X-Ray Microdiffraction Characterization of DeformationHeterogeneities in BCC Crystals

PDF Version Also Available for Download.

Description

The deformation behavior of BCC metals is being investigated by x-ray microdiffraction measurements (mu XRD) for the purpose of characterizing the dislocation structure that results from uniaxial compression experiments. The high brilliance synchrotron source at the Advanced Light Source (Lawrence Berkeley National Lab) and the micron resolution of the focusing optics allow for the mapping of Laue diffraction patterns across a sample. These measurements are then analyzed in order to map the distribution of residual stresses in the crystal. An important finding is the observation of Laue spot ''streaking'', which indicates localized rotations in the lattice. These may represent an ... continued below

Creation Information

Magid, K.R.; Lilleodden, E.T.; Tamura, N.; Florando, J.N.; Lassila, D.H.; LeBlanc, M.M. et al. November 22, 2004.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Publishers

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

The deformation behavior of BCC metals is being investigated by x-ray microdiffraction measurements (mu XRD) for the purpose of characterizing the dislocation structure that results from uniaxial compression experiments. The high brilliance synchrotron source at the Advanced Light Source (Lawrence Berkeley National Lab) and the micron resolution of the focusing optics allow for the mapping of Laue diffraction patterns across a sample. These measurements are then analyzed in order to map the distribution of residual stresses in the crystal. An important finding is the observation of Laue spot ''streaking'', which indicates localized rotations in the lattice. These may represent an accumulation of same-sign dislocations. Theoretical modeling of the diffraction response for various slip systems is presented, and compared to experimental data. Preliminary results include orientation maps from a highly strained Ta bicrystal and a less highly strained Mo single crystal. The orientation maps of the bicrystal indicate a cell-like structure of dense dislocation walls. This deformation structure is consistent with previous OIM studies of the same crystal. The results suggest that mu XRD may be a particularly useful tool for microscale studies of deformation patterns in a multi-scale investigation of the mechanisms of deformation that ranges from macroscopic deformation tests to high resolution TEM studies of dislocation structures.

Source

  • Materials Research Society Fall Meeting, Boston,MA, 11/23/2004 - 12/03/2004

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: LBNL--58974
  • Grant Number: DE-AC02-05CH11231
  • Office of Scientific & Technical Information Report Number: 885249
  • Archival Resource Key: ark:/67531/metadc876995

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • November 22, 2004

Added to The UNT Digital Library

  • Sept. 21, 2016, 2:29 a.m.

Description Last Updated

  • Sept. 30, 2016, 3:57 p.m.

Usage Statistics

When was this article last used?

Congratulations! It looks like you are the first person to view this item online.

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Magid, K.R.; Lilleodden, E.T.; Tamura, N.; Florando, J.N.; Lassila, D.H.; LeBlanc, M.M. et al. X-Ray Microdiffraction Characterization of DeformationHeterogeneities in BCC Crystals, article, November 22, 2004; (digital.library.unt.edu/ark:/67531/metadc876995/: accessed September 18, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.