A Comparison of the Safety Analysis Process and the Generation IV Proliferation Resistance/Physical Protection Assessment Methodology

PDF Version Also Available for Download.

Description

The Generation IV International Forum (GIF) is a vehicle for the cooperative international development of future nuclear energy systems. The Generation IV program has established primary objectives in the areas of sustainability, economics, safety and reliability, and Proliferation Resistance and Physical Protection (PR&PP). In order to help meet the latter objective a program was launched in December 2002 to develop a rigorous means to assess nuclear energy systems with respect to PR&PP. The study of Physical Protection of a facility is a relatively well established methodology, but an approach to evaluate the Proliferation Resistance of a nuclear fuel cycle is ... continued below

Creation Information

Bjornard, T. A. & Zentner, M. D. May 1, 2006.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Sponsor

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

The Generation IV International Forum (GIF) is a vehicle for the cooperative international development of future nuclear energy systems. The Generation IV program has established primary objectives in the areas of sustainability, economics, safety and reliability, and Proliferation Resistance and Physical Protection (PR&PP). In order to help meet the latter objective a program was launched in December 2002 to develop a rigorous means to assess nuclear energy systems with respect to PR&PP. The study of Physical Protection of a facility is a relatively well established methodology, but an approach to evaluate the Proliferation Resistance of a nuclear fuel cycle is not. This paper will examine the Proliferation Resistance (PR) evaluation methodology being developed by the PR group, which is largely a new approach and compare it to generally accepted nuclear facility safety evaluation methodologies. Safety evaluation methods have been the subjects of decades of development and use. Further, safety design and analysis is fairly broadly understood, as well as being the subject of federally mandated procedures and requirements. It is therefore extremely instructive to compare and contrast the proposed new PR evaluation methodology process with that used in safety analysis. By so doing, instructive and useful conclusions can be derived from the comparison that will help to strengthen the PR methodological approach as it is developed further. From the comparison made in this paper it is evident that there are very strong parallels between the two processes. Most importantly, it is clear that the proliferation resistance aspects of nuclear energy systems are best considered beginning at the very outset of the design process. Only in this way can the designer identify and cost effectively incorporate intrinsic features that might be difficult to implement at some later stage. Also, just like safety, the process to implement proliferation resistance should be a dynamic, iterative process that continually evolves with the design.

Source

  • International Conference on Probabilistic Safety Assessment and Management,New Orleans, LA,05/14/2006,05/19/2006

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: INL/CON-06-01212
  • Grant Number: DE-AC07-99ID-13727
  • Office of Scientific & Technical Information Report Number: 911696
  • Archival Resource Key: ark:/67531/metadc877153

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • May 1, 2006

Added to The UNT Digital Library

  • Sept. 22, 2016, 2:13 a.m.

Description Last Updated

  • Oct. 19, 2016, 1:42 p.m.

Usage Statistics

When was this article last used?

Congratulations! It looks like you are the first person to view this item online.

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Bjornard, T. A. & Zentner, M. D. A Comparison of the Safety Analysis Process and the Generation IV Proliferation Resistance/Physical Protection Assessment Methodology, article, May 1, 2006; [Idaho Falls, Idaho]. (digital.library.unt.edu/ark:/67531/metadc877153/: accessed October 23, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.