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INTRODUCTION 

This report describes the detailed results for task 2 of  DOE-NERI project number 99-119 
entitled Automatic Development of Highly Reliable Control Architecture for Future 
Nuclear Power Plants.  This project is a collaboration effort between the Oak Ridge 
National Laboratory (ORNL,) The University of Tennessee, Knoxville (UTK) and the 
North Carolina State University (NCSU).  UTK is the lead organization for Task 2 under 
contract number DE-FG03-99SF21906. 
 
Under task 2 we completed the development of data-driven models for the 
characterization of sub-system dynamics for predicting state variables, control functions, 
and expected control actions.  We have also developed the Principal Component Analysis 
(PCA) approach for mapping system measurements, and a nonlinear system modeling 
approach called the Group Method of Data Handling (GMDH) with rational functions, 
and includes temporal data information for transient characterization. 
 
The majority of the results are presented in detailed reports for Phases 1 through 3 of our 
research, which are attached to this report. 
 

TASK 2.2 DETECTION OF SIMULTANEOUS FAULTS 

Under this task, we completed the development of a fault detection and isolation module 
that combines system operational knowledge (including system simulation) and a rule-
based logic for FDI of both single and dual faults in dissimilar sensor and field devices.  
In addition, we have developed a complimentary approach that quantifies the prediction 
errors using a fault pattern classification technique. 
 
The above techniques have been applied to a laboratory process control loop using both 
simulation and actual loop measurements.  The techniques have been demonstrated for 
detecting and isolating faults in sensors and devices in a U-tube steam generator (UTSG) 
in a pressurized water reactor (PWR) using a full-scope PWR simulator developed by 
North Carolina State University.  The application to the laboratory system and 
preliminary application to a PWR steam generator were described in the Phase 1 Report. 
 

TASK 2.3 IMPLEMENTATION OF ON-LINE DIAGNOSTICS 
SYSTEM 

The key contributions of Task 2 during Phase-3 of the project include the following: 1. 
Development of data-driven system models using Group Method of Data Handling 
(GMDH), Principal Component Analysis (PCA) and Adaptive Network Fuzzy Inference 
System (ANFIS), 2. Fault detection by tracking model residuals of selected process 
variables and control functions, and 3. Fault isolation using a rule-based technique, a 
residual pattern classification technique, and a multi-observer digraph approach.  Fault 
diagnosis, during both steady state and transient operations, is demonstrated with 
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applications to a nuclear plant steam generator.  A full-scope physics model of the steam 
generator in a pressurized water reactor (PWR) has been used to generate an extensive 
database of normal plant operation and faulty operation data.  Some of the faults being 
monitored include: degradation of turbine control valve, steam generator water level 
sensor drift, feed water flow meter sensor offset, dead band error in feed control valve, 
steam pressure sensor drift and steam flow meter offset.  The type of degradations used in 
the study include several dual faults that are selected from the above single device faults. 
 

Group method of data handling (GMDH) 
The GMDH constructs a model of a desired output as a function of a set of related inputs 
from a subsystem, by a successive polynomial approximation (Farlow, 1984).  The 
general relationship has the form shown in Equation (1) where  {x1,  x2, … , xm} is a 
vector of input variables and y is the variable to be predicted.  This formulation can be 
extended to the prediction of multiple outputs  {y1, y2, … , yn}.  An efficient numerical 
algorithm has been developed for applications to process control loops (Upadhyaya et 
al.). 
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Principal component analysis (PCA) 
PCA makes use of the property of the data that for normal operation the measurements 
can be characterized by a low dimension hyper-surface.  Faulty conditions in one or more 
of the field devices lead to deviations from the surface.  These deviations from the 
surface, in terms of prediction residuals, can be used for fault detection.  The pattern of 
the residuals of the various measurements may be established for each type of fault under 
consideration.   
 
Consider an (m x n) data matrix X, with n samples along the rows and each sample 
consisting of m measurements.  PCA decomposes X into a product of scores (T) and 
orthogonal loadings (P) as (Kaistha and Upadhyaya, 2001) 
 
   X = TPT + E       (2) 
 
where E contains the residuals.  The principal components (PCs) in the successive 
columns of P are obtained such that maximum variance in X is explained. Thus, if the 
data are highly collinear, the first few PCs explain most of the variability in the data and 
are retained.  The residuals in E constitute the unexplained variation in the data and 
contain the higher PCs that are rejected.  The PCs are obtained as the right singular 
vectors of the data matrix X, using its singular value decomposition.  The PCA method 
can be generalized to include nonlinear forms of the measurement vector (Kaistha & 
Upadhyaya, 2001). 
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Adaptive network fuzzy inference system (ANFIS) 
ANFIS is a data-driven modeling approach that combines the system knowledge with the 
learning capability of an artificial neural network (Jang, 1993).  The system knowledge is 
represented by rules.  The membership functions of each of the input signals are 
estimated using the training data and a neural network model.  This step introduces 
nonlinearity in the estimated weights for all the postulated rules.  For each fuzzy rule, the 
output is computed using a linear model of the input signals.  The strength of this 
approach lies in the ability to use prior knowledge, and to update membership functions 
that provide a better model for the desired output.  
 

Fault detection 
The first step in the FDI implementation is the detection of possible faults in sensors and 
other devices.  The GMDH, PCA or the ANFIS model is used to compute the residuals 
between the measured variable and its prediction from other measurements.  This 
calculation is performed for all the variables considered in the analysis.  If the residual 
RMS value exceeds a preset alarm level, then we declare that a possible error exists in 
one or more of the devices.  In this study, we have considered anomalies in one or two 
devices at a time.  Once a fault is detected, the next step is to isolate a single or a dual 
fault. 
 

