see below). We arrive to the same conclusion about
the dust distribution when using an analogous sample in
the south galactic plane with |b| ∼ 12 (in this case the
median g − r color is systematically bluer for r < 19,
due to different projection effects and the Sun’s offset
from the midplane). Hence, in order to avoid the effects
of overestimated interstellar extinction correction for the
nearest stars, we exclude stars that are within 100 pc
from the galactic plane when fitting galaxy models (de-
scribed below). Only 0.05% of stars in the sample are at
such distances. In summary, the effects of overestimated
interstellar extinction correction, just as the effects of
sample contamination by giants, are not very important
due to the faint magnitude range probed by SDSS.

2.3.3. The Treatment of Repeated Observations
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SDSS imaging data are obtained by tracking the sky
in six parallel scanlines, each 13.5 arcmin wide. The six
scanlines from two runs are then interleaved to make a
filled stripe. Because of the scan overlaps, and because of
the convergence of the scans near the survey poles, about
40% of the northern survey is surveyed at least twice.
Additionally, the southern survey areas will be observed
dozens of times to search for variable objects and, by
stacking the frames, to push the flux limit deeper. For
these reasons, a significant fraction of measurements are
repeated observations of the same stars.

We positionally identify observations as corresponding
to the same object if they are within 1 arcsec of each
other (the median SDSS seeing in the r band is 1.4 arc-
sec). Out of the initial ∼122 million observations, the
magnitude cuts and positional matching produce a cata-
log of 47.7 million unique stars (the “star catalog”, table
1). There are two or more observations for about 36%
(17.2 million) of these stars. For stars with multiple ob-
servations we take the catalog magnitude of the star to
be equal to the weighted mean of all observations. In
this step there is a tacit assumption that the variability
is not important, justified by the main-sequence nature
of the stellar sample under consideration (for a prelimi-
nary variability analysis of the SDSS stellar sample see
Ivezić et al. 2003a).

As discussed in Section 2.2, an accurate determination
of stellar distances by photometric parallax hinges on a
good estimate of the stellar color and magnitude. In the
bottom panel of Fig. 4 we show the mean r magnitude
error of stars in the catalog as a function of the r band
magnitude. The photometric errors are ∼0.02 mag for
bright objects (limited by errors in modeling the point
spread function), and steadily increase towards the faint
end due to the photon noise. At the adopted sample
limit, r = 22, the r band photometric errors are ∼0.15
mag. The g and i band magnitude errors display similar
behavior as for the r band.

2.3.4. Maximum Likelihood Estimates of True Stellar
Colors

The photometric parallax relation (eq. 2) requires only
the knowledge of r−i color to estimate the absolute mag-
nitude. The accuracy of this estimate deteriorates at the
faint end due to increased r − i measurement error. It
also suffers for blue stars (r − i < 0.2) of all magnitudes
because the slope of the photometric parallax relation,
∆Mr/∆(r − i), is quite large at the blue end – for these
stars it would be better to use the g − r (or u − g) color
to parametrize the photometric parallax relation. On the
other hand, the g−r color is constant for stars later than
∼M0 (g − r ∼ 1.4), and cannot be used for this purpose.
These problems can be alleviated to some extent by uti-
lizing the fact that colors of main sequence stars form a
very narrow, nearly one-dimensional locus.

The r − i vs. g − r color-color diagram of stars used
in this work is shown in Fig. 5. We find that the stellar
locus is well described by the following relation:

g − r = 1.39(1 − exp[−4.9(r − i)3 (2)

−2.45(r − i)2 − 1.68(r − i) − 0.050])

which is shown by the solid line in the figure.
The intrinsic width of the stellar locus is 0.02 mag for

blue stars and 0.06 mag for red stars (Ivezić et al. 2004),

which is significantly smaller than the measurement er-
ror at the faint end. To a very good approximation, any
deviation of observed colors from the locus can be at-
tributed to photometric errors. We use this assumption
to improve estimates of true stellar colors and apparent
magnitudes.

As illustrated in Fig. 5, for each point and a given
error probability ellipse, we find a point on the locus with
the highest probability15, and adopt the corresponding
(g − r)e and (r − i)e colors. Note that the error ellipse
is not aligned with the g − r and r − i axes because
the g − r and r − i errors are correlated (cov(g − r, r −
i) = cov(g, r) + cov(g,−i) + cov(−r, r) + cov(−r,−i) =
−cov(r, r) = −σ2

r )
We exclude all points further than 0.3 mag from the

locus, as such large deviations are inconsistent with mea-
surement errors, and in most cases indicate a source that
is not a main-sequence star. This requirement effectively
removes hot white dwarfs (Kleinman et al. 2004), low-
redshift quasars (z < 2.2, Richards et al. 2001), and
white dwarf/red dwarf unresolved binaries (Smolčić et
al. 2004). The sample stars span the MK spectral range
from ∼F9 to M3 (Table 2).

Using the maximum likelihood colors, we estimate the
magnitudes (ge, re, ie) by minimizing:

χ2 =
(r − re)

2

σ2
r

+
(g − ge)

2

σ2
g

+
(i − ie)

2

σ2
i

, (3)

which results in

re =
wrr + wg(g − (g − r)e) + wi(i + (r − i)e)

wr + wg + wi

(4)

ge = (g − r)e + re (5)

ie = (r − i)e − re (6)

where wj = 1/σ2
j for j = g, r, i.

The adopted (r − i)e color and re magnitude uniquely
determine (through eq. 2) the absolute magnitude Mr for
each star in the catalog. We dub this procedure a “locus
projection” method, and refer to the derived colors as
“locus-projected colors”. In all subsequent calculations
we use these “locus-projected” colors, unless explicitly
stated otherwise. This method not only improves the
color estimates at the faint end, but also helps with de-
biasing the estimate of density normalization. We further
discuss this and other aspects of the locus projection in
Appendix A.

2.3.5. The Distance Estimates

Given the photometric parallax relation (eq.2), the
locus-projected maximum likelihood r band magnitude,
and r − i color, it is straightforward to determine the
distance D to each star in the catalog using

D = 100.2(r−Mr) 10 pc, (7)

15 This is effectively a Bayesian maximum likelihood (ML) pro-
cedure with the assumption of a uniform prior along the one-
dimensional locus. As seen from from Fig 5, the real prior is not
uniform. We have tested the effects of non-uniform priors. Adopt-
ing an observationally determined (from Fig 5) non-uniform prior
would change the locii of posterior maxima by only ∼ 0.005 mag
(worst case), while further complicating the ML procedure, which
is why we retain the assumption of uniform prior.
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Depending on color, for the magnitude range probed by
SDSS (r=14–22) the distance varies from ∼100 pc to ∼15
kpc.

Due to photometric errors in color, magnitude, and the
intrinsic scatter of the photometric paralax relation, the
distance estimate has an uncertainty, σD, given by:

σ2
Mr

= (
∂Mr

∂(r − i)
)2σ2

r−i + σ2
Mr,i

(8)

σ2
D = (

∂D

∂Mr

)2σ2
Mr

+ (
∂D

∂r
)2σ2

r (9)

where σMr,i
is the intrinsic scatter in the photometric

parallax relation. With an assumption of σ2
r−i ≈ 2σ2

r ,
this reduces to a simpler form:

σD

D
= 0.46

√

(1 + 2 (
∂Mr

∂(r − i)
)2)σ2

r + σ2
Mr,i

(10)

The fractional distance error, σD/D, is a function of
color, apparent magnitude and magnitude error (which
itself is a function of apparent magnitude). In the top
panel in figure 4 we show the expected σD/D as a func-
tion of r and r− i with an assumed intrinsic photometric
relation scatter of σMr,i

= 0.3 mag. This figure is a
handy reference for estimating the distance accuracy at
any location in the density maps we shall introduce in
Section 2.4. For example, a star with r − i = 0.5 and
r = 20 (or, using eq. 2, at a distance of D = 2.5 kpc) has
a ∼18% distance uncertainty. Equivalently, when the
stars are binned to three-dimensional grids to produce
density maps (Section 2.4), this uncertainty gives rise to
a nearly Gaussian radial “smearing function” with color
and distance dependent variance σD.

To summarize, due to measurement errors, and errors
in the adopted photometric parallax relation, the derived
density maps, described below, will be different from
the true stellar distribution. First, the spatial resolu-
tion is smeared due to just described random distance
errors. Second, the distance scale has systematic errors,
probably color and metallicity dependent, that “stretch
or shrink” the density maps. In addition, for a small
fraction of stars, the distance estimates may be grossly
incorrect due to contamination by giants and multiple
unresolved systems. Thus, all quantitative results, such
as best-fit model parameters, should not be trusted to
better than 10-20%. Nevertheless, these errors are suf-
ficiently small that the maps fidelity is fairly well pre-
served, and they are a powerful tool for studying the
Milky Way’s stellar number density distribution.

2.4. The Construction of the Density Maps

The distance, estimated as described above, and the
Galactic longitude and latitude, (l, b), fully determine the
three-dimensional coordinates of each star in the sample.
We first divide our star catalog into 19 bins in r − i
color16:

ri0 < r − i < ri1 (11)

Typically, the width of the color bins ∆ri ≡ ri1 − ri0 is
∆ri = 0.1 for bins redder than r−i = 0.7 and ∆ri = 0.05

16 To avoid excessive usage of parenthesis, we sometimes drop
the minus sign when referring to the colors (e.g. g − r ≡ gr or
(r − i)1 ≡ ri1).

otherwise. ri0 and ri1 for each color bin are given in the
second column of table 2. This is roughly equivalent to a
selection by MK spectral type (Covey et al. 2005). The
range of spectral types corresponding to each r− i bin is
given in SpT column of table 2.

The analysis of individual narrow color bins, as op-
posed to the whole sample, allows a better control of
various systematic errors and selection effects. In partic-
ular, for each color bin we calculate the minimum and
maximum observable distance, Dmin and Dmax, which
define a volume limited sample,

Dmin = 100.2(rmin−Mr) 10 pc, (12)

Dmax = 100.2(rmax−Mr) 10 pc, (13)

Here rmin = 15 and rmax = 21.5 are adopted as bright
and faint magnitude limits (SDSS detectors saturate at
r ∼ 14). Note that for each color bin Dmax/Dmin ∼20,
and for the full sample Dmax/Dmin ∼150.

We define the “Cartesian Galactocentric coordinate
system” by the following set of coordinate transforma-
tions:

x = R⊙ − D cos(l) cos(b) (14)

y = −D sin(l) cos(b) (15)

z = D sin(b) (16)

where R⊙ = 8 kpc is the adopted distance to the Galactic
center (Reid 1993).

The choice of the coordinate system is motivated by
the expectation of cylindrical symmetry around the axis
of Galactic rotation ẑ, and mirror symmetry of Galactic
properties with respect to the Galactic plane. Its (x, y)
origin is at the Galactic center, the x̂ axis points towards
the Earth, and the ẑ axis points towards the north Galac-
tic pole. The ŷ = ẑ × x̂ axis is defined so as to keep the
system right handed. The x̂ − ŷ plane is parallel to the
plane of the Galaxy, and the z = 0 plane contains the
Sun. The Galaxy rotates clockwise around the ẑ axis
(the rotational velocity of the Sun is in the direction of
the −ŷ axis).

