Monte Carlo Simulation for the Majorana Neutrinoless Double-betaDecay Experiment

PDF Version Also Available for Download.

Description

The Majorana experiment is a proposed HPGe detector array that will primarily search for neutrinoless double-beta decay and dark matter. It will rely on pulse-shape discrimination and crystal segmentation to suppress backgrounds following careful materials selection. A critical aspect of the design phase of Majorana is a reliable simulation of the detector response, pulse formation, and its radioactive backgrounds. We are developing an adaptable and complete simulation based on GEANT 4 to address these requirements and the requirements of a modern, large collaboration experiment. The salient aspects of the simulation are presented. The Majorana experiment is presented in a parallel ... continued below

Creation Information

Henning, Reyco & Collaboration, Majorana January 28, 2005.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Sponsor

Publishers

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

The Majorana experiment is a proposed HPGe detector array that will primarily search for neutrinoless double-beta decay and dark matter. It will rely on pulse-shape discrimination and crystal segmentation to suppress backgrounds following careful materials selection. A critical aspect of the design phase of Majorana is a reliable simulation of the detector response, pulse formation, and its radioactive backgrounds. We are developing an adaptable and complete simulation based on GEANT 4 to address these requirements and the requirements of a modern, large collaboration experiment. The salient aspects of the simulation are presented. The Majorana experiment is presented in a parallel poster by Kareem Kazkaz.

Source

  • Neutrinos 2004, Paris, France,6/13/05-6/14/05

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: LBNL--57429
  • Grant Number: DE-AC02-05CH11231
  • Office of Scientific & Technical Information Report Number: 877617
  • Archival Resource Key: ark:/67531/metadc877422

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • January 28, 2005

Added to The UNT Digital Library

  • Sept. 21, 2016, 2:29 a.m.

Description Last Updated

  • Sept. 21, 2017, 3:53 p.m.

Usage Statistics

When was this article last used?

Congratulations! It looks like you are the first person to view this item online.

Interact With This Article

Here are some suggestions for what to do next.

Enlarge

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Henning, Reyco & Collaboration, Majorana. Monte Carlo Simulation for the Majorana Neutrinoless Double-betaDecay Experiment, article, January 28, 2005; (digital.library.unt.edu/ark:/67531/metadc877422/: accessed November 19, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.