The growth of epitaxial uranium oxide observed by micro-Raman spectroscopy

PDF Version Also Available for Download.

Description

Raman spectroscopy can be performed with micrometer resolution and can thus be used to determine the dependence of oxide thickness on the substrate's grain structure or local impurity inclusions. The Raman signal amplitude emitted from an epitaxial uranium oxide layer as a function of oxide thickness has been modeled for light of 632.8 nm wavelength incident on the oxide and reflected from the uranium substrate using the optical properties determined by spectrophotometry. The model shows that the Raman signal increases with oxide thickness and saturates at about 150 nm thickness. The model was compared with the measured Raman signal amplitude ... continued below

Physical Description

8 p. (0.3 MB)

Creation Information

Caculitan, N & Siekhaus, W J December 12, 2005.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. It has been viewed 31 times . More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

Raman spectroscopy can be performed with micrometer resolution and can thus be used to determine the dependence of oxide thickness on the substrate's grain structure or local impurity inclusions. The Raman signal amplitude emitted from an epitaxial uranium oxide layer as a function of oxide thickness has been modeled for light of 632.8 nm wavelength incident on the oxide and reflected from the uranium substrate using the optical properties determined by spectrophotometry. The model shows that the Raman signal increases with oxide thickness and saturates at about 150 nm thickness. The model was compared with the measured Raman signal amplitude of an epitaxial uranium oxide layer growing in air with a known time dependence of oxide growth.

Physical Description

8 p. (0.3 MB)

Notes

PDF-file: 8 pages; size: 0.3 Mbytes

Source

  • Presented at: Materials Research Society, Boston, MA, United States, Nov 28 - Dec 02, 2005

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: UCRL-CONF-217799
  • Grant Number: W-7405-ENG-48
  • Office of Scientific & Technical Information Report Number: 883532
  • Archival Resource Key: ark:/67531/metadc876967

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • December 12, 2005

Added to The UNT Digital Library

  • Sept. 21, 2016, 2:29 a.m.

Description Last Updated

  • April 17, 2017, 1:34 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 31

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Caculitan, N & Siekhaus, W J. The growth of epitaxial uranium oxide observed by micro-Raman spectroscopy, article, December 12, 2005; Livermore, California. (digital.library.unt.edu/ark:/67531/metadc876967/: accessed September 18, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.