We bin the stars onto a three dimensional rectangu-
lar grid in these coordinates. The choice of grid pixel
size is driven by compromise between two competing re-
quirements: keeping the Poisson noise in each pixel at
a reasonable level, while simultaneously avoiding over-
binning (and related information loss) in high-density
regions of the maps. By manual trial-and-error of a few
different pixel sizes, we come to a size (for each color bin)
which satisfies both requirements. The pixel sizes used
are listed in table 2. For bins with r− i > 0.3 the median
number of stars per pixel is ∼ 10, growing to ∼ 30 for
the bluest r − i bin.

For each volume limited (ri0, ri1) color bin sample,
this results in a three-dimensional data cube, a map,
of observed stars with each (x, y, z) pixel value equal to
the number of stars observed in (x − dx/2, x + dx/2),
(y − dx/2, y + dx/2), (z − dx/2, z + dx/2) interval.

Not all of the pixels in the maps have had their volume
fully sampled by the SDSS survey. This is especially true
near the edges of the survey volume, and at places where
there are holes in the footprint of the survey (cf. figure
3). In order to convert the number of stars observed in
a particular pixel (x, y, z) to density, we must know the
fraction of pixel volume that was actually sampled by the
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survey. Although simple in principle, the problem of ac-
curately binning the surveyed volume becomes nontrivial
due to overlap of observing runs, complicated geometry
of the survey, and the large survey area. We solve it by
shooting a dense, horizontal, rectangular grid of verti-
cal (xr = const, yr = const) rays through the observed
volume, with horizontal spacing of rays dxr being much
smaller than the pixel size dx (typically, dxr/dx = 0.1).
For each ray, we calculate the intervals in z coordinate in
which it intersects each imaging run (”ray-run intersec-
tions”). Since imaging runs are bounded by simple ge-
ometric shapes (cones, spheres and planes), the ray-run
intersection calculation can be done almost completely
analytically, with the only numerical part being the com-
putation of roots of a 4th order polynomial. For each ray,
the union of all ray-run intersections is the set of intervals
in space ([z0, z1), [z2, z3), [z4, z5), ...) at a given column
(xr, yr) which were sampled by the survey. It is then a
simple matter to bin such interval sets in ẑ direction, and
assign their parts to pixels through which they passed.
Then, by approximating that the ray sweeps a small but
finite area dx2

r , the survey volume swept by the ray con-
tributing to pixel (x, y, z) is simply dx2

r times the length
of the ray interval(s) within the pixel. By densely cover-
ing all of the (x, y) plane with rays, we eventually sweep
the complete volume of the survey and partition between
all of the (x, y, z) pixels. This ray-tracing method is very
general and can handle any survey geometry in any orien-
tation, as long as the survey geometry can be represented
by a set of runs along great circles. Using this approach,
we compute the volume observed within each pixel with
an accuracy of one part in 103.

In summary, for each of the 19 r− i color bins, we have
a three-dimensional map with each (x, y, z) pixel holding
the number of observed stars (N) and the observed vol-
ume (V ). We estimate the number density in any given
pixel within a map by

ρ(x, y, z) =
N(x, y, z)

V (x, y, z)
. (17)

The shot noise induced error in density estimate is com-
puted as

σρ(x, y, z) =

√

N(x, y, z)

V (x, y, z)
(18)

For each pixel we also track additional auxiliary in-
formation (e.g. a list of all contributing SDSS runs),
mainly for quality assurance and detailed a posteriori
analysis.

3. ANALYSIS OF THE STELLAR NUMBER DENSITY
MAPS

The r − i color range spanned by the 19 color bins
(0.10–1.40) probes a large distance range. As the bin
color is varied from the reddest to the bluest, the
subsamples cover distances ranging from 100 pc to
15 kpc. In this Section we analyze these 19 stellar
number density maps constructed as described above.
We first present a qualitative survey of the various map
cross-sections, and then proceed with a quantitative
description within the context of “standard” Galactic
models.

3.1. A Qualitative Survey of the Number Density Maps

3.1.1. The Number Density Maps in the R − Z Plane

We first analyze the behavior of two-dimensional maps

in the R − Z plane, where R =
√

x2 + y2 and Z = z
are the galactocentric cylindrical coordinates. Assuming
that the Galaxy is circularly symmetric (we critically ex-
amine this assumption below), we construct these maps
from the three-dimensional maps by taking a weighted
mean of all the values for a given Z − R pixel (i.e. we
average over the galactocentric polar angle φ). We show
a subset of these maps in Fig. 6. They bracket the ana-
lyzed r − i range; the remaining maps represent smooth
interpolations of the displayed behavior.

The bottom two panels in Fig. 6 correspond to the red-
dest bins, and thus to the Solar neighborhood within ∼ 1
kpc. They show a striking simplicity in good agreement
with a double exponential disk model:

ρ(R, Z) = ρ(R⊙, 0) exp

(

−
R − R⊙

L

)

exp

(

−
|Z + Z⊙|

H

)

.

(19)
Here ρ is the number density of disk stars, R⊙ and Z⊙

are the cylindrical coordinates of the Sun, and L and H
are the exponential scale length and scale height, respec-
tively. This model predicts that the isodensity contours
have the linear form

|Z + Z⊙| = C −
H

L
R, (20)

where C is an arbitrary constant, a feature that is in
good agreement with the data.

As the bin color becomes bluer (the middle and top
panels), and probed distances larger, the agreement with
this simple model worsens. First, the isodensity contours
become curved and it appears that the disk flares for R >
14 kpc. Further, as we discuss below, the Z dependence
deviates significantly from the single exponential given
by eq. 19, and additional components are required to
explain the Z dependence displayed by the data.

We test whether the number density maps are circu-
larly symmetric by examining isodensity contours on a
cylindrical surface at R = R⊙ kpc. Fig. 7 shows such
projections for two color bins, where we plot the depen-
dence of isodensity contours on galactocentric azimuth φ,
and distance from the plane Z. In case of circular sym-
metry, the contours would be horizontal. The top panel
shows the isodensity contours for the 1.0 < r − i < 1.1
color bin, which (in terms of this plot) is representative
of all bins redder than r − i ≥ 0.35 mag. The contours
are horizontal, and the number density maps are indeed
approximately circularly symmetric. However, for bins
r − i < 0.35 mag, detectable deviations from circular
symmetry do exist, especially at large distances from the
Galactic plane (a few kpc and beyond). We show an
example of this in the bottom panel, where there is a
slight upturn of the isodensity contour at Z ∼10,000 and
φ ∼ 40 deg, indicating the presence of an overdensity.
We will discuss such overdensities in more detail in the
following section.

3.1.2. The X − Y Cross-sections of the 3-dimensional
Number Density Maps

Instead of contracting the three-dimensional maps by
taking the mean of all the values for a given Z −R pixel,
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two-dimensional analysis can be based on simple cross-
sections parallel to an appropriately chosen plane. A
convenient choice is to study the X − Y cross-sections
that are parallel to the Galactic plane. A series of such
projections for the bluest color bin is shown in Figs. 8–10.
Their outlines are determined by the data availability. In
particular, the gap between the two largest data regions
will be eventually filled in as more SDSS imaging data
becomes available17.

An unexpected large overdensity feature is easily dis-
cernible in all six panels in Fig. 8. In all standard Galaxy
models, the stellar density in the upper half should mir-
ror the bottom half (Y < 0), and in most models den-
sity depends only on the distance from the center of the
Galaxy (each annulus enclosed by two successive circles
should have roughly a single color). In contrast, the ob-
served density map, with a strong local maximum offset
from the center, is markedly different from these model
predictions. This is the same feature that is responsible
for the structure visible at Z ∼10 kpc and R ∼5 kpc
in the top left panel in Fig. 6, and for the upturn of
the isodensity contour at Z ∼10,000 and φ ∼ 40 in in
the bottom panel in Fig. 7. We discuss this remarkable
feature in more detail in Section 4.

The top three panels (Z=3-5 kpc) in Fig. 9 clearly show
another local overdensity at R ∼ 16 kpc and Y ∼ 0. This
is the “Monoceros Stream” discovered by Newberg et al.
(2002) using a subset of the data analyzed here (this over-
density is also discernible in the top left panel in Fig. 6
at R ∼ 16 kpc and Z ∼ 3.5 kpc). The maps discussed
here suggest that the stream is well localized in the ra-
dial direction with a width of ∼ 3 kpc. This well-defined
width rules out the hypothesis that this overdensity is
due to disk flaring. An alternative hypothesis of a “ring”
around the Galaxy, proposed by Ibata et al. (2003), was
questioned by Rocha-Pinto et al. (2003). They analyzed
2MASS M giants and concluded that this structure is not
a homogeneously dense ring that surrounds the Galaxy
but possibly a merging dwarf galaxy with tidal arms.
The inhomogeneity of the stream apparent in top three
panels of Fig. 9, as well as R = const. projections of
these maps, support the conclusions by Rocha-Pinto et
al.

Closer to the plane, at distances less than about 1 kpc,
the number density maps typically become smoother and
less asymmetric, with deviations from a simple exponen-
tial model given by eq. 19 not exceeding 30-40% (mea-
sured upper limit). This is true of all color bins for which
region closer than ∼ 1 kpc is well sampled, and is shown
in Fig. 10 for 1.0 < r − i < 1.1 color bin.

3.2. A Quantitative Interpretation of the Number
Density Maps

Traditionally, the stellar distribution of the Milky Way
has been decomposed into several components: the thin
and thick disks, the central bulge, and a much more ex-
tended and tenuous halo. While it is clear from the pre-
ceding discussion that there are a number of overdensities
that rule out this simplistic model, the dynamic range of
the number density variation in the Galaxy (orders of
magnitude) is large compared to the local density excess

17 This region of the sky has already been imaged, and will be a
part of SDSS Data Release 5 projected to be released in July 2006.

due to those features (a factor of few). Hence, it should
still be possible to capture the overall density variation
using simple models, and here we attempt to analyze
the number density maps using exponential disks and
power-law elliptical halos. Before attempting a full com-
plex multi-parameter fits to the overall number density
distribution, we perform a simple quantitative analysis of
the density variation in the radial (R) and vertical (Z)
directions. We do this type of analysis to get a better
understanding of what types of models are at all com-
patible with the data, and to obtain the starting values
of parameters for global multi-parameter fits.

3.2.1. The Thin and Thick Disks Plus Elliptical Halo
Models

The qualitative analysis of the number density maps
from the preceding section, as well as a quantitative anal-
ysis of the density variation in the radial R and vertical
Z directions described further below, suggest that the
gross behavior can be captured by assuming “standard”
Galaxy models. Such models are typically based on two
exponential disks and a power-law elliptical halo. Fol-
lowing earlier work (see e.g. Majewski 1993, Siegel et
al. 2002, Chen et al. 2002), we assume that the overall
number density is the sum of disk and halo contributions

ρ(R, Z) = ρD(R, Z) + ρH(R, Z). (21)

We ignore the bulge contribution because the maps an-
alyzed here only cover regions more than 3-4 kpc from
the Galactic center, where the bulge contribution is neg-
ligible compared to the disk and halo contributions (for
plausible bulge parameters determined using IRAS data
for asymptotic giant stars, see e.g. Jackson, Ivezić &
Knapp 2002).

