Carbon dioxide sequestration by ex-situ mineral carbonation

PDF Version Also Available for Download.

Description

The process developed for carbon dioxide sequestration utilizes a slurry of water mixed with olivine- forsterite end member (Mg{sub 2}SiO{sub 4}), which is reacted with supercritical CO{sub 2} to produce magnesite (MgCO{sub 3}). Carbon dioxide is dissolved in water to form carbonic acid, which likely dissociates to H{sup +} and HCO{sub 3}{sup -}. The H{sup +} hydrolyzes the silicate mineral, freeing the cation (Mg{sup 2+}), which reacts with the HCO{sub 3}{sup -} to form the solid carbonate. Results of the baseline tests, conducted on ground products of the natural mineral, have demonstrated that the kinetics of the reaction are slow ... continued below

Physical Description

115-124

Creation Information

O'Connor, W.K.; Dahlin, D.C.; Turner, P.C. & and Walters, R.P. January 1, 2000.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Sponsor

Publishers

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

The process developed for carbon dioxide sequestration utilizes a slurry of water mixed with olivine- forsterite end member (Mg{sub 2}SiO{sub 4}), which is reacted with supercritical CO{sub 2} to produce magnesite (MgCO{sub 3}). Carbon dioxide is dissolved in water to form carbonic acid, which likely dissociates to H{sup +} and HCO{sub 3}{sup -}. The H{sup +} hydrolyzes the silicate mineral, freeing the cation (Mg{sup 2+}), which reacts with the HCO{sub 3}{sup -} to form the solid carbonate. Results of the baseline tests, conducted on ground products of the natural mineral, have demonstrated that the kinetics of the reaction are slow at ambient temperature (22 degrees C) and subcritical CO{sub 2} pressures (below 7.4 MPa). However, at elevated temperature and pressure, coupled with continuous stirring of the slurry and gas dispersion within the water column, significant conversion to the carbonate occurs. Extent of reaction is roughly 90% within 24 h, at 185 degrees C and partial pressure of CO{sub 2} (P{sub CO{sub 2}}) of 11.6 MPa. Current studies suggest that reaction kinetics can be improved by pretreatment of the mineral, catalysis of the reaction, and/or solution modification. Subsequent tests are intended to examine these options, as well as other mineral groups.

Physical Description

115-124

Notes

Publisher

Source

  • Second International Dixy Lee Ray Memorial Symposium, Washington, DC, Aug. 29 - Sept. 2, 1999

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: DOE/ARC-1999-009
  • Grant Number: none
  • Office of Scientific & Technical Information Report Number: 875354
  • Archival Resource Key: ark:/67531/metadc877629

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • January 1, 2000

Added to The UNT Digital Library

  • Sept. 21, 2016, 2:29 a.m.

Description Last Updated

  • Nov. 4, 2016, 1:47 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 4
Total Uses: 4

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

O'Connor, W.K.; Dahlin, D.C.; Turner, P.C. & and Walters, R.P. Carbon dioxide sequestration by ex-situ mineral carbonation, article, January 1, 2000; (digital.library.unt.edu/ark:/67531/metadc877629/: accessed October 19, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.