Fault isolation using parallel approaches 
The first step in the fault isolation procedure is to compute the residual sequence between 
the measurements and the model-estimated values of the set of variables used in the 
analysis.  For a steam generator system the number of state variables and control 
functions considered is less than m = 15.  For the GMDH and ANFIS models, the 
residuals are calculated as the difference between the measurement and the model 
prediction.  The residuals are calculated similarly for the PCA model, where all the state 
variables considered in the multivariate model are used for residual computation.  Thus, 
if x is a sample measurement vector, the residual vector e is given by (P is the matrix of 
principal components) 
 

 e = x(I – PPT)     (3) 
 
The first approach used for fault isolation is the development of a rule base for each of 
the fault types.  The rule base describes the directional and magnitude variations in the 
residuals of all the variables considered in the analysis.  The fault isolation is then 
performed by comparing the residual pattern with each of the pre-established residual 
patterns (similar to a template matching) for all the faults.  The pattern with the best 
match is then used for deciding about the fault type. 
 
The second approach for fault isolation uses the PCA model of the residuals for each 
known fault.  The first principal component of this model is used as a fault signature.  For 
a given test case, the residual vector is computed using the data-driven model.  This 
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vector is then projected on to the selected PC direction and the corresponding cosine of 
the angle is determined.  If this measure is close to unity 
(> 0.9), then the fault is isolated.  This procedure is repeated for all the fault directions. 
 
The third approach for fault isolation is the multi-model digraph technique.  For a set of 
m models of the measurements, identify the measurements that have propagated their 
faults by tracking backwards until a model gives insignificant residual, or its output has 
not been corrupted.  Next, reconstruct all the corrupted outputs by tracking forward from 
the identified fault origin to the input nodes of the detected model.  Compute the residual 
of the measurement in question using all the reconstructed inputs.  If the reconstructed 
residuals and the original residuals are consistent then a local fault is isolated.  For the 
case of a dual fault, the reconstructed residuals of the local device would deviate from the 
original residual, indicating an additional fault in the input signal. 
 
The simultaneous implementation of the above techniques increases the confidence of 
fault isolation. 
 

Applications of the FDI method to a steam generator system 
Both normal operation and faulty operation data were generated using a full-scope PWR 
simulation code.  The following measurements are considered in the following 
applications: narrow range (NR) SG water level sensor, feed water flow transmitter, 
steam flow transmitter, steam pressure transmitter, turbine control valve (TCV) position, 
feed control valve (FCV) position. 
 
Figure 1shows the plot of the residual directions of the measurements for the case when 
there is a bias fault in the narrow range SG level sensor.  Note that the NR direction 
signature has a maximum value (≈0.9).  The direction signatures for the steam flow and 
feed flow are not insignificant, primarily because their settings change because of error in 
the NR sensor and the resulting feedback.  Note that each of the fault direction plots 
illustrates nine steady-state operating conditions. 
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Figure 1.  Narrow range SG water level sensor bias fault for the case of steady-state plant 
operation. The residual directional features are plotted for six different measurements at nine 
operating levels. The confidence level for the NR fault has the largest value. 
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An example of tracking turbine control valve fault during transient power operation is 
shown in Figure 2.  A change in the actuator time constant has been simulated.  Figure 2a 
is a plot of the measured and model-predicted values of the TCV position.  The residual 
between the two variables is plotted in Figure 2b.  The application illustrates that the 
time-dependent GMDH model is able to track the valve error during the transient 
operation. 

 
The last example illustrates the application of ANFIS modeling and the multi-model 
digraph for isolating both single and dual faults.  The single fault considered is the feed 
water flow transmitter error.  The dual fault considers simultaneous errors in the SG 
pressure transmitter and the feed water flow transmitter.   
 
Figure 3 shows the plots of feed water flow measurement residual.  Among other signals 
the model uses the SG pressure.  The residual magnitude exceeds the acceptable limit, 
indicating a possible fault in the feed water flow transmitter.  The model predictions 
using the SG pressure and using the reconstructed SG pressure are the same, thus 
indicating that the SG pressure is not in error.  In the case when the SG pressure 
transmitter has an error, the two prediction residuals do not match, as shown in Figure 3b.  
This indicates that the SG pressure transmitter is also faulty, in addition to the faulty feed 
water flow sensor.  The model-based directional graph is able to detect both single and 
dual faults. 
 

 

 
   (a)       (b) 

Figure 2.  A comparison of the measured and predicted values of the TCV position is made in 
(a).This is the case of fault detection during a plant transient.  The residual plot is shown in (b). 
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-----after SG pressure is reconstructed 

___before SG pressure is reconstructed 

Figure 3.  Figure 3. Prediction residual of feed water flow transmitter using measured and 
reconstructed SG pressure for the case of single fault (a) and simultaneous dual faults (b). 
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Task 2.  Phase 1 
Advanced Monitoring and Diagnostics 

SUMMARY 
 
 This report describes the tasks performed and the progress made by The University 
of Tennessee (UTK) during 1999-2000 on the DOE-NERI project entitled Automatic 
Development of Highly Reliable Control Architecture for Future Nuclear Power 
Plants.  UTK is collaborating with the Instrumentation & Controls Division of ORNL (lead 
organization) and the North Carolina State University (NCSU).  The objective of the UTK 
research task is to develop an on-line monitoring system for fault detection and isolation 
(FDI) of sensors and field devices in a nuclear power plant.  In this research emphasis is 
given to process instrumentation in a nuclear power plant such as temperature, pressure, 
flow, level transmitters, and measurements of control functions.  Field devices include 
valve actuators, control modules, spray and heater systems, pumps, and other similar 
equipment.  The goal of this task is to provide diagnostics information to a system 
executive for enhanced decision-making by the plant control system. 
 