The disk is modeled as a sum of two exponential com-
ponents, allowing for different scale lengths and heights:

ρD(R, Z) = ρD(R, Z; L1, H1) + ǫDρD(R, Z; L2, H2)
(22)

where

ρD(R, Z; L, H) = ρD(R⊙, 0) exp(−
R − R⊙

L
−

|Z + Z⊙|

H
)

(23)
Here H1, H2 and L1 and L2 are the scale heights and
lengths for the thin and thick disk, respectively, ǫD is the
thick disk normalization relative to the thin disk at (R =
R⊙, Z = 0), and Z⊙ is the Solar offset from the Galactic
plane. From previous work, typical best-fit values are
H1 ∼300 pc, H2 ∼1-2 kpc, ǫD ∼1-10% and Z⊙ ∼10-50 pc
(e.g. Siegel et al. 2002, table 1). We also explored models
with the same scale length for the two disk components,
that is a linear function of the distance from the Galactic
plane.

The halo is modeled as a two-axial power-law ellipsoid

ρH(R, Z) = ρD(R⊙, 0) ǫH

(

R⊙
√

R2 + (Z/qH)2

)α

. (24)

Here parameter qH controls the halo ellipticity, with the
ellipsoid described by axes a = b and c = qH a. For
qH < 1 the halo is oblate, that is, “squashed” in the
same sense as the disk. The halo normalization relative
to the thin disk at (R = R⊙, Z = 0) is specified by ǫH .
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From previous work, typical best-fit values are α ∼2.5-
3.0, ǫH ∼ 10−3 and qH ∼ 0.5 − 1.

Even with this minimalistic model, there are still as
many as ten free parameters. It is not easy to assess the
uniqueness of a best-fit model, nor to understand inter-
play between the fitted parameters. As an illuminating
example of fitting degeneracies, we show in Fig. 11 den-
sity distributions for two significantly different models:
a thin plus thick disk model without a halo, and a single
disk plus halo model. Despite this fundamental intrinsic
difference, it is possible to fine-tune the model param-
eters to produce nearly identical Z dependence of the
density profiles at R = 8 kpc. An immediate conclusion
is that pencil beam surveys with a limited sky coverage
cannot break such model degeneracies. As shown in the
bottom panel, significant differences between these two
models are only discernible at |Z| > 3 kpc and R signif-
icantly different from 8 kpc.

Similarly, even when the halo is postulated to exist,
Fig. 12 shows that there are severe degeneracies in the
best-fit parameters. The large sky area observed by the
SDSS can alleviate some of these degeneracies, but not
all. For example, the regions with large Z, where it is
easy to distinguish various thick disk and halo models,
are “contaminated” by large irregular overdensities. In
order to assess the plausibility of the adopted Galaxy
model, we first examine the density variation in the radial
R and vertical Z directions for several characteristic lines
of sight.

3.2.2. The Z-dependence of the Number Density

Fig. 13 shows the stellar number density for several
color bins as a function of the distance from the Galactic
plane, Z, at R = R⊙. The behavior for red bins, which
probe the heights from 50 pc to ∼1 kpc, is shown in
the top panel. They are all well fit by an exponential
distribution18 with a scale height of 270 pc19. While the
absolute value of this scale height is uncertain to at least
10% (due to possible systematic errors in the adopted
photometric parallax relation), it is encouraging that the
same value applies to all the bins. This indicates that the
slope of the adopted photometric parallax relation is not
greatly incorrect at the red end.

The extrapolations of the best exponential fits for Z <
0 and Z > 0 to small values of |Z| cross at Z = (24 ± 5)
pc. This is the well-known Solar offset from the Galac-
tic plane towards the north Galactic pole (e.g. Reid &
Majewski 1993), which is here determined essentially di-
rectly using a few orders of magnitude greater number of
stars (several million). The quoted uncertainty is deter-
mined by simply assuming a 20% systematic uncertainty
in the adopted distance scale, and does not imply a Gaus-
sian error distribution (the formal random fitting error
is much smaller than 1 pc).

By selecting bluer bins, the Z dependence of the num-

18 Sometimes the sech2 function is used instead of exponential
dependence. The latter function provides a significantly better de-
scription of the data than the former. For example, the exponential
distribution is a good fit all the way towards the plane to 1/6 or
so of the scale height, where the sech2 function would exhibit sig-
nificant curvature in the ln(ρ) vs. Z plot.

19 This is the scale height as fitted directly on the data, without
accounting for the Malmquist bias. The Malmquist corrected scale
height is 280pc (see Eqs. 30)

ber density can be studied beyond 1 kpc, as illustrated in
the middle panel. At these distances the number density
clearly deviates from a single ∼270 pc disk model. The
excess of stars at distances beyond 1 kpc, compared to
this model, is usually interpreted as evidence for another
disk component, the thick disk. The data shown in the
middle panel in Fig. 13 provide robust constraint on the
thick disk parameters because of a large dynamic range
of distances and a large number of stars. We later show
that the thick-to-thin disk scale height ratio is 4.3, with
an uncertainty of less than about 10%. The normaliza-
tion of the thick disk, relative to the thin disk, is 0.04,
with an uncertainty of about ±0.015. These parameters
may be somewhat biased because the fits do not include
the halo component.

The need for yet another, presumably halo, compo-
nent, is discernible in the bottom panel in Fig. 13, which
shows the number density for the bluest color bin. The
data show that beyond 3-4 kpc even the thick disk com-
ponent underpredicts the observed counts. The observa-
tions can be explained by adding a power-law halo com-
ponent such as described by eq. 24.

Although the density profiles shown in Fig. 13 are de-
termined with high signal-to-noise ratios, it is somewhat
disturbing that multiple components are introduced to
explain the data, especially since they are simply phe-
nomenological descriptions without a firm physical basis.
Could it be that, for example, the thick disk component
is an artifact of interplay between the thin disk and halo?

We address this question by exploiting the fact that
halo stars have lower metallicities than disk stars by
about 1-2 dex. Such a large difference in metallicity af-
fects the u − g color of turn-off stars. An analysis of
SDSS colors for Kurucz model atmospheres (Ivezić et al.,
in prep.) suggests that stars at the tip of the stellar locus
with 0.7 < u − g . 1 necessarily have metallicities lower
than about −1.5. These stars also have markedly dif-
ferent kinematics further supporting the claim that they
are halo stars (Bond et al., in prep.).

We select two subsamples of stars from the 0.10 <
r − i < 0.15 color bin: low metallicity halo stars with
0.60 < u− g < 0.95, and high metallicity disk stars with
0.95 < u−g < 1.15. This separation is of course only ap-
proximate and significant mixing is expected both at the
faint end (disk stars contaminated by the more numer-
ous halo stars) and at the bright end (halo stars contam-
inated by the more numerous disk stars). Nevertheless,
the density profiles for these two subsamples, shown in
Fig. 14, are clearly different. In particular, the disk pro-
file is much steeper, and dominates for Z . 3 kpc, while
the halo profile takes over at larger distances from the
Galactic plane. This behavior suggests that the multi-
ple components visible in the bottom panel in Fig. 13
are not an over-interpretation of the data. In addition
to supporting a separate low-metallicity halo component,
this test shows that a single exponential disk model is in-
sufficient to explain the density profile of high-metallicity
stars.

With only the data presented here, one could argue
that the thin vs. thick separation is simply a conse-
quence of our attempt to describe the density profile by
simple analytic functions. However, there is independent
evidence that the two disks are indeed separate Galaxy
components, such as the difference in their metallicity
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distributions (e.g. Bensby et al. 2005 for the Milky Way,
and Seth, Dalcanton & deJong 2005 for external galax-
ies) or the difference in kinematics (e.g. Parker et al.
2004 and references therein).

3.2.3. The R-dependence of the Number Density

We analyze the dependence of number density on
the (cylindrical) distance from the Galactic center in
Figs. 15, 16 and 17. Each figure shows the number den-
sity as a function of R for a given r− i color bin at differ-
ent heights above the Galactic plane. For red bins, which
probe the Solar neighborhood within ∼1 kpc, the den-
sity profiles are approximately exponential (i.e. straight
lines in ln(ρ) vs. R plot, see Fig. 15). The exponential
scale length seems to increase with the distance from the
Galactic plane, but due to the small baseline this varia-
tion is not strongly constrained. Indeed, the scale length
itself is not well determined, with plausible values around
3.5 kpc and an uncertainty of at least 30%.

At distances from the Galactic plane exceeding 1-2 kpc,
the exponential radial dependence is a fairly poor fit to
the observed density profile (Fig. 16). It appears that
the main source of discrepancies are several overdensities
mentioned in the preceeding sections. In particular, the
Monoceros stream is particularly prominent at Z ∼2-8
kpc, especially when the density profiles are extracted
only for |Y | < 1 kpc slice (Fig. 17).

3.2.4. Global Galactic Model Fits

As is evident from the preceding discussion, the global
fitting of models described by eqs. 21–24 will be biased
by various overdensities so the best-fit results have to be
constructed and interpreted with caution. Despite the
difficulties, we were able to obtain satisfactory model fits
for the disk components of the Galaxy, and by subse-
quent subtraction from the data, to reveal lower-level
overdensities that were not easily detectable otherwise.

To obtain a reliable global fit we begin by excluding the
regions where obvious localized deviations exist. The ex-
cluded regions are shown in figure 18. We exclude the
newly found large overdensity discernible in Fig. 8 (the
“Virgo overdensity”) by masking the pixels that simul-
taneously satisfy:

sin(30◦)(X − 8 kpc) − cos(30◦)Y < 0

sin(120◦)X − cos(120◦)Y > 0 (25)

(X − 8 kpc)2 + Y 2 + Z2 > (2.5 kpc)2 (26)

The third condition is to exclude from the cut the pixels
closer than 2.5kpc to the Sun, as those are uncontami-
nated by the overdensity. The region excluded by eqs. 25
is shown bounded by the rectangle in top panel of figure
18. The Monoceros stream is approximately parallel to
the plane of the galaxy and located at a constant galac-
tocentric radius. We exclude it by masking all pixels that
satisfy either of the two conditions:

13 kpc < R < 19 kpc ∧ 0 < Z < 5 kpc (27)

16 kpc < R < 19 kpc ∧ 0 < Z < 7 kpc (28)

which corresponds to the region bounded by the white
polygon in the bottom panel in Fig. 18.

The remaining pixels are averaged over the galactocen-
tric polar angle φ, to produce the equivalent of (R, Z)

maps shown in fig. 6. We show all 19 “cleaned up”
maps in figure 19. The contours denote the locations of
constant density. The gray areas show the regions with
available SDSS data. Compared to Fig. 6, the constant
density contours are much more regular, and the effect
of the Virgo overdensity is largely suppressed. The reg-
ularity of the density distribution is particularly striking
for redder bins (e.g., for r − i > 0.7). In the bluest bin
(0.10 < r− i < 0.15), there is a marked departure from a
smooth profile in the top left part of the sampled region.
This is the area of the (R, Z) plane where the pixels that
are sampled far apart in (X, Y, Z) space map into adja-
cent pixels in (R, Z) space. Either deviations from axial
symmetry or small errors in photometric parallax rela-
tion can lead to deviations of this kind. Unfortunately,
which one of the two it is, is impossible to disentangle
with the data at hand.

