Status of Continuum Edge Gyrokinetic Code Physics Development

PDF Version Also Available for Download.

Description

We are developing an edge gyro-kinetic continuum simulation code to study the boundary plasma over a region extending from inside the H-mode pedestal across the separatrix to the divertor plates. A 4-D ({psi}, {theta}, {epsilon}, {mu}) version of this code is presently being implemented, en route to a full 5-D version. A set of gyrokinetic equations[1] are discretized on computational grid which incorporates X-point divertor geometry. The present implementation is a Method of Lines approach where the phase-space derivatives are discretized with finite differences and implicit backwards differencing formulas are used to advance the system in time. A fourth order ... continued below

Physical Description

PDF-file: 3 pages; size: 49.9 Kbytes

Creation Information

Xu, X Q; Xiong, Z; Dorr, M R; Hittinger, J A; Kerbel, G D; Nevins, W M et al. May 31, 2005.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

We are developing an edge gyro-kinetic continuum simulation code to study the boundary plasma over a region extending from inside the H-mode pedestal across the separatrix to the divertor plates. A 4-D ({psi}, {theta}, {epsilon}, {mu}) version of this code is presently being implemented, en route to a full 5-D version. A set of gyrokinetic equations[1] are discretized on computational grid which incorporates X-point divertor geometry. The present implementation is a Method of Lines approach where the phase-space derivatives are discretized with finite differences and implicit backwards differencing formulas are used to advance the system in time. A fourth order upwinding algorithm is used for particle cross-field drifts, parallel streaming, and acceleration. Boundary conditions at conducting material surfaces are implemented on the plasma side of the sheath. The Poisson-like equation is solved using GMRES with multi-grid preconditioner from HYPRE. A nonlinear Fokker-Planck collision operator from STELLA[2] in ({nu}{sub {parallel}},{nu}{sub {perpendicular}}) has been streamlined and integrated into the gyro-kinetic package using the same implicit Newton-Krylov solver and interpolating F and dF/dt|{sub coll} to/from ({epsilon}, {mu}) space. With our 4D code we compute the ion thermal flux, ion parallel velocity, self-consistent electric field, and geo-acoustic oscillations, which we compare with standard neoclassical theory for core plasma parameters; and we study the transition from collisional to collisionless end-loss. In the real X-point geometry, we find that the particles are trapped near outside midplane and in the X-point regions due to the magnetic configurations. The sizes of banana orbits are comparable to the pedestal width and/or the SOL width for energetic trapped particles. The effect of the real X-point geometry and edge plasma conditions on standard neoclassical theory will be evaluated, including a comparison of our 4D code with other kinetic neoclassical codes (such as NCLASS[3] and XGC[4]) and experiments.

Physical Description

PDF-file: 3 pages; size: 49.9 Kbytes

Source

  • Presented at: 10th IAEA Technical Meeting on "H-Mode Physics and Transport Barriers", St. Petersburg, Russia, Sep 28 - Sep 30, 2005

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: UCRL-PROC-212647
  • Grant Number: W-7405-ENG-48
  • Office of Scientific & Technical Information Report Number: 878209
  • Archival Resource Key: ark:/67531/metadc877544

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • May 31, 2005

Added to The UNT Digital Library

  • Sept. 21, 2016, 2:29 a.m.

Description Last Updated

  • Dec. 2, 2016, 12:37 p.m.

Usage Statistics

When was this article last used?

Congratulations! It looks like you are the first person to view this item online.

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Xu, X Q; Xiong, Z; Dorr, M R; Hittinger, J A; Kerbel, G D; Nevins, W M et al. Status of Continuum Edge Gyrokinetic Code Physics Development, article, May 31, 2005; Livermore, California. (digital.library.unt.edu/ark:/67531/metadc877544/: accessed August 21, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.