 The following R&D tasks have been accomplished during this reporting period: 
 

• Development of data-driven models for the characterization of sub-system 
dynamics for predicting state variables, control functions, and expected control 
actions. 

• Development of a nonlinear system modeling approach called the Group Method of 
Data Handling (GMDH) with rational functions. 

• Development of the Principal Component Analysis (PCA)  approach for mapping 
system measurements. 

• Development of a fault detection and isolation module that combines system 
operational knowledge (including system simulation) and a rule-based logic for 
both single and dual faults in dissimilar sensor and field devices. 

• Development of a complimentary approach that quantifies the prediction errors 
using a fault pattern classification technique. 

 
The above techniques have been applied to a laboratory process control loop using both 
simulation and actual loop measurements.  The techniques have been demonstrated for 
detecting and isolating faults in sensors and devices in a U-tube steam generator (UTSG) in 
a pressurized water reactor (PWR).  Only simulation data were used in the latter case. 
 
 During the second phase of this project (FY 2000), the FDI system will be 
implemented for a UTSG system as part of a full-scope PWR plant being developed by 
NCSU.  The current methods will be further developed and extended to fault detection 
during plant transients.  This phase will also include the development of minimum 
requirements for application to an existing PWR, and the limitations imposed by the 
measurements.  The information generated by the FDI module will be interfaced with the 
system executive and the control design system.  A paper was presented at the American 
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Nuclear Society Annual Meeting, June 2000, and another paper will be presented at the 
ANS Topical Meeting on NPIC&HMIT, November 2000. 
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1. INTRODUCTION 

1.1  Background and Motivation 
 
 Existing and new generation of nuclear power plants have economic and reliability 
concerns as addressed by overall plant performance, unscheduled downtime and the long-
term management of critical assets.  The key to achieving these needs is to develop an 
integrated approach for monitoring, control, fault detection and diagnosis of plant 
components such as sensors, actuators, control devices and other equipment.  Several 
methods developed by industry and academia, for monitoring isolated sensors and system 
components were reported [1-8].  Model-based local sensor validation and fault diagnosis 
methods were developed for specific applications [3,8].  These approaches assume that a 
system fault being monitored occurs in a specific plant component and in an isolated 
fashion.  Fault detection and isolation (FDI) of sensors and field devices is an important 
step towards the implementation of an automated and intelligent process control strategy 
[12]. 
 
A large-scale system, such as a nuclear power plant, has several feedback control loops.  
This makes the identification and isolation of faults in these interconnected systems highly 
complex.  Even when a sensor used for set point control is faulty, the control system 
through feedback, tries to vary the actuating signals until the error in the set point is 
eliminated.  The sensor-alone type validation will fail in this situation.  It is therefore 
necessary to consider fault detection and isolation at the system level rather than at the 
device level.  The objective of this R&D task is to develop an on-line sensor and field 
device monitoring and fault detection system, when simultaneous faults may occur in two 
or more of these devices.  This goal will be achieved by a two-step approach: (1) 
Development of data-driven models for predicting multiple variables, using rational 
function approximation and group method of data handling;  (2) A decision-making module 
that uses system functional knowledge base and pattern classification algorithms, that will 
be deployed in a distributed configuration.  High priority will be given to the 
computational efficiency of these techniques, with the capability to change the module 
structure with changing plant conditions.  The intrinsic merit of the project lies in the 
development of an autonomous global monitoring and fault detection approach that would 
be executed with minimal human interaction. 
 

1.2 Objectives of R&D and Definition of Tasks 
 

The objective of this research task is to develop an on-line monitoring system for 
fault detection and isolation of sensors and field devices in a nuclear power plant.  The 
sensor suite consists of major process variables in a plant, such as temperature, pressure, 
flow, level, and control functions.  Field devices in a power plant include, but are not 
limited to, valve actuators, control modules, spray and heater systems, pumps, and similar 
equipment.  The objectives of this R&D are being accomplished through the completion of 
the following technical tasks: 
 

• Review of literature and previous work. 
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• Characterization of sub-system dynamics using data-driven models for predicting 
state variables, control functions, and expected control actions. 

• Development of a Group Method of Data Handling (GMDH) modeling algorithm 
with rational function approximation. 

• Development of a Principal Component Analysis (PCA)  algorithm with linear and 
nonlinear mapping. 

• Development of an FDI module that combines system operational knowledge and a 
rule-based logic for both single and dual faults in dissimilar sensors and field 
devices. 

• Development of a complimentary module that quantifies the prediction error using a 
fault pattern classification technique. 

• Demonstration of the FDI system with application to an experimental process 
control loop. 

• Demonstration of the FDI system with application to a U-tube steam generator 
(UTSG) in a full-scope simulation model of a 1,300 MWe PWR. 

• Development of minimum requirements for FDI system implementation. 
• Extension of the techniques for the case of fault detection during plant transients. 
• Identification of realistic faults in a PWR and establish the characteristics of 

transient faults as compared with steady-state faults. 
• Interfacing the FDI module with control system module via the system executive 

and development of a graphical user interface (GUI) for the FDI system 
demonstration. 