We begin the modeling by fitting a single exponential
disk to the three reddest color bins to find the value of the
Solar offset Z⊙ and disk normalization ρD(R = R⊙, Z =
0). To avoid contamination by the thick disk, we only
use the pixels with |Z| < 500pc, and to avoid effects
of overestimated interstellar extinction correction for the
nearest stars (Section 2.3.2), we further exclude pixels
with |Z| < 100. In all three bins we obtain the same
best fit value of the Solar offset:

Z⊙ = (24 ± 5) pc (29)

The quoted uncertainty is determined by simply assum-
ing a 20% systematic uncertainty in the adopted distance
scale, and does not imply a Gaussian error distribution
(the formal random fitting error is much smaller than 1
pc). The value of the Solar offset we obtain is in very
good agreement with recent independent measurements
(Z⊙ = (27.5± 6) pc, Chen et al. 1999; Z⊙ = (27± 4) pc,
Chen et al. 2001; (24.2 ± 1.7) pc obtained from trigono-
metric Hipparcos data by Máız-Apellániz 2001). Keeping
the value of the Solar offset and density normalization
fixed, using the standard Levenberg-Marquardt nonlinar
fit procedure, we simultaneously fit all of the remaining
free parameters in eq. 22 (L1, L2, H1, H2 and ǫD) in the
four reddest color bins (r − i ≥ 1.0). To account for the
effects of Malmquist bias (Teerikorpi 1997), we generate
Monte Carlo simulations of the data within the survey
area and flux limits, and put it through the same fitting
procedure. We assume that the intrinsic scatter in the
photometric paralax relation is the dominant contributor
to error in distance estimate, and take it to follow a Gaus-
sian distribution with with σMr,i

= 0.3 mag when con-
verting the magnitudes of simulated stars to distances.
We vary the simulated model parameters until the fitted
model parameters of the simulation are equal to the fit-
ted model parameters of the data. The fits (corrected
for Malmquist bias as described above) rapidly converge
to:

H1 = (280 ± 10) pc (30)

L1 = (2400 ± 200) pc (31)

H2 = (1200 ± 50) pc (32)

L2 = (3500 ± 1000) pc (33)

ǫD = 0.04 ± 0.015 (34)

The solution is the mean of the best-fit values obtained in
the four bins, and the quoted uncertainty is the variance
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between them. Residual maps for fits in these four bins
show very small residuals and little or no structure (see
the bottom two rows in Fig. 20). Reduced χ2 values for
the fits are in the 1.5 − 2.3 range.

Obtaining good disk fits for maps of stars bluer than
r − i = 1.0 becomes exceedingly difficult due to an in-
creasingly large influence of the stellar halo for |Z| > 3
kpc, and small, previously unnoticed, deviations from
a smooth density profile. The panels in Fig. 20 illus-
trate fitting results for four color bins where the influ-
ence of the halo and localized features is the largest. The
columns, from left to right, show the data, the model and
the residuals. The bottom three rows are results of fit-
ting a disk-only model, while the top row also includes a
fit for the halo.

While the best-fit models appear to be in qualitatively
good agreement with the data, the residual maps show
some localized features. The most prominent feature is
found at practically the same position (R ∼6.5 kpc and
Z ∼ 1.5 kpc) for all color bins, and in figure 20 is the most
prominent in the top right panel. Since the apparent
(and absolute) magnitudes of stars in this feature vary
by ∼3.5 mag from the bluest to the reddest color bin, this
consistency suggests that the adopted photometric par-
allax relation doesn’t have large systematic errors. The
feature itself is not symmetric with respect to the Galac-
tic plane, though a weaker counterpart seems to exist at
Z < 0. Another smaller overdensity is noticeable in all
but the reddest Data-Model panel of figure 20 at R ∼ 9
kpc and Z ∼ 0.8 kpc, apparently extending for ∼1 kpc
in the radial direction.

For even bluer color bins the probed distance range
is larger and the halo component plays an important
role. Because of the Monoceros and Virgo overdensities,
the best-fit halo parameters are probably biased. Never-
theless, it is possible to derive some robust conclusions
about the halo properties. Fig. 21 shows residual maps
for the bluest color bin and for four different halo mod-
els, with the thin and thick disk parameters kept fixed
at values determined using redder bins (eqs. 30-34). The
Monoceros and Virgo overdensities, and the overdensity
at R ∼6.5 kpc and Z ∼ 1.5 kpc, are clearly evident, but
their detailed properties significantly depend on the par-
ticular halo model subtracted from the data. It appears
that the halo power-law index is only weakly constrained
to be between 2 and 3. We also find that a power-law halo
model always over- or underestimates the stellar counts
in the far outer halo, suggesting the use of a different
profile may be more appropriate. However, no matter
what the exact shape of the profile or the power law
index is, only significantly oblate halos with qH ∼ 0.5
provide good fits to the data (compare the top two pan-
els in Fig. 21). The formal best-fit halo parameters for
data shown in figure 21 are α = 2.3, qH = 0.45, and
ǫH=0.001.

We emphasize that these halo models, especially the
best-fit values of the power law index and the normal-
ization, should be interpreted with caution because the
analyzed data set is insufficient to fully mask various
overdensities. The currently unprocessed SDSS observa-
tions taken after September 2003 cover a larger area, and
their analysis, including an attempt to explicitly model
the most significant overdensities, will be presented in a
subsequent paper.

4. THE VIRGO OVERDENSITY

As briefly discussed in Section 3.1.2, the X−Y projec-
tions of the number density maps at the heights above 5
kpc from the Galactic plane show a strong deviation from
expected circular symmetry. In this Section we explore
this remarkable feature in more detail. We refer to this
feature as “the Virgo overdensity” because the highest
detected overdensity is in the direction of constellation
Virgo.

4.1. The Extent and Profile of the Virgo overdensity

To quantify the extent and profile of the Virgo overden-
sity, we only consider the data in the region that passes
through the Galactic center, and is rotated φ = 30◦

clockwise around the ẑ axis (see Fig. 8). In the top left
panel in Fig. 22 we show the projection of the corre-
sponding number density map in the Z vs. R plane for
the bluest color bin. Isodensity contours show a signif-
icant deviation from a monotonic decrease with R, ex-
pected for a cylindrically symmetric Galaxy. Instead,
the contours indicate the existence of an overdense region
around R ∼ 7-8 kpc and Z ∼10 kpc. The radial density
profiles for several heights above the Galactic plane are
shown in Fig. 23. As discernible from the figure, the
Virgo overdensity is responsible for at least a factor of 2
number density excess when Z > 10 kpc.

In order to further quantify this feature, we subtract
a Galaxy model from the data shown in the top panel
in Fig. 22. We fit a model described by eqs. 21–24 to
the part of the observed map with Y < 0. As suggested
by Fig. 8, this region does not seem significantly affected
by the Virgo overdensity. The ratio of the observed map
and the best-fit model is shown in the top right panel
in Fig. 22. The data-to-model ratio map shows with
much more detail the extent and location of the Virgo
overdensity. There is a significant excess (up to a factor
of 3) over the entire sampled Z range (5 < Z/kpc < 15).

The importance of the Virgo overdensity, relative to
the smooth Milky Way background, increases with Z.
This increase is due to the fast decrease of the Milky
Way number density with Z, which causes the ratio of
the two components to increase with Z. However, the
number density of the Virgo feature increases towards the
Galactic plane, as shown in the bottom panels in Fig. 22.
Because no local maximum is detected as Z approaches
the data region boundary at Z = 5 kpc, the true vertical
(Z) extent of the overdensity cannot be quantified with
the currently available data. It is possible that it extends
all the way into the Galactic plane and, if it is a merging
galaxy or stream, perhaps even to the southern Galactic
hemisphere.

In the radial direction, the Virgo overdensity is de-
tected in the 2.5 < R/kpc < 12.5 region. The thickness
of the overdensity in the direction perpendicular to the
plane of the image in Fig. 22 (the “Y ′” direction) is not
less than 5 kpc. As in the case of the Z direction, the
true extent remains unknown because of the current data
availability. Note that the size of the overdensity as seen
in the maps in the direction of the line of sight towards
the Sun, is a combination of true size and the smearing
induced by the photometric measurement and paralax
errors (Fig. 4), and could therefore be an overestimate
on the order of 20-25%.
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The bottom two panels of figure 22 attempt to visualize
the morphology of the Virgo overdensity. The number
density in this feature decreases with the height from the
Galactic plane. The position of the maximum density
moves from R ∼6 kpc at Z = 5 kpc to R ∼7 kpc at
Z = 15 kpc. The width (“full-width at half density”)
decreases by a factor of ∼ 2 as Z increases from 5 to 15
kpc. While not a definitive proof, these properties are
consistent with a merging galaxy or stream.

4.2. Direct Verification of the Virgo Overdensity

Significant data processing was required to produce
maps such as the one revealing the Virgo overdensity
(e.g. the top left panel in Fig. 22). In order to test and
examine this find in a more direct, and presumably more
robust, way, we examine the Hess diagrams constructed
for the region of the sky that includes the maximum over-
density, and for a control region that appears unaffected
by the Virgo feature. The boundaries of these two re-
gions, which are symmetric with respect to the l = 0
line, the corresponding Hess diagrams, and their differ-
ence, are shown in Fig. 24.

The top left panel of Fig. 24 shows the northern (in
Galactic coordinates) sky density of stars with 0.2 <
g − r < 0.3 and 20 < r < 21 in the Lambert equal area
projection of Galactic coordinates (the north Galactic
pole is in the center, l=0 is towards the left, and the out-
ermost circle is b = 0◦). This map projection does not
preserve shapes (it is not conformal, Gott et al. 2005),
but it preserves areas - the area of each pixel in the map
is proportional to solid angle on the sky, which makes it
particularly suitable for study and comparison of counts
and densities on the celestial sphere. The color and mag-
nitude constraints select stars in a D ∼ 13 kpc heliocen-
tric shell, and can be easily reproduced using the pub-
licly available SDSS database. The Virgo overdensity is
clearly visible even with these most basic color and mag-
nitude cuts, and extends over a large patch of the sky,
roughly in the l = 300◦, b = 65◦ direction. The over-
all number density distribution is clearly not symmetric
with respect to the horizontal l = 0, 180 line. For exam-
ple, in the D ∼ 13 kpc shell there are 1.85 ± 0.03 times
more stars in the l = 300◦, b = 65◦ direction, than in
the corresponding symmetric (l = 60◦, b = 65◦) direc-
tion, a ∼ 28σ deviation from a cylindrically symmetric
density profile. When the color range is sufficiently red
(e.g. 0.9 < g − r < 1.0), and in the same magnitude
range, the asymmetry disappears (not shown). These
stars have a smaller absolute magnitude and are there-
fore much closer.

The two panels to the right in Fig. 24 show the
Hess diagrams for two 540 deg2 large regions towards
(l = 300◦, b = 60◦, top) and (l = 60◦, b = 60◦, bottom)
(marked as polygons in the top left panel). The bot-
tom left panel shows the Virgo field CMD after the con-
trol field has been subtracted. Note the strong over-
density at g − r ∼ 0.3 and r & 20. We quantitatively
analyze the Hess diagram difference in figure 25. For
red stars the counts in two regions are indistinguishable,
while for blue stars the counts difference is highly statis-
tically significant. There is no indication for a turnover
in blue star number count difference strongly suggest-
ing that the Virgo overdensity extends beyond the SDSS
faint limit. We conclude that the Hess diagram analysis

robustly proves the existence of a significant star count
overdensity towards l = 300◦, b = 65◦ direction, from
approximately r ∼ 18 mag to r ∼ 21.5 mag.

