Lessons Learned During Construction and Test of the GLAST Large Area Telescope Tracker

PDF Version Also Available for Download.

Description

The GLAST Large Area Telescope (LAT) is a satellite gamma-ray observatory designed to explore the sky in the energy range 20MeV {approx_equal} 300GeV, a region populated by emissions from the most energetic and mysterious objects in the cosmos, like black holes, AGNs, supernovae, gamma-ray bursters. The silicon-strip tracker is the heart of the photon detection system, and with its 80 m{sup 2} of surface and almost 1M channels is one of the largest silicon tracker ever built. Its construction, to be completed by 2006, and the stringent requirements from operation in space, represent a major technological challenge. Critical design, technology ... continued below

Physical Description

5 pages

Creation Information

Latronico, L. & /INFN, Pisa August 9, 2005.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. It has been viewed 19 times . More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

The GLAST Large Area Telescope (LAT) is a satellite gamma-ray observatory designed to explore the sky in the energy range 20MeV {approx_equal} 300GeV, a region populated by emissions from the most energetic and mysterious objects in the cosmos, like black holes, AGNs, supernovae, gamma-ray bursters. The silicon-strip tracker is the heart of the photon detection system, and with its 80 m{sup 2} of surface and almost 1M channels is one of the largest silicon tracker ever built. Its construction, to be completed by 2006, and the stringent requirements from operation in space, represent a major technological challenge. Critical design, technology and system engineering issues are addressed in this paper, as well as the approach being followed during construction, test and qualification of the LAT silicon tracker.

Physical Description

5 pages

Source

  • Prepared for 5th International Symposium on the Development and Application of Semiconductor Tracking Detectors (STD Hiroshima), Hiroshima, Japan, 14-17 Jun 2004

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: SLAC-PUB-11398
  • Grant Number: AC02-76SF00515
  • Office of Scientific & Technical Information Report Number: 878829
  • Archival Resource Key: ark:/67531/metadc877529

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • August 9, 2005

Added to The UNT Digital Library

  • Sept. 21, 2016, 2:29 a.m.

Description Last Updated

  • Nov. 29, 2016, 6:29 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 1
Total Uses: 19

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Latronico, L. & /INFN, Pisa. Lessons Learned During Construction and Test of the GLAST Large Area Telescope Tracker, article, August 9, 2005; [Menlo Park, California]. (digital.library.unt.edu/ark:/67531/metadc877529/: accessed September 20, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.