• Identification of issues in technology transfer to nuclear power industry. 
• Deliverables: Annual Reports and a Final Report. 

FDI software system and User’s Manual. 
Conference and journal manuscripts. 

 

1.3  Summary of Significant Accomplishments During 1999-2000 
 

The following major milestones were accomplished during this reporting period: 

 
• Development and testing of the GMDH modeling module for state and control function 

prediction. 
• Development and testing of the PCA mapping method for system modeling. 
• Development and testing of the FDI module for both single and dual/simultaneous 

faults. 
• Rule-based decision making. 
• Fault pattern clustering approach. 
• Demonstration of the GMDH method using single and dual faults in a laboratory 

process control loop. 
• Demonstration of the PCA approach with application to a PWR steam generator 

(UTSG) system. 
• Preparation of the following manuscripts for publication. 
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• Detection and Isolation of Multiple Faults in Nuclear Plant Systems, ANS 
Annual Meeting, San Diego, June 2000. 

 
• Fault Detection and Isolation of Nuclear Power Plant Sensors and Field 

Devices, ANS Topical Meeting on NPIC & HMIT, November 2000. 
 

1.4  FDI Architecture and Issues in Developing a Robust FDI Algorithm 
 
Figure 1.1 shows the functional modules of the FDI system being developed in this project.  
Both GMDH and PCA modeling of process measurements are considered.  This provides a 
crosschecking of prediction techniques applied to the measurements.  Fault isolation is 
based on either a rule-based algorithm or a pattern classification algorithm.  The following 
issues must be considered in developing a robust FDI algorithm. 
 

• Sensor faults may not be detected in a closed-loop control system. 
• Redundancies in sensors and controllers are used in nuclear power plants (NPPs). 
• Separation of process variations from sensor/field-device faults must be considered. 
• Noise levels in measurements can increase false alarms.  It may be necessary to pre-

process signals to eliminate this effect at different sub-bands. 
• The use of physics models and data-driven models to understand and characterize the 

process dynamics. 
 

 

1.4  Organization of the Report 
 
The group method of data handling (GMDH) algorithm is described in Section 2 and the 
principal component analysis (PCA) is discussed in Section 3.  The application of GMDH 
to the fault detection and isolation of multiple faults in an experimental process control 
loop is presented in Sections 4.  Section 5 describes the application of PCA and pattern 
classification approach to a U-tube steam generator in a PWR.  Concluding remarks and 
plans for Phase 2 are given in Section 6. 
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Figure 1.1.  Schematic showing FDI system functional modules. 
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2.  GROUP METHOD OF DATA HANDLING (GMDH) APPROACH 
FOR MEASUREMENT CHARACTERIZATION 
 

2.1  The GMDH Method with Rational Function Approximation 
 

The objective of this sub-task is to characterize the mapping among process 
variables and control functions using self-organizing and data-driven modeling.  The so-
called Group Method of Data Handling (GMDH) is an algebraic method for predicting 
system states, controller and actuator functions.  A new algorithm, that will create 
appropriate prediction models for different nuclear plant sub-systems, will be developed 
by a rational function approximation of the original GMDH algorithm [11,12].  The GMDH 
approach has the advantage over artificial neural networks in not requiring tedious network 
training procedures.  It is also easy to update the prediction models during plant operation. 
  
 The GMDH constructs a model, of a desired output as a function of a set of related 
inputs from a subsystem, by a successive polynomial approximation.  The general 
relationship has the form shown in Equation (2.1) where  {x1, x2, … , xm} is a vector of 
input variables and y is the variable to be predicted.  This formulation can be extended to 
the prediction of multiple outputs  {y1, y2, … , yn} as well. 
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A typical node of a GMDH modeling layer is a basic quadratic predictor using variables 
[xi, xj].  The model parameters such as {A, B, C, D, E, F}, are estimated from a least-
squares fit using N observations of the input and output variables.   

 

jijiji xFxExDxCxBxAy +++++= 22     (2.2) 
 

Figure 2.1 illustrates that the predicted values of y are propagated to successively 
higher layers of the algorithm, with the approximation of ypred improving at successive 
stages.  At each stage of the approximation, ypred is formed from pairs of input signals (to 
that layer), and new values of the predicted variable are propagated pair-wise to the next 
layer.  The iteration is continued until the mean-squared error between the predicted and 
the measured values of the output variable attains a desired value. 
 
 Parsimony in model fitting is achieved by comparing the fractional prediction 
errors from one generation to the next, and by terminating the algorithm when the error is a 
minimum or when the difference between errors from successive approximation stages is 
less than a preset limit [12]. 
 
 The GMDH approach described above uses polynomial approximation.  This 
polynomial set may be satisfactory in establishing some of the relationships of interest.  In 
characterizing the subsystems in a nuclear power plant it may be necessary to use terms 
containing rational functions (for example, ratios of polynomials in x1 and x2).  The 
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expression (2.3) represents a set of such terms that forms a complete set of terms in a given 
domain. 
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The new set should facilitate the development of prediction models with a 
minimum number of terms.  The computational efficiency of establishing these models will 
be enhanced by a systematic choice of the terms in the set shown in Expression (2.3). 
 
 
  

 
 
 
Figure 2.1.  GMDH network showing m inputs and K layers. 
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2.2  The GMDH Algorithm 
 
 The following steps explain the procedure used in developing data-driven models 
using the group method of data handling. 
 