From the diagram in bottom left panel of Fig. 24,
a crude estimate of the surface brightness of the over-
density can be made by summing up the fluxes of all
stars in the CMD and dividing the total flux by the
area observed. To isolate the overdensity, we only count
the fluxes of stars satisfying 0.2 < g − r < 0.8 and
18 < r < 21.5. This will effectively be a lower limit,
because we will miss stars dimmer than the limiting mag-
nitude (r = 21.5), and bright giants (r < 18). We obtain
a value of:

Σr = 32.5 magarcsec−2 (35)

This is about a magnitude and a half fainter than the
surface brightness of Sagittarius dwarf northern stream
(ΣV ∼ 31 mag arcsec−2; Mart́ınez-Delgado et al. 2001,
Mart́ınez-Delgado et al. 2004).

Assuming the entire overdensity covers ∼ 1000 deg2

of the sky (consistent with what is seen in the top
left panel of Fig. 24), and is centered at a distance of
D ∼ 10kpc, from the surface brightness we obtain an
estimate of the integrated absolute r band magnitude,
Mr = −7.7 mag. This corresponds to a total luminosity
of Lr = 0.09 · 106L⊙, where we calculate the absolute
r band magnitude of the Sun to be Mr⊙ = 4.6, using
Eqs. 2 and 3 from Jurić et al. (2002), and adopting
(B − V )⊙ = 0.65 and V⊙ = 4.83 from Binney & Merri-
field (1998). This luminosity estimate is likely uncertain
by at least a factor of a few. Most of the uncertainty
comes from the unknown exact distance and area covered
by the overdensity. Uncertainty due to the flux limit de-
pends on the exact shape of the luminosity function of
stars making up the overdensity, but is likely less severe.
For example, assuming that the luminosity function of
the overdensity is similar to that of the Solar neighbor-
hood (Reid, Hawley & Gizis 2002, table 4), and that our
sample of overdensity stars is incomplete for g − r > 0.5
(see bottom left panel of Fig. 24), the corrected luminos-
ity and absolute magnitude are Lr = 0.10 · 106L⊙ and
Mr = −7.8 (note that only the red end of the luminosity
function is relevant here). Taking a more conservative in-
completeness bound of g − r > 0.3, the luminosity grows
to Lr = 0.11 · 106L⊙ (22% difference), or Mr = −8, in
terms of absolute magnitude. Again, these are all lower
limits.

4.3. Metallicity Constraints

The SDSS u band measurements can be used to gauge
metallicity of the Virgo overdensity. As already discussed
in Section 3.2.2, stars at the tip of the stellar locus (0.7 <
u − g . 1) typically have metallicities lower than about
−1.5. This u − g separation can be improved by using
instead the principal axes in the g−r vs. u−g color-color
diagram (Ivezić et al. 2004)

P1s = 0.415(g − r) + 0.910(u− g) − 1.28 (36)

P2s = 0.545(g − r) − 0.249(u− g) + 0.234 (37)

The main sequence stars can be isolated by requiring

− 0.06 < P2s < 0.06 (38)

and the low-metallicity turn-off stars using

− 0.6 < P1s < −0.3. (39)
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The high-metallicity turn-off stars have P1s > −0.2.
In Fig. 26 we show Hess diagrams of P1s color vs. r

magnitude for the Virgo overdensity field and the con-
trol field, and their difference. A significant excess of
stars with P1s < −0.3 exists in the Virgo overdensity
field. There is no statistically significant difference in
star counts for stars having P1s > −0.2. This implies
that the Virgo overdensity stars have metallicities lower
than (thick) disk stars, and similar to those of halo stars.

4.4. Detections of Related Clumps and Overdensities

There are a number of stellar overdensities reported
in the literature that are probably related to the Virgo
overdensity. Newberg et al. (2002) searched for halo sub-
structure in SDSS equatorial strips (δ ∼ 0) and reported
a density peak at (l, b) ∼ (297, 63). They tentatively
concluded that this feature is “a stream or other diffuse
concentration of stars in the halo” and pointed out that
follow-up radial velocity measurements are required to
ascertain that the grouping is not a product of chance
and statistics of small numbers.

Detections of RR Lyrae stars are particularly useful
because they are excellent standard candles. Using RR
Lyrae detected by the QUEST survey, Vivas et al. (2001,
see also Zinn et al. 2003) discovered an overdensity at
∼ 20 kpc from the Galactic center at (l, b) ∼ (314, 62)
(and named it the “12.h4 clump”). The same clump is dis-
cernible in the SDSS candidate RR Lyrae sample (Ivezić
et al. 2000, 2003bcd). More recently, the NSVS RR
Lyrae survey (Wozniak et al. 2004) detected an overden-
sity in the same direction, and at distances extending to
the sample faint limit, corresponding to about ∼6 kpc
(P. Wozniak, private communication).

2MASS survey offers an all-sky view of the Milky Way.
We have followed a procedure developed by Majewski et
al. (2003) to select M giant candidates from the public
2MASS database. We find a significant excess of can-
didate giants in the Virgo overdensity area, compared
to a region symmetric with respect to the l = 0 line.
Both the number ratio and implied distances (using M
giant candidates that belong to the Sgr dwarf stream,
we estimate that their mean magnitude at 10 kpc is K ∼
9.7, for more details see Majewski et al. 2003 and Ivezić
et al. 2003cd) are consistent with the properties of the
Virgo overdensity inferred from SDSS data. For exam-
ple, the distribution of high-latitude (55◦ < b <80◦)
M giant candidates selected using 9.2< K <10.2 and
1.0< J −K <1.3 is very asymmetric with respect to the
galactic longitude: there are 66 stars with 240< l <360,
and only 21 stars with 0< l <120, with the former clus-
tered around l ∼300. There is no analogous asymmetry
in the southern Galactic hemisphere. The sky distribu-
tion of the northern 2MASS M giant candidates is shown
in Fig. 27.

While these independent detections are insufficient to
fully resolve the nature of the overdensity (either be-
cause of insufficient sky coverage, or a small number of
tracer stars), they provide strong support that this fea-
ture is real, and not a product of the photometric paral-
lax method used in this work.

4.5. A Merger, Tri-axial Halo, Polar Ring, or?

The Virgo overdensity is a major new Galaxy feature:
even within the limited sky coverage of the available

SDSS data, it extends over a thousand square degrees
of sky. Given the well defined overdensity outline, low
surface brightness and luminosity, its most plausible ex-
planation is that of a tidally disrupted reminant of a
merger event involving the Milky Way and a smaller,
lower-metallicity dwarf galaxy. However, there are other
possibilities.

An attempt may be made to explain the detected
asymmetry by postulating a non-axisymmetric compo-
nent such as a triaxial halo. This alternative is particu-
larly interesting because Newberg & Yanny (2005), who
essentially used the same data as analyzed here, have
suggested that evidence for such a halo exists in SDSS
starcounts. A different data analysis method employed
here – the three-dimensional number density maps – sug-
gests that the excess of stars associated with the Virgo
overdensity is not due to a triaxial halo. The main argu-
ment against such a halo is that, despite its triaxiality,
it still predicts that the density decreases with the dis-
tance from the Galactic center. But, as shown in Figs. 8
and 23, the observed density profile has a local maximum
that is not aligned with the Galactic center. This can still
be explained by requiring the axis of the halo to be in-
clined with respect to the symmetry axis of the Galactic
disk. However, even this model requires the halo den-
sity to attain maximal value in the Galactic center, and
as seen from figure 22 a modest linear extrapolation of
Virgo overdensity to Z = 0 still keeps it at R ∼ 5.5 kpc
away from the Galactic center.

Nevertheless, while this makes the explanation of the
Virgo overdensity by a triaxial halo unlikely, it does not
preclude the existence of such a halo. However, it would
be very difficult to obtain a reliable measurement of the
halo triaxiality with the currently available SDSS data
because of “contamination” by the Virgo overdensity and
uncertancies about its true extent. As more SDSS and
other data become available in other parts of the sky, it
may become possible to mask out the overdensity and
attempt a detailed halo fit to reveal the exact details of
its shape and structure.

Another possible explanation of the Virgo overdensity
is a “polar ring” around the Galaxy. This possibility
seems much less likely than the merger scenario because
there is no visible curvature towards the Galactic center
at high Z in Fig. 22. Indeed, there seem to be a curva-
ture in the opposite sense, where the bottom part of the
overdense region appears to be about 1 kpc closer to the
Galactic center than its high-Z part. In addition, there
is no excess of 2MASS M giant candidates in the south-
ern sky that could be easily associated with the northern
Virgo overdensity.

Finally, the coincidence of this overdensity and the fa-
mous Virgo galaxy supercluster (Binggeli 1999) could
raise a question whether the overdensity could be due
to faint galaxies that are misclassified as stars. While
plausible in principle, this is most likely not the case be-
cause the star/galaxy classifier is known to be robust at
the 5% level to at least r = 21.5 (Ivezić et al. 2002),
the overdensity is detected over a much larger sky area
(1000 deg2 vs. ∼ 90 deg2), and the overdensity is con-
firmed by apparently much brighter RR Lyrae stars and
M giants.

5. DISCUSSION
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Traditionally, studies of the Milky Way’s main com-
ponents are based on counting stars in a given patch
of the sky (although sometimes kinematic data are also
utilized). Given the star counts, a standard approach to
modeling the structure of the Galaxy is to adopt initial
mass function, mass-luminosity relationship, luminosity
function, a color-luminosity relation, and a number den-
sity parametrization for each Galaxy component deemed
important. With these ingredients, one produces model
counts as a function of color, apparent magnitude and
the position on the sky. The observed stellar counts are
then used to constrain the numerous model parameters.
In addition to a formidable minimization problem (see
e.g. Peiris 2000, and Larsen & Humphreys 2003), a ques-
tion of uniqueness remains even when a successful best-fit
model is found (a good comparison of various methods
and their results is presented by Reid & Majewski 1993).

A vivid example of various uncertainties associated
with this traditional approach is illustrated in Fig. 1
of Siegel et al. 2002: the thick disk best-fit parameters
published by various authors vary by significantly more
than the claimed uncertainties. In particular, Siegel et al.
pointed out that best-fit parameters based on SDSS data
(Chen et al. 2001) are significantly different from other
determinations reported in the literature, a discrepancy
that partially motivated this work (note, however, that
Siegel et al. used data for seven Kapteyn selected areas
and obtained similar best-fit parameters for the thick
disk as those reported by Chen et al.).

This work represents an attempt at a qualitatively dif-
ferent approach to studies of the Milky Way density
structure. In contrast to traditional star count analy-
sis, here we do not assume any a-priori Galactic model.
Instead, the wide sky coverage and a large number of ob-
served stars allow us to directly construct stellar number
density maps of the Galaxy. With these maps, the anal-
ysis of Milky Way’s structure now becomes more akin to
studies of external galaxies.

