Microchannel devices

PDF Version Also Available for Download.

Description

The fabrication of stainless steel microchannel heat exchangers was examined through microlamination, the process of diffusion bonding precision machined metallic foils. The influence of diffusion bonding parameters, as well as the device geometry on the strength of the bond between the foils and embedded channel integrity, was investigated. During diffusion bonding, high temperatures and/or pressures result in well bonded foils, but these conditions cause the embedded channels to deform, which will degrade the efficiency of fluid flow through the channels. Alternatively, low temperatures and/or pressures result in undeformed channels but weakly bonded foils. This causes failure of the device due ... continued below

Creation Information

Alman, David E. & Wilson, Rick D. September 1, 2001.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Sponsor

Publishers

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

The fabrication of stainless steel microchannel heat exchangers was examined through microlamination, the process of diffusion bonding precision machined metallic foils. The influence of diffusion bonding parameters, as well as the device geometry on the strength of the bond between the foils and embedded channel integrity, was investigated. During diffusion bonding, high temperatures and/or pressures result in well bonded foils, but these conditions cause the embedded channels to deform, which will degrade the efficiency of fluid flow through the channels. Alternatively, low temperatures and/or pressures result in undeformed channels but weakly bonded foils. This causes failure of the device due to fluid leakage. Thus, a processing envelope exists for producing a sound device with no fluid leakage and no degradation of fluid flow properties. The theoretical limit on aspect ratio within two-fluid counter-flow microchannel heat exchangers was also investigated. A counter-flow device is comprised of alternating layers of microchannels, which allow the two fluids to flow in opposite directions separated by fins. A theoretical model for interpreting the span of the fin as a function of the fin thickness was established. The model was verified experimentally by fabricating specimens to simulate the counter-flow device. The results of these investigations were used to aid in the design and processing of prototype microchannel devices.

Notes

Entire proceedings available to the public from the National Technical Information Service, U.S. Department of Commerce, 5285 Port Royal Road, Springfield, VA 22161; prices available at 703-487-4650.

Source

  • 15th Annual Fossil Energy Materials Conference, April 30-May 2, 2001; Related Information: Information in this paper is covered by US Patnt 6,672,502, granted 1/6/2004.

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: DOE/ARC-2001-011
  • Grant Number: None
  • Office of Scientific & Technical Information Report Number: 897006
  • Archival Resource Key: ark:/67531/metadc877811

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • September 1, 2001

Added to The UNT Digital Library

  • Sept. 22, 2016, 2:13 a.m.

Description Last Updated

  • Nov. 4, 2016, 2:09 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 2

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Alman, David E. & Wilson, Rick D. Microchannel devices, article, September 1, 2001; Tennessee. (digital.library.unt.edu/ark:/67531/metadc877811/: accessed May 21, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.