• Consider N observations of m variables X ≡ {x1, x2, … , xm} and the measurements 
of the variable to be estimated, Y ≡ {y1, y2, … , yN}. 

 
• Divide the data into a training set (nt) and a test set (N-nt). 

 
• For each pair {xi, xj} and Y, compute the regression polynomial 

 

jijiji xFxExDxCxBxAy +++++= 22
 

 
A total of m(m-1)/2 polynomials are computed. 

 
• Create new observations, Z, for each of the new m(m-1)/2 variables. 
• Screening out the least effective variables:  Compute the SSE 

 

( )

∑

∑

=

=

−
=

nt

i
i

nt

i
iji

j

y

zy
r

1

2

1

2

2    (2.4) 

 
• Pick those new inputs for which rj < R (choice of the user). 

 
• Repeat the stage-wise computation until the method starts over-fitting the data.  Plot 

the smallest of {rj} at each stage and look for a minimum.  This is called the 
minimum Ivakhnenko polynomial. 

 
• Using the best-fit model, compute the prediction errors using the test data of length 

(N-nt).  Check if the error rbest is satisfactory. 
 
 

2.3  Enhancement of the GMDH Algorithm 
 

To improve model building with a minimum number of layers, the set of terms 
in the regression model is generalized to include rational functions of {x1, x2, … , xm}. 
 

• The choice of terms in the regression is made according to a binary selector:  
For example, for k=8, the binary number is between 0 and 255 (a total 256 
input vectors). 
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• Example: model number 179 has the terms [1 0 1 1 0 0 1 1] 
• Choose ~ ten best-fit models.  From this set, choose the model with the least 

number of terms! 
 
• To avoid unlimited increase in the number of nodes in a higher GMDH layer, 

use the best m nodes for the succeeding layer.  All layers have the same 
number of nodes, m. 

 
• Make sure that the number of input variables in the first layer is m > 2, in 

order to avoid the termination of GMDH after the first (input) layer. 
 
• To avoid long training times, limit the maximum number of layers for a single 

model (30 was suggested in this study, since no improvement was observed 
beyond this level). 

 
 

2.4  Application of the GMDH Algorithm in an FDI System 
 

The choice of the measurement set {x1, x2 , … , xm}, for each predictor y, is 
determined from the knowledge of the system, simulation studies, and parametric 
analysis such as pair-wise correlations. 
 

• Generate the prediction models using the fault-free data. 
 

• Computes the residual errors for all the state and control functions of interest. 
 

• When the error exceeds a pre-set threshold, a fault is detected. 
 

• Isolate single/multiple faults. 
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3.  PRINCIPAL COMPONENT ANALYSIS (PCA) FOR 
MEASUREMENT CHARACTERIZATION 
 

3.1  Introduction to Principal Component Analysis (PCA) 
 
Principal Component Analysis (PCA)  is a data characterization method that 

extracts the directions of maximum variability in a data matrix X (also the matrix of 
measurements of process signals).  PCA is similar to fitting a hyper-plane in the 
measurement space for the normal operation data, and uses a matrix decomposition method.  
In case of redundancy in X, the first few principal components (PCs) may be sufficient to 
explain most of the variability in the data.  The data may then be represented as the 
projection on to the sub-space of the retained PCs with minimal loss of information.  The 
squared sum of errors (SSE) the perpendicular distance of the test data from the PC hyper-
plane, and should be small for normal operation (see Figure 3.1).  Fault detection is 
performed by evaluating the SSE (or residuals) after projecting the test data on to the PC 
hyper-plane.  A large value of SSE indicates a possible fault in the system. 
 
 PCA uses a fundamental result of linear algebra, called the Singular Value 
Decomposition (SVD).  The following references are suggested [13, 16-23, 25-33, 39]. 
 
 

Singular Value Decomposition (SVD) 
 
SVD: Every (N x m) matrix A can be decomposed into A = U Σ VT, where U and V are 
orthogonal matrices, and Σ is diagonal. 

 
A = U Σ VT = [u1 .. ur .. uN]. Diag[σ1 .. σ r]. [v1 .. vr .. vm]T  (3.1) 

 
• U(NxN) and V(mxm) are orthogonal matrices: UTU = VTV =I. 
• The matrix Σ has the singular values σ1, ... , σr on its diagonal and zero elsewhere.  

The dimension r < N and r < m. 
 
Remark: 
 
The singular values {σi} are not eigenvalues of A.  But {σi

2} are eigenvalues of ATA. 
 
Definitions: 
A (Nxm) is a rectangular matrix.  Its row space (each row has m elements) is r-dimensional 
(inside Rm) and its column space (each column has N elements) is r-dimensional (inside 
RN). 
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• Required to choose orthonormal bases: Row space basis: [v1, … , vr] and 
column space basis: [u1, … , ur]. 
We want orthonormal bases that also diagonalize A. 

 
• For a (2x2) matrix A 
 

A[v1 v2] = [σ1u1 σ2u2] = [u1 u2]   σ1     
                         σ2 
     
AV = UΣ  and  UTU = VTV =I      
 
 

 
• The singular value decomposition (SVD) of A is given by 
 

A = UΣV-1 = UΣVT,  Σ is diagonal (*) 
 
• From (*) 
 

ATA = (UΣVT ) T(UΣVT) = VΣTUTUΣVT 
 
     ATA = VΣTΣVT 
 
• For the symmetric matrix ATA, the columns of V are its eigenvectors corresponding to 

its eigenvalues {σ1
2, ... , σr

2}.  This indicates how to calculate the matrix V. 
 