This qualitative paradigm shift was made possible by
the availability of SDSS data. SDSS is superior to previ-
ous optical sky surveys because of its high catalog com-
pleteness and accurate multi-band photometry to faint
flux limits over a large sky area. In particular, the re-
sults presented here were enabled by several distinctive
SDSS characteristics:

• A large majority of stars detected by the SDSS
are main-sequence stars, which have a fairly well-
defined color-luminosity relation. Thus, accurate
SDSS colors can be used to estimate luminosity,
and hence, distance, for each individual star. Ac-
curate photometry (∼ 0.02 mag) allows to reach
the intrinsic accuracy of photometric parallax re-
lation, and thus to estimate distances with typical
random errors caused by the photometry not ex-
ceeding 15-20%.

• Thanks to faint flux limits (r ∼ 22), distances as
large as 15 kpc are probed using numerous main se-
quence stars (∼ 48 million). At the same time, the
large photometric dynamic range and the strong
dependence of stellar luminosities on color allow
constraints ranging from the Sun’s offset from the
Galactic plane (∼ 24 pc) to a detection of overden-
sities at distances beyond 10 kpc.

• Large sky area observed by the SDSS (as opposed
to pencil beam surveys), spanning a range of galac-
tic longitudes and latitudes, enables not only a
good coverage of the (R, Z) plane, but also of a
large fraction of the Galaxy’s volume. The full
three-dimensional analysis, such as slices of the
maps in X−Y planes, reveals a great level of detail.

• The SDSS u band photometric observations can be
used to identify stars with sub-solar metallicities,
and to study the differences between their distri-
bution and that of more metal-rich stars.

Photometric parallax method has already been used to
study the Milky Way structure (Gilmore & Reid 1983,
Kuijken & Gilmore 1989, Chen et al. 2001, and for a
more complete list see Table 1 in Siegel et al. 2002). An
excellent example of the application of this method to
pre-SDSS data is the study by Siegel et al. (2002). While
their and SDSS data are of similar photometric quality,
the sky area analyzed here is over 400 times larger than
that analyzed by Siegel et al. This large increase in the
sample size enables a shift in emphasis, from modelling
to direct model-free mapping of the complex and clumpy
Galactic density distribution, as exemplified by the dis-
covery of the low-contrast large-area Virgo overdensity.
Although the photometric parallax method is prone to
systematic errors, and thus the quantitative description
of the new structures will be biased, it is evident that the
purely smooth description of the Milky Way’s main com-
ponents (e.g. Bahcall & Soneira 1980, Gilmore, Wyse &
Kuijken 1989) is an oversimplification.

When the exponential disk models are used to describe
the gross behavior of the stellar number density distribu-
tion, we obtain the best-fit parameters that are similar
to previous work, with the local thick-to-thin disk nor-
malization of ∼4% and a somewhat larger ratio of the
exponential disk scale heights of 4.3:1. The exponential
scale length, particularly that of the thick disk, is much
less constrained and varies in the range of 2.5-4.5 kpc.
The halo appears oblate, with the axes ratio of ∼2, local
normalization of ∼0.001, and a power-law profile with
only weakly constrained index (2–3). We note that the
quantitative values of the model parameters presented
here should be interpreted with caution, because of the
difficulty of getting a ”clean” model fit, unaffected by
clumpy substructure. Also, possible systematics in the
photometric parallax relation, and its large intrinsic scat-
ter, make for an additional source of error to which all of
the surveys employing the photometric parallax method,
including ours, are intrinsically susceptable.

The most interesting result of our analysis is the dis-
covery of Virgo overdensity and robust evidence for ubiq-
uitous substructure at the edges of, and within the Galac-
tic disk. Despite the size and closeness, the low surface
brightness of Virgo overdensity kept it from being recog-
nized by smaller surveys. Given the low surface bright-
ness, its well defined outline, and low metallicity, the
most plausible explanation of Virgo overdensity is that
it is a result of a merger event involving the Milky Way
and a smaller, lower-metallicity dwarf galaxy. For now,
based on existing maps, we are unable to differentiate
whether the observed overdensity is a tidal stream, a
merger remnant, or both. However, it is evident that
the Virgo overdensity is suprisingly large, extending in
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vertical (Z) direction to the boundaries of our survey
(5 < Z < 15 kpc), and ∼ 10 kpc in R direction. It is also
exceedingly faint, with a lower limit on surface brightness
of Σr = 32.5 mag arcsec−2. Assuming that the observed
overdensity is just a part of a larger stream, it would
be of interest to check for a possible continuation in the
southern Galactic hemisphere – our preliminary analysis
of 2MASS M-giants data did not reveal a similarly large
density enhancement in the south. Also, it would be in-
teresting to follow the stream towards the Galactic north,
beyond the Z ∼ 15 kpc limit of our survey. But above all,
the understanding of the Virgo overdensity would proba-
bly greatly benefit from measurements of proper motion
and radial velocity for its likely constituent stars.

While the rich halo substructure has been known for
a while (e.g. Ivezić et al. 2000, Yanny et al. 2000, Vi-
vas et al. 2001, Majewski et al. 2002, and references
therein), here we show that the thin and thick disk sub-
structure is equally complex. An approximate extrapo-
lation of the four overdensities seen in our survey volume
to the full Galactic disk (|Z| < 3kpc, R < 15kpc) leads
to a conclusion that there are ∼20 - 40 clumpy substruc-
tures of this type in the Galaxy. This is comparable to
the number of satellite dwarf galaxies predicted by cold
dark matter models (Kauffmann, White, & Guiderdoni,
1993, Sellwood & Kosowsky 2002). These satellites have
not been confirmed observationally, leading to a discrep-
ancy known as “the missing satellite problem”. One may
speculate that such satellites have simply merged with
the Milky Way, leaving behind a trail of overdensities
as their remains. If so, not only is the Milky Way is
cannibalizing its neighbors, but it does so with quite an
appetite.

The three-dimensional maps offer an effective method
to study the properties of individual features such as the
Monoceros stream. The maps demonstrate that this fea-
ture is well localized in the radial direction, which rules
out the hypothesis that this overdensity is due to disk
flaring. The maps also show that the Monoceros stream
is not a homogeneously dense ring that surrounds the
Galaxy, and provide support for the claim by Rocha-
Pinto et al. (2003) that this structure is a merging
dwarf galaxy (see also Penarrubia et al. 2005). Sim-
ilarly, the maps demonstrate that the Virgo overden-
sity appears consistent with an another tidally disrupted
merging galaxy or a stream, rather than reflecting an
asymmetry due to a triaxial halo.

Despite these results, this study is only a first step to-
wards a better understanding of the Milky Way enabled
by modern large-scale surveys. Star counting, whether
interpreted with traditional modeling methods, or using
number density maps, is limited by the number of ob-
served stars, the flux limit and sky coverage of a survey,
and the ability to differentiate stellar populations. All
these data aspects will soon be significantly improved.

First, the SDSS has entered its second phase, with a
significant fraction of observing time allocated for the
Milky Way studies (SEGUE, the Sloan Extension for
Galaxy Understanding and Exploration, Newberg et al.
2003). In particular, the imaging of low galactic lati-
tudes and a large number of stellar spectra optimized
for Galactic structure studies will add valuable new data
to complement this work. In addition, the SDSS kine-
matics data, both from radial velocities and from proper

motions (determined from astrometric comparison of the
SDSS and the Palomar Observatory Sky Survey catalog,
Munn et al. 2004) is already yielding significant advances
in our understanding of the thin and thick disk, and halo
kinematic structure (Bond et al., in prep.).

Another improvement to the analysis presented here
will come from the GAIA satellite mission (e.g. Wilkin-
son et al. 2005). GAIA will provide geometric distance
estimates and 15-band photometry for a large number
of stars brighter than V ∼ 20. Despite the relatively
bright flux limit, these data will be invaluable for cali-
brating photometric parallax relation, and for studying
the effects of metallicity, binarity and contamination by
giants. At the moment, the uncertanties of the photo-
metric parallax relation are the single largest contribu-
tor to uncertanties in the derived parameters of Galactic
models, and improvements in its calibration are of great
interest to all practitioners in this field.

A further major leap forward will be enabled by up-
coming deep synoptic sky surveys, such as Pan-STARRS
(Kaiser 2002) and LSST (Tyson 2002). These surveys
will provide multi-band optical photometry of similar, or
better, quality as SDSS, over an even larger region of
the sky (∼20,000 deg2). One of their advantages will be
significantly deeper data – for example, the LSST will
enable studies such as this one to a 5 magnitudes fainter
limit, corresponding to a distance limit of 150 kpc for
the turn-off stars. LSST proper motion measurements
will constrain tangential velocity to within 10 km/s at
distances as large as that of the Virgo overdensity re-
ported here (∼10 kpc). These next-generation maps will
be based on samples exceeding a billion stars and will
facilitate not only the accurate tomography of the Milky
Way, but of the whole Local Group.
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Máız-Apellániz, J. 2001, AJ, 121, 2737
Majewski, S.R., Skrutskie, M.F., Weinberg, M.D. & Ostheimer,

J.C. 2003, ApJ, 599, 1082
Mart́ınez-Delgado, D., Alonso-Garćıa, J., Aparicio, A., & Gómez-
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Napp N(r < 22) N(r < 21.5)

1 30543044 2418472
2 11958311 1072235
3 3779424 3471972
4 856639 785711
5 220577 199842
6 105481 93950
7 141017 132525
8 43943 40065
9 59037 57076

10 15616 15002
11 1522 1273
12 2012 1772
13 2563 2376
14 1776 1644
15 1864 1741
16 3719 3653
17 1281 1253

Nstars 47737826 39716935
Nobs 73194731 62858036

TABLE 1
Repeat observations in the stellar sample: Because of partial imaging scan overlaps and the convergence of scans near

the survey poles, a significant fraction of observations are repeated observations of the same stars. In columns N(r < 22)
and N(r < 21.5) we show the number of stars observed Napp times for stars with average magnitudes less than r = 22 and

r = 21.5, respectively. The final two rows list the total number of stars in the samples, and the total number of
observations.

ri0 - ri1 < gr > < Mr > SpT dx [pc] Dmin [pc] Dmax [pc] Nstars

1 0.10 - 0.15 0.36 5.33 ∼F9 500 961 15438 4232426
2 0.15 - 0.20 0.48 5.77 F9-G6 400 773 12656 3842970
3 0.20 - 0.25 0.62 6.18 G6-G9 400 634 10555 2780382
4 0.25 - 0.30 0.75 6.56 G9-K2 300 529 8939 1950374
5 0.30 - 0.35 0.88 6.91 K2-K3 200 448 7676 1527679
6 0.35 - 0.40 1.00 7.23 K3-K4 200 384 6673 1308590
7 0.40 - 0.45 1.10 7.52 K4-K5 200 334 5864 1178986
8 0.45 - 0.50 1.18 7.79 K5-K6 150 293 5202 1088285
0 0.50 - 0.55 1.25 8.04 K6 150 260 4653 1009596

