A vapor-dominated reservoir exceeding 600{degrees}F at the Geysers, Sonoma County, California

PDF Version Also Available for Download.

Description

A high-temperature vapor-dominated reservoir underlies a portion of the Northwest Geysers area, Sonoma County, California. The high-temperature reservoir (HTR) is defined by flowing fluid temperatures exceeding 500º F, rock temperatures apparently exceeding 600º F and steam enthalpies of about 1320 BTU/lb. Steam from existing wells drilled in the Northwest Geysers is produced from both a “typical” Geysers reservoir and the HTR. In all cases, the HTR is in the lower portion of the wells and is overlain by a “typical” Geysers reservoir. Depth to the high-temperature reservoir is relatively uniform at about -5900 ft subsea. There are no identified lithologic ... continued below

Physical Description

73-81

Creation Information

Walters, M.A.; Sternfeld, J.N.; Haizlip, J.R.; Drenick, A.F. & Combs, Jim January 1, 1988.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

A high-temperature vapor-dominated reservoir underlies a portion of the Northwest Geysers area, Sonoma County, California. The high-temperature reservoir (HTR) is defined by flowing fluid temperatures exceeding 500º F, rock temperatures apparently exceeding 600º F and steam enthalpies of about 1320 BTU/lb. Steam from existing wells drilled in the Northwest Geysers is produced from both a “typical” Geysers reservoir and the HTR. In all cases, the HTR is in the lower portion of the wells and is overlain by a “typical” Geysers reservoir. Depth to the high-temperature reservoir is relatively uniform at about -5900 ft subsea. There are no identified lithologic or mineralogic conditions that separate the HTR from the “typical” reservoir, although the two reservoirs are vertically distinct and can be located in most wells to within about 200 ft by the use of downhole temperature-depth measurements. Gas concentrations in steam from the HTR are higher (6 to 9 wt %) than from the “typical” Geysers reservoir (0.85 to 2.6 wt %). Steam from the HTR is enriched in chloride and the heavy isotopes of water relative to the “typical” reservoir. Available static and dynamic measurements show pressures are subhydrostatic in both reservoirs with no anomalous differences between the two: the HTR pressure being near 520 psia at sea level datum. The small observed differences in pressure between the reservoirs appear to vary along a steam density gradient. It is postulated that the Northwest Geysers area evolved more slowly toward vapor-dominated conditions than other parts of The Geysers field because of its poor connection with the surface. In this paper, a model is presented in which the boundary between the HTR and “typical” reservoir is a thermodynamic feature only, resulting from recent deep venting of a liquid-dominated system in which conduction is still an important component of heat transfer.

Physical Description

73-81

Subjects

Source

  • Proceedings, thirteenth workshop on geothermal reservoir engineering, Stanford University, Stanford, CA, January 19-21, 1988

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: SGP-TR-113-11
  • Grant Number: AS07-84ID12529
  • Office of Scientific & Technical Information Report Number: 887139
  • Archival Resource Key: ark:/67531/metadc877020

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • January 1, 1988

Added to The UNT Digital Library

  • Sept. 21, 2016, 2:29 a.m.

Description Last Updated

  • Dec. 2, 2016, 6:08 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 1

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Walters, M.A.; Sternfeld, J.N.; Haizlip, J.R.; Drenick, A.F. & Combs, Jim. A vapor-dominated reservoir exceeding 600{degrees}F at the Geysers, Sonoma County, California, article, January 1, 1988; United States. (digital.library.unt.edu/ark:/67531/metadc877020/: accessed October 17, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.