This is an informal report intended primarily for internal or limited external distribution. The opinions and conclusions stated are those of the author and may or may not be those of the laboratory.

LAWRENCE LIVERMORE LABORATORY
University of California/Livermore, California

FISSION CROSS SECTION MEASUREMENTS AT
THE LLL 100-MeV LINAC†

J. C. Browne

May 9, 1975

†Work performed under the auspices of the Energy Research and Development Administration.

DISTRIBUTION OF THIS DOCUMENT UNLIMITED
DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.
DISCLAIMER

Portions of this document may be illegible in electronic image products. Images are produced from the best available original document.
FISSION CROSS SECTION MEASUREMENTS AT THE LLL 100-MeV LINAC

J. C. Browne

The purpose of this report is to provide information to the Chairman of the U.S. Nuclear Data Committee (USNDC) concerning the fission cross-section measurement program at the Livermore 100-MeV linac.

1. 235U Fission Cross Section (J. B. Czirr, G. S. Sidhu)

The object of this experiment is to measure σ_f for 235U from thermal energy to 20 MeV to an accuracy of 1%. This consists of several different measurements. First, the fission cross section is measured relative to the n,p scattering cross section in the neutron energy range from 0.8 MeV to 20 MeV. This measurement has been completed and is described in two reports, UCRL-76041 and UCRL-76676. The accuracy of the measurement is 1% from 0.8 MeV to 7 MeV and increases to 2% at 14 MeV. The second part of the experiment is the ratio of the 235U fission cross section relative to the 6Li (n,α) cross section from thermal to 1 MeV. This measurement used a 0.5 mm thick piece of 6Li glass. Corrections for neutron scattering from oxygen were directly measured for several thicknesses of glass and hence the ratio could be extrapolated to zero thickness. These results are also complete and are described in UCRL-76572.

The third part of this experiment is to measure the absolute cross section of 6Li (n,α) relative to a "black" detector. A new "black" detector is being designed and built by J. B. Czirr. This measurement is planned for late 1975.
2. **Fission Cross-Section Ratios** (J. W. Behrens, G. W. Carlson)

A measurement of the ratio of the fission cross sections of ^{233}U and ^{238}U relative to ^{235}U has been completed in the energy range 1 keV to 30 MeV for ^{233}U and 100 keV to 30 MeV for ^{238}U. Statistical uncertainties in the data are less than 4%. The data were taken at 34 meters from the linac target which yielded an energy resolution of 5% at 20 MeV and 1.5% at 1 MeV. This measurement is described in UCRL-76219.

Final measurements are in progress to complete the ^{239}Pu to ^{235}U ratio over a similar energy range.

In addition, the ratio of the fission cross sections of ^{233}U and ^{239}Pu relative to the ^6Li (n,α) cross section are presently being measured in the energy range from thermal to 1 MeV. These measurements along with the $^{235}\text{U}/^6\text{Li}$ measurements of Czirr discussed above will provide an accurate normalization for these cross sections.
LLL Internal Distribution

J. D. Anderson
J. C. Browne
V. Bowers
TID Berkeley
TID File

External Distribution

Harold E. Jackson Jr.
Argonne National Laboratory
9700 South Cass Ave.
Argonne, Illinois 60439

TIC, Oak Ridge, Tennessee
NOTICE

"This report was prepared as an account of work sponsored by the United States Government. Neither the United States nor the United States Energy Research & Development Administration, nor any of their employees, nor any of their contractors, subcontractors, or their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness or usefulness of any information, apparatus, product or process disclosed, or represents that its use would not infringe privately-owned rights."

Printed in the United States of America
Available from
National Technical Information Service
U.S. Department of Commerce
5285 Port Royal Road
Springfield, Virginia 22151
Price: Printed Copy $__; Microfiche $2.25

<table>
<thead>
<tr>
<th>*Pages</th>
<th>NTIS Selling Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-50</td>
<td>$4.00</td>
</tr>
<tr>
<td>51-150</td>
<td>$5.45</td>
</tr>
<tr>
<td>151-325</td>
<td>$7.60</td>
</tr>
<tr>
<td>326-500</td>
<td>$10.60</td>
</tr>
<tr>
<td>501-1000</td>
<td>$13.60</td>
</tr>
</tbody>
</table>