10 0.55 - 0.60 1.30 8.27 K6-K7 150 233 4191 933843
11 0.60 - 0.65 1.33 8.49 K7 100 210 3798 858864
12 0.65 - 0.70 1.36 8.70 K7 100 190 3458 804603
13 0.70 - 0.80 1.38 9.00 K7-M0 100 173 2897 1433278
14 0.80 - 0.90 1.39 9.37 M0-M1 60 145 2450 1367152
15 0.90 - 1.00 1.39 9.73 M1 50 122 2079 1341331
16 1.00 - 1.10 1.39 10.09 M1-M2 50 104 1764 1323791
17 1.10 - 1.20 1.39 10.45 M2-M3 40 88 1493 1266917
18 1.20 - 1.30 1.39 10.81 M3 30 74 1258 1129342
19 1.30 - 1.40 1.39 11.18 M3 25 63 1056 892709

TABLE 2
The number density map parameters. Each of the 19 maps is a volume limited three-dimensional density map of stars with
ri0 < r − i < ri1, corresponding to MK spectral types listed in SpT column, with mean g − r color and absolute magnitude

Mr listed in < gr > and < Mr > columns, respectively. The minimum and maximum distance, Dmin and Dmax, are the
color-dependent distance limits which define a volume limited sample for each r − i color bin. The density maps are
constructed by binning and counting the observed stars in dx large cubical pixels, and by dividing the count by the

observed volume of the pixel. The total number of stars in each map is listed in Nstars column.
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Fig. 1.— The solid line shows the photometric parallax relation adopted in this work. Other lines show photometric parallax relations
from the literature, as marked. The lower (thin) curve from Siegel et al. corresponds to low metallicity stars. The large symbols show a
normalization based on the SDSS observations of globular cluster M13.
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Fig. 2.— An illustration of the effects of misidentifying giants as main sequence stars. The top panel shows the Z dependence of stellar
density at R=8 kpc for a fiducial model consisting of two disks with scale heights of 300 pc and 1200 pc. The contribution of the disks is
shown by the short-dashed line, and the long-dashed line shows the contribution of a power-law spherical halo with the power-law index of
3. The middle panel shows the contribution of misidentified giants from disks (short-dashed) and halo (long-dashed) for an assumed giant
fraction of 5%, and underestimated distances by a factor of 3. The “contaminated” model is shown by dotted line, just above the solid
line, which is the same as the solid line in the top panel. The ratio of the “contaminated” and true density is shown in the bottom panel
(note the different horizontal scale).
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Fig. 3.— Footprint on the sky of SDSS observations used in this work shown in Lambert equal area projection (hatched region). The
circles represent contours of constant galactic latitude, with the straight lines showing the location of constant galactic longitude. For this
study, observations from 248 SDSS imaging runs were used, stretching over the course of 5 years. We cover 5450 deg2 of the north Galactic
hemisphere, and a smaller but more frequently sampled area of 1088 deg2 in the southern Galactic hemisphere.
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Fig. 4.— The top panel shows the mean fractional distance error as a function of the r − i color and r band magnitude, assuming
the intrinsic photometric parallax relation scatter of σMr,i

= 0.3 mag. The solid lines are contours of constant fractional distance error,

starting with σD/D = 15% (lower right) and increasing in increments of 5% towards the top left corner. The dotted lines are contours of
constant distance, and can be used to quickly estimate the distance errors for an arbitrary combination of color and magnitude/distance.
Note that fractional distance errors are typically smaller than ∼ 20%.
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Fig. 5.— The distribution of ∼48 million stars analyzed in this work in the r − i vs. g − r color-color diagram, shown by isodensity
contours. Most stars lie on a narrow locus, shown by the dashed line, whose width at the bright end is 0.02 mag for blue stars (g − r . 1)
and 0.06 mag for red stars (g−r ∼ 1.4). The inserts illustrate the maximum likelihood method used to improve color estimates: the ellipses
show measurement errors, and the crosses are the color estimates obtained by requiring that a star lies exactly on the stellar locus. Note
that the principal axes of the error ellipses are not aligned with the axes of the color-color diagram because both colors include the r band
magnitude.
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Fig. 6.— The stellar number density as a function of Galactic cylindrical coordinates R (distance from the axis of symmetry) and Z
(distance from the plane), for different r − i color bins, as marked in each panel. Each pixel value is the median for all polar angles. The
density is shown on a logarithmic scale, and coded from blue to red (black pixels are regions without the data). Note that the distance
scale greatly varies from the top left to the bottom right panel – the size of the the bottom right panel is roughly equal to the size of four
pixels in the top left panel. Each white dotted rectangle denotes the bounding box of region containing the data on the following panel.
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Fig. 7.— The azimuthal dependence of the number density for R = R⊙ kpc cylinder around the Galactic center. The shaded region is
the area covered by the SDSS survey, and the lines show constant density contours for two color bins (1.0 < r − i < 1.1 in the top panel
and 0.10 < r − i < 0.15 in the bottom panel). The fact that isodensity contours are approximately horizontal supports the assumption
that the stellar number density distribution is circularly symmetric around the Galactic center, and at the same time indicates that the
assumed photometric parallax distribution is not grossly incorrect. Nevertheless, note that deviations from circular symmetry do exist, e.g.
at Z ∼10,000 and φ ∼ 40◦ in the bottom panel.
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Fig. 8.— The stellar number density for the same color bin as in the top left panel in Fig. 6 (0.10 < r − i < 0.15), shown here for
cross-sections parallel to the Galactic plane, as a function of the distance from the plane. The distance from the plane varies from 16 kpc
(top left) to 6 kpc (bottom right), in steps of 2 kpc. The circles visualize presumed axial symmetry of the Galaxy, and the origin marks
our position (the Galactic center is at x = −8 kpc and y = 0). Note the strong asymmetry with respect to the y = 0 line.
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Fig. 9.— Analogous to Fig. 8, except that three symmetric slices at z=3, 4 and 5 kpc above and below the plane are shown. The color
stretch in panels for z=3, 4 and 5 kpc is optimized to bring out the Monoceros overdensity at R ∼ 16 kpc and y ∼ 0.
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Fig. 10.— Analogous to Fig. 8, except that here three symmetric slices at z=300, 600 and 900 pc above and below the plane are shown,
for the 1.00 < r − i < 1.10 color bin. Note that at these distance scales there are no obvious discernible substructures in the density
distribution.



28 Jurić et al.

Fig. 11.— An illustration of the degeneracies in fitting models for stellar distribution. The top panel shows a thin disk plus thick disk
model, without any contribution from the halo (volume density on a logarithmic stretch, from blue to red, shown only for the regions with
SDSS data), and the middle panel shows a single think disk plus an oblate halo model. Both models are fine-tuned to produce nearly
identical counts for R = 8 kpc and |Z| < 8 kpc. The bottom panel shows the difference between the two models (logarithmic stretch for
± a factor of 3, from blue to red, the zero level corresponds to green color). The models are distinguishable only at |Z| > 3 kpc and R
significantly different from 8 kpc.
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Fig. 12.— An illustration of the halo effects on the interpretation of stellar distribution. The solid line in the top panel shows the Z
dependence of stellar density at R=8 kpc, for a model consisting of two disks with scale heights of 300 pc and 1200 pc (the disks contribution
is shown by the short-dashed line), and a power-law spherical halo with power-law index of 3 (long-dashed line). The dotted line shows
a similar model with the halo power-law index changed to 2. The middle panel shows a model with an oblate (qH=0.5) halo (all other
parameters are kept fixed), and the bottom panel shows a model with a prolate (qH=2) halo. The dotted line in the bottom panel is the
same as the dotted line in the top panel. As evident, for a given line of sight, the model degeneracies are strong.
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Fig. 13.— The vertical (Z) distribution of SDSS stellar counts for R = 8 kpc, and different r − i color bins, as marked. The lines are
best-fit models to measured distribution (uncorrected for Malmquist bias). The dashed lines in the top panel correspond to a disk with
a scale height of 270 pc. The vertical dot-dashed line marks the position of the density maximum, and implies a Solar offset from the
Galactic plane of 24±5 pc. The dashed lines in the middle panel correspond to a sum of two disks with scale heights of 270 pc and 1400
pc, and the relative normalization of 0.04. The dot-dashed line is the contribution of the 270 pc disk for the bluer color bin. Note that the
1400 pc disk becomes important for |Z| > 1000 pc. The dashed line in the bottom panel (closely following the data points) corresponds to
a sum of two disks (with scale heights of 260 pc and 1000 pc, and the relative normalization of 0.022), and a power-law spherical halo with
power-law index of 3, and a relative normalization with respect to the 260 pc disk of 4.5×10−4. The dot-dashed line is the contribution of
the 260 pc disk, the long-dashed line is the contribution of the 1000 pc disk, and the halo contribution is shown by the dotted line. Disk
parameters of the bottom panel are different from the top two panels, because of the different populations of stars under consideration (G
dwarfs vs. M dwarfs, in the bottom and top panels, respectively).
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Fig. 14.— The vertical (Z) distribution of SDSS stellar counts for R = 8 kpc, and 0.10 < r − i < 0.15 color bin. Stars are separated by
their u− g color, which is a proxy for metallicity, into a sample representative of the halo stars (low metallicity, 0.60 < u− g < 0.95, circles)
and a sample representative of the disk stars (high metallicity, 0.95 < u − g < 1.15, triangles). The line in the top panel shows the sum of
the counts for both subsamples. The counts for each subsample are shown separately in the middle and bottom panels, and compared to
the best fit models, shown as lines. Note that the disk stars are more concentrated towards the Galactic plane. Due to a simple u − g cut,
both samples are expected to suffer from contamination: close to the Galactic plane (|Z| < 2 kpc) the halo sample is contaminated by the
disk stars, while further away from the plane (|Z| > 5 kpc) the disk sample is contaminated by halo stars.
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Fig. 15.— The radial distribution of SDSS stellar counts for different r− i color bins, and at different heights above the plane, as marked
in each panel (pc). The two dashed lines show the exponential radial dependence of density for scale lengths of 3000 and 5000 pc (with
arbitrary normalization).
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Fig. 16.— Analogous to Fig. 15, except for bluer color bins, which probe larger distances.
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Fig. 17.— The radial distribution of SDSS stellar counts for 0.10 < r − i < 0.15 color bin, with the data restricted to |y| < 1 kpc. The
selected heights are, from top to bottom, (2,3,4), (4,5,6) and (6,8,10) kpc. The Monoceros stream at is easily visible as local maxima at
R = 16 − 17 kpc, and the Virgo overdensity as the wide bump at R ∼ 6 kpc.
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Fig. 18.— The regions excluded from global Galactic model fits. The pixels within the rectangle in the top panel are excluded to avoid
contamination by the Virgo overdensity. In the bottom panel, the pixels enclosed by the polygon at R ∼ 16 kpc are excluded to avoid the
contamination by the Monoceros stream.
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Fig. 19.— “Cleaned up” (R, Z) maps of the Galaxy, analogous to figure 6, but with pixels in obvious overdensities (fig. 18) excluded
from azimuthal averaging. We show the maps for all 19 color bins, with the bluest bin in the top left corner and the reddest bin in the
bottom right. The contours are the lines of constant density, spaced at constant logarithmic intervals.
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Fig. 20.— Examples of model fits for four color bins, one per each row. Note the different scales. The left panel of each row shows the
data, the middle panel the best-fit model and the right panel shows (data-model) residuals, normalized to the model. The residuals are
shown on a linear stretch, from -40% to +40%. Note the excellent agreement of the data and the model for reddest color bins (bottom
row), and an increasing number of overdensities as we move towards bluer bins. In the residuals map for the 0.35 < r − i < 0.40 bin (top
row) the edges of the Virgo overdensity (top right) and the Monoceros stream (left), the overdensity at (R ∼ 6.5, Z ∼ 1.5) kpc and a
small overdensity at (R ∼ 9.5, Z ∼ 0.8) kpc (a few red pixels) are easily discernible. The apparently large red overdensity in the south at
(R ∼ 12, Z ∼ −5) kpc is an instrumental effect and not a real feature.
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Fig. 21.— Similar to Fig. 20, except that only the (data-model) residuals for color bin 0.10 < r − i < 0.15, and for four different models,
are shown (logarithmic stretch, for ± a factor of 3, from blue to red, the zero level corresponds to green color). All four models have
identical thin and thick disk parameters, and only the halo parameters are varied. The top left panel shows residuals for a best-fit model
with α = 2.3 and qH = 0.45 (oblate halo). The top right panel shows residuals for a best-fit spherical halo model (qH = 1, with α = 2.3),
the bottom left panel for α = 3.0 and the bottom right for α = 2.0 (the latter two for qH = 0.45). Note that, while α is not strongly
constrained, the data strongly favor an oblate halo.
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Fig. 22.— The top left panel is similar to the top left panel in Fig. 6, except that here only the data from a narrow plane defined by
φ ∼ 30◦ are shown (see Fig. 8). The top right panel shows the ratio of the observed map and a best-fit model constrained using the data
from the y < 0 region. The bottom left panel show the difference between the observed map and the same best-fit model. The bottom
right panel displays the map from the bottom left panel on a logarithmic scale.
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Fig. 23.— The radial distribution of SDSS stellar counts for 0.10 < r − i < 0.15 color bin, in a narrow plane defined by φ = 30◦, and for
different heights above the plane, from top to bottom: (6,7,8), (8,9,10) and (11,12,13) kpc.
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Fig. 24.— The top left panel shows the sky density of stars with b > 0◦, 0.2 < g − r < 0.3 and 20 < r < 21 in the Lambert projection
(concentric circles correspond to constant galactic latitude; equal area corresponds to equal solid angle on the sky) of galactic coordinates
(the north Galactic pole is in the center, l=0 is towards left, and the outermost circle is b = 0◦). The number density is encoded with a
rainbow color map and increases from blue to red. Note that the sky density distribution is not symmetric with respect to the horizontal
l = 0, 180 line. When the stellar color range is sufficiently red (e.g. 0.9 < g − r < 1.0), this asymmetry disappears (not shown). The two
right panels show the Hess diagrams for two 540 deg2 large regions towards (l = 300◦, b = 60◦, top) and (l = 60◦, b = 60◦, bottom) (marked
as polygons in the top left panel). The bottom left panel shows the difference of these Hess diagrams, normalized by the expected Poisson
fluctuations – note the strong statistically significant overdensity at g − r ∼ 0.3 and r & 20.



