LLNL SMP Light Diffuser Fabrication and Preliminary Data

PDF Version Also Available for Download.

Description

We are developing a cylindrical light diffuser using shape memory polymer (SMP) whose diameter, length, stiffness, and diffusion profile can be tailored to suit a particular application. The cylindrical SMP diffuser is made by casting SMP around the end of a glass optical fiber using a teflon tube as the casting mold, and abrading the cured SMP surface to cause the light to leak radially outward. The inner diameter of the casting tube is slightly larger than the fiber diameter. A smaller teflon tube is positioned over the fiber (between the fiber and the casting tube) to approximately center the ... continued below

Physical Description

PDF-file: 4 pages; size: 1.2 Mbytes

Creation Information

Small IV, W June 2, 2006.

Context

This report is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this report can be viewed below.

Who

People and organizations associated with either the creation of this report or its content.

Author

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this report. Follow the links below to find similar items on the Digital Library.

Description

We are developing a cylindrical light diffuser using shape memory polymer (SMP) whose diameter, length, stiffness, and diffusion profile can be tailored to suit a particular application. The cylindrical SMP diffuser is made by casting SMP around the end of a glass optical fiber using a teflon tube as the casting mold, and abrading the cured SMP surface to cause the light to leak radially outward. The inner diameter of the casting tube is slightly larger than the fiber diameter. A smaller teflon tube is positioned over the fiber (between the fiber and the casting tube) to approximately center the fiber tip in the casting tube. As the SMP cures, it bonds with the optical fiber, creating a strong joint without the need for additional adhesives or mechanical fixtures. A close-up of the SMP-fiber joint and the finished SMP diffuser are shown in Fig.1. The SMP formulation (developed in-house) was specifically designed to be optically transparent in the visible and near-infrared regions; the spectral absorption of the SMP is shown in Fig. 2. The low absorption is important because (1) it allows the light to travel the length of the diffuser without suffering excessive loss due to absorption and (2) it permits delivery of up to 7 W (300 {micro}m SMP rod on 100 {micro}m core multimode fiber) of laser power into the diffuser without damaging the diffuser. SMP is a good wave guiding material with a refractive index of approximately 1.5. Also, the SMP stiffness can be tailored from stiff (e.g. acrylic, Ea {approx} 10{sup 9} Pa) to very flexible (e.g. silicon rubber, Ea {approx} 10{sup 6} Pa). Finally, since SMP can self-actuate, the SMP diffuser could be designed to actuate into a shape other than a straight rod (e.g. 2D or 3D coil).

Physical Description

PDF-file: 4 pages; size: 1.2 Mbytes

Language

Item Type

Identifier

Unique identifying numbers for this report in the Digital Library or other systems.

  • Report No.: UCRL-TR-221819
  • Grant Number: W-7405-ENG-48
  • DOI: 10.2172/896295 | External Link
  • Office of Scientific & Technical Information Report Number: 896295
  • Archival Resource Key: ark:/67531/metadc877756

Collections

This report is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this report?

When

Dates and time periods associated with this report.

Creation Date

  • June 2, 2006

Added to The UNT Digital Library

  • Sept. 22, 2016, 2:13 a.m.

Description Last Updated

  • Nov. 29, 2016, 6:44 p.m.

Usage Statistics

When was this report last used?

Yesterday: 0
Past 30 days: 1
Total Uses: 4

Interact With This Report

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Small IV, W. LLNL SMP Light Diffuser Fabrication and Preliminary Data, report, June 2, 2006; Livermore, California. (digital.library.unt.edu/ark:/67531/metadc877756/: accessed December 15, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.