• Once {vi} are known, the {ui} are calculated from the equations 
 

Avi = σiui, i = 1, 2, … , r 
 

 
• Remark: 
• The vectors {ui} can be calculated directly from AAT. 
 
• AAT = (UΣVT ) (VΣTUT) = UΣΣTUT. 
 
• The columns of U are the eigenvectors of AAT (and correspond to the same eigenvalues 

as those of ATA). 
 
• Example: 
 

A =     2     2  ATA =     5   3 
  -1    1                          3    5 
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• Eigenvalues of ATA are σ1
2 =2,  σ2

2 =8 
 

 
• v1 =  [-1/2    1/√2 ]t and  v2 =  [1/√2   1/√2 ]t 

        
• By computing the normalized values of Av1 and Av2, we get 

 
• u1 =  [0  1]  and u2 =  [ 1  0] 

 
 

• Now verify the results 
 

A = UΣVT =   0    1      √2    0        -1/√2  1/√2 
                       1    0      0   2√2        1/√2  1/√2 

 
Remarks: 
The matrices U and V contain orthonormal basis for all four fundamental subspaces: 
 

• First r columns of V: row space of A 
• Last m-r columns of V: null space of A 
• First r columns of U: column space of A 
• Last N-r columns of U: null space of AT 

 
 

3.3  Principal Component Analysis of Process Data 
 
Consider a data matrix X (N x m) with m variables and N independent measurements. 
 
X  =         x11   …     x1m 
     x21   …     x2m                                              (3.2) 
                                              N 
 
               xN1  …     xNm 
 
     m        
 
Decompose X into a product of scores (T) and loadings (P) as 
 
    X = TPT + E     (3.3) 
 
 Where E represents the residuals (error) after projection on to the principal axes or 
the hyper-plane.  The PCs are ordered such that the successive PCs explain the contribution 
to X in descending order of the lengths of principal axes of the hyperellipsoid of the data 
space. 

 
  Now consider the SVD of the data matrix X: 
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    X = UΣVT     (3.4) 

• Where  
U is an orthogonal matrix (NxN) spanning the column space of X. 
V is an orthogonal matrix spanning the row space of X. 
Σ  is a diagonal matrix of singular values of X in decreasing magnitude. 
 

 
Interpretation of the PCA of Process Data 
 

 Consider a column vector b (mx1) in the row space of X so that 
 
     Xb = UΣ (VTb) 
 

The term in the parentheses represents a rotation of the reference from unit circle to 
V. 
 

• Multiplication by Σ  corresponds to a scaling of vector b in the V frame by the 
corresponding singular values and transforms b to the column space of X.   

 
• The final vector is in the U-frame and multiplication by U transforms to the 

unit hyper sphere in RN. 
 

• The columns of V are the principal components or directions and the singular 
values are the lengths of the principal axes of the hyper-ellipsoid. 
 

• The scores T are the projections on to the PCs and are obtained as 
 
     T = XV = UΣVTV = UΣ  

 
• The scores are decorrelated 

 
     TTT = (UΣ )T UΣ  = Σ TUTUΣ  = Σ TΣ  

 
• PCA thus represents a rotation of the Imxm reference frame to the PC 

reference frame, so that the data is uncorrelated in the PC frame. 
 

• Retaining p of a maximum rank (X) PCs, the data matrix may be written as 
 
     X = UpΣ pVp

T + E   
 (3.5) 

 
• For a test sample vector x (mx1), the scores (t) and the errors (e) are given by 

 
    t = xVp      (3.6) 
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   e = x – tVp

T = x – xVpVp
T = x(I-VpVp

T)  
 (3.7) 

 
• The fault vector for each case may then be generated from the error vector e. 

 
 The principal component analysis described above performs a linear 
transformation of the signals.  The PCA may be generalized so that the data matrix X 
would consist of nonlinear terms in the measurements.  This generalization is 
somewhat similar to the use of rational functions in GMDH and is described in Section 
2. 
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Figure 3.1.  Illustration of the principal component analysis (PCA) for a two-dimensional  

       measurement system. 
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4.  APPLICATION OF GMDH AND RULE-BASED APPROACH FOR 
FAULT DETECTION AND ISOLATION IN A PROCESS CONTROL 
LOOP 
 

4.1  Introduction 
 
 This section describes the results of the application of the GMDH model prediction 
method and a rule-based approach for fault detection and isolation in a laboratory process 
control loop.  Both single and dual faults were imposed on various devices in this loop.  A 
description of the experimental facility (along with the sensors and devices used) and 
results of loop response simulation are also presented.  

 
The following are the steps in implementing the FDI algorithm: 

 
1. Generation of a fault-free database.  Various system operational conditions must be 

considered here. 
2. Determination of a qualitative relationship among different loop components through 

linear correlation analysis. 
3. Determination of quantitative relationships among different loop components through 

the GMDH technique. 
4. Development of a rule-based decision module for fault detection and isolation.  This 

is accomplished by simulating and characterizing a defined fault in each loop 
component. 

 
 

4.2  GMDH Models and Rational Function Approximation for State and 
Control Function Prediction 
 

The Group Method of Data Handling (GMDH) is an algebraic method for 
predicting system states, controller and actuator functions. This is described in Section 2. 
The GMDH constructs a model, of a desired output as a function of a set of related inputs 
from a subsystem, by a successive polynomial approximation.  The general relationship has 
the form shown in Equation (4.1) where  {x1, x2,…,xm} is a vector of input variables and y 
is the variable to be predicted.  This formulation can be extended to the prediction of 
multiple outputs  {y1, y2, … , yn}. 
 