42 Jurić et al.

Fig. 25.— Quantitative analysis of the Hess diagram difference shown in the bottom left panel in Fig. 24. The left column corresponds
to the color bin 0.2 < g − r < 0.3 that is representative of the Virgo overdensity, and the right column is a control sample with stars
satisfying 1.2 < g − r < 1.3. The top panels show the counts difference as a function of apparent magnitude, and the middle panels shows
the counts ratio. The inset in the middle right panel shows a histogram of the counts ratio for r < 21.5. The bottom panels show the
counts difference normalized by the expected Poisson fluctuations. Note that for red stars the counts are indistinguishable, while for blue
stars the difference is highly statistically significant.
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Fig. 26.— Hess diagrams of P1s color vs. r magnitude for the Virgo overdensity field (left), the control field as defined on figure
24 (middle), and their difference (right). The colors encode star counts within the fields. There exists a significant excess of stars with
P1s < −0.2 in the Virgo overdensity field. There is no statistically significant difference in star counts for stars having P1s > −0.2, implying
that the stars which constitute of the Virgo overdensity have metallicities lower than disk stars, more consistent with halo stars.
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Fig. 27.— The sky distribution of 189 2MASS M giant candidates with b > 45◦, selected by 9.2< K <10.2 and 1.0< J − K <1.3. The
symbols in the top panel are color-coded using their K band magnitude and J − K color, according to the scheme shown in the bottom
panel (which shows all 75,735 candidates from the whole sky). At sin(b) > 0.8, there are 2.5 times as many stars with l < 0 than with
l > 0. This asymmetry provides an independent confirmation of the Virgo overdensity revealed by the SDSS data.
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APPENDIX

EFFECTS OF LOCUS PROJECTION

The improvement in the estimate of r − i color resulting from the locus projection depends on the local slope of
the locus. If the locus has a steep or almost vertical slope, as for stars with g − r ∼ 1.4 (cf. figure 5), the knowledge
of g − r color does not further constrain r − i color. On the other hand, for shallow slopes the knowledge of g − r
color determines the intrinsic r − i to a much better accuracy than the the r − i measurement alone. For most of the
observed g − r color range we are closer to the second regime, with the locus having a slope of d(r − i)/d(g − r) ∼ 0.3
for 0 < g − r < 1.

To illustrate the effects of locus projection, in Fig. A28 we simulate an ensemble of 105 stars with the same color
(g − r = 0.4, r − i = 0.143) subjected to photometric errors representative of SDSS observations (σr−i = σg−r = 0.03
mag). Errors introduce a scatter in observed colors as shown in the inset. Using only the r − i information we obtain
the expected σr−i = 0.03 mag scatter in observed r − i color (dashed histogram). By projecting the colors to the
locus, the scatter is reduced to σr−i = 0.01 mag. As we construct density maps for stars binned in color bins with
∆(r − i) = 0.05 mag width, this is a significant reduction in scatter.

There are other benefits of locus projection. Figure A30 illustrates how photometric errors can bias the determination
of the number of stars in regions with large gradients of the number density (in the g− r vs. r− i color-color diagram).
The solid line shows the true density distribution of stars as a function of r − i color. In this toy model, we used
ρ(r − i) ∝ (r − i)2, with a sharp cutoff at r − i = 0.24 (solid histogram). Scattering the stars drawn from that
distribution with the σr−i = σg−r = 0.03 mag photometric errors, and binning in r− i color bins, produces the dashed
histogram (effectively, a convolution of the original distribution with the SDSS photometric errors). It systematically
underestimates the original density distribution by as much as 50% in the region of highest negative gradient (near
the r− i = 0.24 cutoff), while overestimating the density in regions with positive density gradient. The exact under or
overestimation depends on the scale at which the true density changes appreciably. If it is significantly smaller than
σr−i or σg−r , as is the case near the cutoff in figure A30, the biases become significant. Applying the locus projection
gives a much better estimate of the original distribution (dotted histogram).

This is not a purely hypothetical example – this type of strong density gradient is observed near g − r ∼ 0.2 (cf.
figure 5). Figure A30 compares the number of stars per r− i color bin for observed r− i colors (dashed histogram) and
the colors estimated by locus projection (solid histogram) for the 48 million stars in our star catalog. In the regions
of maximal gradients the locus projection has a ∼ 20% effect on the total number of stars per r− i bin. Not including
this correction would similarly bias the density normalization of Galactic models deduced from this sample. The bias
would further propagate to luminosity function determination.

One may further be concerned about the dependence of the location of the r − i vs. g − r stellar locus on other
parameters. We do observe a slight magnitude dependence of the locus, especially for stars with bluer g − r colors.
Figure A31 shows the dependence of the measured r−i color on the r band magnitude for stars with 0.29 < g−r < 0.31
(the ”worst case g − r color”, where we find the dependence of the locus location on the magnitude to be the largest).
We find a weak, approximately linear dependence, with d(r − i)locus/dr ∼ 0.007 mag/mag (solid line). The horizontal
dashed line shows the location of the locus for this bin as given by eq. 3. The two match for r = 19. We have chosen
to disregard this magnitude dependence when performing the locus projection procedure. We reason that the real
dependence is not on magnitude but on metallicity and probably other unknown factors for which we do not have a
firm handle. By attempting to correct for those, we risk introducing additional unknown and more complicated biases.
Secondly, the magnitude dependence is relatively small and only affects the bluest bins.

Finally, the three panels in Fig. A32 show the histograms of observed r − i colors for stars which have their locus
projected colors in the 0.1mag < (r − i)e < 0.15mag color range. The top panel shows the histogram for all stars in
the sample. The 0.03 mag scatter is comparable to SDSS photometric errors. To check for the effects discussed in
the previous paragraph, the center and bottom panels show histograms for the brightest and faintest magnitude bin
respectively. Slight magnitude dependence can be seen as a small shift of histogram median to the left (center panel)
and right (top panel). Also, the worsening of photometric precision at the faint end is quite visible in the bottom
panel, as the scatter increases to 0.08 mag.
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Fig. A28.— An illustration of the reduction in the r − i color scatter after applying the locus projection. An ensemble of 105 stars with
the same color (g − r = 0.4, r − i = 0.143) is subjected to SDSS photometric errors (σg = σr = σi = 0.02 mag), resulting in the color
distribution shown in the inset. Its r − i histogram (dashed line) has a root-mean-square scatter of σr−i = 0.03 mag. After the colors are
locus corrected (solid histogram), the scatter is reduced to σr−i = 0.01 mag. The amount of reduction of the scatter depends on the slope
of the locus – the more horizontal the locus gets, the better is the determination of the true r − i color.
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Fig. A29.— An illustration of the bias in the determination of the number density introduced by photometric errors. The solid histogram
shows a toy model distribution as a function of the r − i color (ρ(r − i) ∝ (r − i)2, with a sharp cutoff at r − i = 0.24). The dashed
histogram is the convolution of the original distribution with SDSS photometric errors (σg = σr = σi = 0.02 mag). The measured density
of stars with r − i = 0.24 is underestimated by as much as 50%. Applying the locus projection gives an improved estimate of the original
distribution (dotted histogram).
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Fig. A30.— A comparison of the number of stars per r − i bin for observed r − i (dashed histogram) and the locus corrected (r − i)e

colors (solid histogram) for the 48 million stars in our star catalog. In the regions of maximal gradients the locus projection has a ∼ 20%
effect on the total number of stars per r − i bin. Not including this correction would similarly bias the density normalization of Galactic
models.



The Milky Way Tomography with SDSS 49

Fig. A31.— The dependence of the measured r − i color on the r band magnitude for stars with 0.29 < g − r < 0.31. An approximately
linear dependence, with d(r − i)/dr ∼0.007 mag/mag is observed (solid line). The horizontal dashed line shows the location of the locus
for this bin as given by eq. 3. The two match for r = 19.
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Fig. A32.— The effect of ignoring the magnitude dependence of the locus. The histograms show observed r − i colors of stars having
locus-corrected colors in the 0.1 < (r − i)e < 0.15 color range. The top panel shows the histogram for all stars in the sample. The spread
of σ = 0.03mag is comparable to SDSS photometric errors. The middle and bottom panels show histograms for the brightest and faintest
magnitude bin, respectively. A weak magnitude dependence can be seen as a small shift of histogram median to the left (middle panel)
and right (bottom panel).


