A Solution to the Supersymmetric Fine-Tuning Problem within the MSSM

PDF Version Also Available for Download.

Description

Weak scale supersymmetry has a generic problem of fine-tuning in reproducing the correct scale for electroweak symmetry breaking. The problem is particularly severe in the minimal supersymmetric extension of the standard model (MSSM). We present a solution to this problem that does not require an extension of the MSSM at the weak scale. Superparticle masses are generated by a comparable mixture of moduli and anomaly mediated contributions, and the messenger scale of supersymmetry breaking is effectively lowered to the TeV region. Crucial elements for the solution are a large A term for the top squarks and a small B term ... continued below

Physical Description

16 pages

Creation Information

Kitano, Ryuichiro; /SLAC; Nomura, Yasunori & /UC, Berkeley /LBL, Berkeley September 8, 2005.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

Weak scale supersymmetry has a generic problem of fine-tuning in reproducing the correct scale for electroweak symmetry breaking. The problem is particularly severe in the minimal supersymmetric extension of the standard model (MSSM). We present a solution to this problem that does not require an extension of the MSSM at the weak scale. Superparticle masses are generated by a comparable mixture of moduli and anomaly mediated contributions, and the messenger scale of supersymmetry breaking is effectively lowered to the TeV region. Crucial elements for the solution are a large A term for the top squarks and a small B term for the Higgs doublets. Requiring no fine-tuning worse than 20%, we obtain rather sharp predictions on the spectrum. The gaugino masses are almost universal at the weak scale with the mass between 450 and 900 GeV. The squark and slepton masses are also nearly universal at the weak scale with the mass a factor of {radical}2 smaller than that of the gauginos. The only exception is the top squarks whose masses split from the other squark masses by about m{sub t}/{radical}2. The lightest Higgs boson mass is smaller than 120 GeV, while the ratio of the vacuum expectation values for the two Higgs doublets, tan {beta}, is larger than about 5. The lightest superparticle is the neutral Higgsino of the mass below 190 GeV, which can be dark matter of the universe. The mass of the lighter top squark can be smaller than 300 GeV, which may be relevant for Run II at the Tevatron.

Physical Description

16 pages

Source

  • Journal Name: Physics Letters, (Section) B; Journal Volume: 631

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: SLAC-PUB-11462
  • Grant Number: AC02-76SF00515
  • Office of Scientific & Technical Information Report Number: 878427
  • Archival Resource Key: ark:/67531/metadc877720

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • September 8, 2005

Added to The UNT Digital Library

  • Sept. 21, 2016, 2:29 a.m.

Description Last Updated

  • Dec. 1, 2016, 10:57 p.m.

Usage Statistics

When was this article last used?

Congratulations! It looks like you are the first person to view this item online.

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Kitano, Ryuichiro; /SLAC; Nomura, Yasunori & /UC, Berkeley /LBL, Berkeley. A Solution to the Supersymmetric Fine-Tuning Problem within the MSSM, article, September 8, 2005; [Menlo Park, California]. (digital.library.unt.edu/ark:/67531/metadc877720/: accessed August 17, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.