∑∑∑∑∑∑
= = == ==

++++=
m
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m
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jiij
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1i
ii xxxdxxcxbay L  (4.1) 

 
Figure 4.1 shows a typical node of a GMDH modeling layer with the basic 

quadratic predictor.  The model parameters such as {A, B, C, D, E, F}, are estimated from 
a least-squares fit using N observations of the input and output variables.   
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Figure 4.1.  A node of the GMDH model predictor.  This node uses a second 
      order polynomial transfer function. 
 
 
 In application to nuclear plant subsystems, a systematic study has to be performed 
in establishing models that are valid for a range of operating conditions.  The level of 
complexity of the fault detection and identification algorithm depends on the importance of 
the equipment or the asset being considered, the ease of real-time monitoring and 
communication, and the multiplicity of devices. 
 
 

4.3  Development of a Mathematical Model of the Laboratory Process 
Control System 

 
Theoretical and experimental studies were performed for feasibility studies of the Fault 
Detection and Isolation (FDI) method proposed in this work.  For the theoretical study, a 
simulation model of a process control loop, including sensors, controllers, and actuators, 
was developed.  This model was implemented in the Matlab-SimulinkTM programming 
environment.  For experimental studies a low-pressure water loop (LPWL) system was 
designed and built in the Nuclear Engineering Department [12].  A LabView program was 
developed to acquire loop measurements and to control the experiment. Known faults were 
imposed on different devices, such as pressure transmitters, motor-operated valves, and 
control elements.  The purpose of the model and the test system was to provide useful data 
and an environment for developing and testing the proposed FDI algorithm.  Data from all 
available sensors for normal loop operation were used to build a database.   
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The fault detection and isolation system is first tested using a Simulink model of a 
process control loop.  The control loop is shown in Figure 4.2 and consists of the 
following major components: orifice flow meter (RMT flow meter), water level sensor 
(pressure transmitter), turbine flow meters (two), three motor-operated valves (MOVs) 
with valve position signals, main circulating pump, and a software-driven proportional-
integral controller for the tank water level. Figure 4.3 shows the main screen of the 
Simulink model.  A list of all system variables available is given in Table 4.1. 
 
 

 
 
Figure 4.2.  A schematic of the low-pressure water loop system, showing 

       the various sensors and field devices. 
 
 
 Simulation models used for the control loop include (1) mass balance of water in 
the tank, P-I controller model, and first order sensor models.  An example of steady state 
process representation is shown for the pump model with the following parameters. 

• IFR = Inlet Flow Rate through tank inlet piping. 
• BFR = Bypass Flow Rate through bypass valve 
• IMOVP = Inlet MOV Position. 
• BMOVP = Bypass MOV Position 
• PD = Pump Discharge. 
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Figure 4.3. Physical model of the low-pressure process control loop represented by  

      Matlab-Simulink [12]. 
 
 
Steady-State Pump Model: 
 

PD
BMOVPIMOVP

BMOVP
BFR

PD
BMOVPIMOVP

IMOVP
IFR

*

*

+
=

+
=

   (4.2) 

 
 
 
 
 

 
Table 4.1.  System variables for the process control loop 
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 Variable (measurement) 

1 Bypass MOV position Setpoint 

2 Inlet MOV position Setpoint 

3 Outlet MOV position Setpoint 

4 Measured Bypass MOV position 

5 Measured Inlet MOV position 

6 Measured Outlet MOV position 

7 Water Level Setpoint 

8 Measured Water Level 

9 PID output 

10 Tank Water Temperature set point 

11 Tank Water Temperature 

12 Heater Element PID Controller Action 

13 Measured RMT Inlet Flow rate 

14 Measured Turbine Inlet Flow rate 

15 Measured Turbine Outlet Flow rate 

 
 

GMDH prediction models were developed directly from the measurements for tank 
inlet flow rate, tank outlet flow rate, tank water level, and level controller signal using the 
following functional relationships. 

 
• Inlet Flow Rate = f (Bypass MOV position, Inlet MOV position) 
• Outlet Flow Rate = f (Tank water level, Outlet MOV position) 
• Tank Water Level = f (Inlet flow rate, Outlet MOV position) 
• Controller Output = f (Bypass MOV position, Tank water level, Outlet flow rate) 

 
(4.3) 

 

4.4  Types of (Device) Faults Studied in this Research 
 

Many types of faults can occur in a process control loop such as sensor faults, 
actuator faults, controller faults, pump failure, leaks in piping, etc.  This study limits itself 
to those faults that can lead to significant error in the GMDH prediction models.  Faults are 
introduced in one or more devices during the experiments through the computer interface. 
The following is a list of single faults (7) and dual faults (21) that are simulated using the 
model. 
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Single Faults: 
 
Water level sensor drift (sensor fault). 
Outlet turbine flow meter drift (sensor fault). 
Outlet MOV positioning device drift (actuator fault). 
Bypass MOV position (actuator fault). 
Inlet MOV positioning device drift (actuator fault). 
RMT flow meter drift (sensor fault). 
Water Level Controller (controller fault). 
 
