Phase transformation of "chem-prep" PZT 95/5-2Nb HF1035 ceramic under quasi-static loading conditions.

PDF Version Also Available for Download.

Description

Specimens of poled and unpoled ''chem-prep'' PNZT ceramic from batch HF1035 were tested under hydrostatic, uniaxial, and constant stress difference loading conditions at -55, 25, and 75 C. The objective of this experimental study was to characterize the mechanical properties and conditions for the ferroelectric (FE) to antiferroelectric (AFE) phase transformations of this ''chem-prep'' PNZT ceramic to aid grain-scale modeling efforts in developing and testing realistic response models for use in simulation codes. As seen from a previously characterized material (batch HF803), poled ceramic from HF1035 was seen to undergo anisotropic deformation during the transition from a FE to an ... continued below

Physical Description

86 p.

Creation Information

Montgomery, Stephen Tedford; Lee, Moo Yul; Meier, Diane A. & Hofer, John H. July 1, 2006.

Context

This report is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this report can be viewed below.

Who

People and organizations associated with either the creation of this report or its content.

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this report. Follow the links below to find similar items on the Digital Library.

Description

Specimens of poled and unpoled ''chem-prep'' PNZT ceramic from batch HF1035 were tested under hydrostatic, uniaxial, and constant stress difference loading conditions at -55, 25, and 75 C. The objective of this experimental study was to characterize the mechanical properties and conditions for the ferroelectric (FE) to antiferroelectric (AFE) phase transformations of this ''chem-prep'' PNZT ceramic to aid grain-scale modeling efforts in developing and testing realistic response models for use in simulation codes. As seen from a previously characterized material (batch HF803), poled ceramic from HF1035 was seen to undergo anisotropic deformation during the transition from a FE to an AFE phase. Also, the phase transformation was found to be permanent for the two low temperature conditions, whereas the transformation can be completely reversed at the highest temperature. The rates of increase in the phase transformation pressures with temperature were practically identical for both unpoled and poled PNZT HF1035 specimens. We observed that temperature spread the phase transformation over mean stress analogous to the observed spread over mean stress due to shear stress. Additionally, for poled ceramic samples, the FE to AFE phase transformation was seen to occur when the normal compressive stress, acting perpendicular to a crystallographic plane about the polar axis, equals the hydrostatic pressure at which the transformation otherwise takes place.

Physical Description

86 p.

Language

Item Type

Identifier

Unique identifying numbers for this report in the Digital Library or other systems.

  • Report No.: SAND2006-4387
  • Grant Number: AC04-94AL85000
  • DOI: 10.2172/888995 | External Link
  • Office of Scientific & Technical Information Report Number: 888995
  • Archival Resource Key: ark:/67531/metadc876820

Collections

This report is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this report?

When

Dates and time periods associated with this report.

Creation Date

  • July 1, 2006

Added to The UNT Digital Library

  • Sept. 21, 2016, 2:29 a.m.

Description Last Updated

  • Dec. 7, 2016, 6:41 p.m.

Usage Statistics

When was this report last used?

Yesterday: 0
Past 30 days: 1
Total Uses: 1

Interact With This Report

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Montgomery, Stephen Tedford; Lee, Moo Yul; Meier, Diane A. & Hofer, John H. Phase transformation of "chem-prep" PZT 95/5-2Nb HF1035 ceramic under quasi-static loading conditions., report, July 1, 2006; United States. (digital.library.unt.edu/ark:/67531/metadc876820/: accessed November 20, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.