Timing calibration and synchronization of surface and fluorescence detectors of the Pierre Auger Observatory

PDF Version Also Available for Download.

Description

Reconstruction of cosmic ray arrival directions for Surface Detectors (SD) and Fluorescence Detectors (FD) of the Pierre Auger Observatory requires accurate timing (25 nanoseconds or better) between measurements at individual detectors and instrument triggers. Timing systems for both SD and FD are based on Motorola Oncore UT+ GPS receivers installed into custom-built time-tagging circuits that are calibrated in the laboratory to a statistical precision of better than 15 ns. We describe timing calibration and synchronization methods applied in the field for both the SD and the FD systems in four areas: (1) checks of timing offsets within the SD using ... continued below

Physical Description

4 pages

Creation Information

Allison, P.; Bellido, J.; Bertou, Xavier; Covault, C.E.; U., /Case Western Reserve; Fick, B.E. et al. August 1, 2005.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

Reconstruction of cosmic ray arrival directions for Surface Detectors (SD) and Fluorescence Detectors (FD) of the Pierre Auger Observatory requires accurate timing (25 nanoseconds or better) between measurements at individual detectors and instrument triggers. Timing systems for both SD and FD are based on Motorola Oncore UT+ GPS receivers installed into custom-built time-tagging circuits that are calibrated in the laboratory to a statistical precision of better than 15 ns. We describe timing calibration and synchronization methods applied in the field for both the SD and the FD systems in four areas: (1) checks of timing offsets within the SD using co-located station pairs and timing residuals on reconstructed showers, (2) calibration within the FD using a custom-build LED calibration system, (3) calibration between SD and FD using laser signals fed simultaneously into an SD station and across the FD via the Central Laser Facility (CLF), and (4) studies of synchronization between FD and SD through the analysis of events detected by both systems, called hybrid events. These hybrid events allow for a much more accurate reconstruction of the shower and for relatively tight constraints on timing calibration offsets. We demonstrate that statistical and systematic timing uncertainties have no significant impact on the event reconstruction.

Physical Description

4 pages

Source

  • Presented at 29th International Cosmic Ray Conference (ICRC 2005), Pune, India, 3-11 Aug 2005

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: FERMILAB-CONF-05-309-E-TD
  • Grant Number: AC02-76CH03000
  • Office of Scientific & Technical Information Report Number: 875553
  • Archival Resource Key: ark:/67531/metadc877126

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • August 1, 2005

Added to The UNT Digital Library

  • Sept. 21, 2016, 2:29 a.m.

Description Last Updated

  • Dec. 7, 2016, 11:11 p.m.

Usage Statistics

When was this article last used?

Congratulations! It looks like you are the first person to view this item online.

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Allison, P.; Bellido, J.; Bertou, Xavier; Covault, C.E.; U., /Case Western Reserve; Fick, B.E. et al. Timing calibration and synchronization of surface and fluorescence detectors of the Pierre Auger Observatory, article, August 1, 2005; Batavia, Illinois. (digital.library.unt.edu/ark:/67531/metadc877126/: accessed December 14, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.