Multiple Faults (Dual Faults): 
 
Inlet MOV Fault and Water Level Sensor Fault         
Inlet MOV Fault and RMT Flow meter Fault           
Inlet MOV Fault and Outlet MOV position             
Inlet MOV Fault and Bypass MOV Position          
Inlet MOV Fault and PID controller Fault            
Water Level Sensor Fault and RMT Flow meter Fault    
Water Level Sensor Fault and Outlet MOV position       
Water Level Sensor Fault and Bypass MOV Position     
Water Level Sensor Fault and Outlet Turbine Flow meter 
RMT Flow meter Fault and Outlet MOV position  
RMT Flow meter Fault and Bypass MOV Position   
RMT Flow meter Fault and Outlet Turbine Flow meter   
Outlet MOV position Fault and Bypass MOV Position    
Outlet MOV position Fault and Outlet Turbine Flow meter 
Bypass MOV Position Fault and Outlet Turbine Flow meter 
PI controller Fault and Inlet MOV Fault     
PI controller Fault and Water Level Sensor Fault   
PI controller Fault and RMT Flow meter Fault   
PI controller Fault and Outlet MOV position    
PI controller Fault and Bypass MOV Position  
PI controller Fault and Outlet Turbine Flow meter. 
 
 
 

4.5  Implementation of the FDI Algorithm  
 
The basic steps for developing an FDI algorithm are: 
 
• Generation of the Fault-Free Database 
• Generating Qualitative Relationships among Loop Components 
• Generating Quantitative Relationships among Loop Components 
• Development of a Rule-based Decision Module for Fault Detection and Isolation. 
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4.5.1. Generation of the Fault-Free Database 

A fault-free database was generated using the theoretical model for different device 
configurations.  Bypass and Outlet MOV positions were systematically changed one at a 
time.  Water level set point was also changed.  The Inlet MOV being a part of the water 
level control system, its position cannot be set manually; its position is set directly by the 
water level controller.  No faulty devices were allowed in this phase.  About 1,235 cases 
were simulated and the data generated were stored in a database.  This database is used to 
obtain both qualitative and quantitative relationships among the loop devices. 

 
4.5.2. Generating Qualitative Relationships Among Loop Components 
To obtain a qualitative relationship among the loop components, the correlation coefficient 
method was applied.  From this analysis, sets of related variables were defined, although 
the characterization of these relationships through mathematical expressions is not obtained 
in this step.  
 
Even though sometimes a large set of variables with high correlation existed, groups of 
small number of variables were selected for modeling using GMDH.  The variables 
selected in each group were those from the components that are physically close to each 
other.  For example the bypass and inlet MOV positions determine the flow that goes 
through the inlet piping.  One could also use the flow rate that goes through the outlet piping 
in the above correlation set, however this variable would not bring new information to this 
relationship.  Creating a small number of models with local variables makes the fault 
detection very efficient, that is, it is easy to isolate a faulty component. This efficiency is 
reflected in the rule-based expert system.  The simpler the expert system, the easier it is to 
develop and maintain it. 

 

Four relationships were defined for this particular loop system.  With this relationships the 
FDI algorithm is be able to isolate basically all possible faults that may happen in that 
loop.  The relationships are 

 
• Inlet flow rate as a function of bypass and inlet MOV positions. 
• Outlet flow rate as a function of tank water level and outlet MOV position. 
• Tank water level as a function of inlet flow rate and outlet MOV position. 
• Level controller output value as a function of bypass MOV position, tank water level 

and outlet flow rate. 
 

4.5.3. Generating Quantitative Relationships Among Loop Components 
For characterization of these four relationships through mathematical equations, the GMDH 
method was applied to the same fault-free database. A coefficient matrix representing each 
model is generated by the GMDH.  This matrix is used to obtain the predicted (or 
analytical) component value.  This predicted value is then later used for fault detection. 
The main task of the GMDH algorithm is to find the model that best maps the input/output 
set for given basic functions.  After finding the best model, a residual value is computed 
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between the predicted value and the target value.  This residual is stored in memory 
(RESIDUAL variable).  This variable is used later for comparison purposes among all 
residuals from other runs.  Each run with a different set of basic functions is tagged with a 
number stored in a variable called JobCounter.  This variable is used later to recover the 
best of the GMDH models.  The loop runs 2n times, where n is the number of basic 
functions to be tested. 
 
At the end of this process, the variable called RESIDUAL contains the residuals of all 
possible combinations of basic functions (2n).  Using the Matlab function called SORT  
([y, index] = sort(residual)) the residuals are sorted from smallest to the highest values in 
the variable Y. The INDEX variable contains the JobCounter case numbers associated 
with the residuals in Y.  Normally the first JobCounter (index(1)) should be used because 
it represents the best set of basic functions for the GMDH model structure. 
 
After establishing the mathematical relationship among a set of loop variables, the model 
can be used for generating an analytical redundant measurement.  This redundant 
measurement is the prediction of the GMDH model. 
 
The Fault Detection and Isolation algorithm uses the comparison between the predicted and 
measured values of the process variable under study.  If the error (residual) between the 
predicted and measured values is higher than a pre-defined threshold, the algorithm 
assumes that a fault exists.  In this case, a second module is executed; namely, the fault 
isolation module.  This module is based on a rule-based expert system.  This expert system 
is described in the next section. 
 
As mentioned earlier in this section, the GMDH algorithm uses the fault-free database to 
obtain the best model that maps the input variables (independent variable) to the output 
variable (dependent variable).  The algorithm splits the input data into two sets of data.  
The first set is used to find the best model, while the second monitors for model over 
fitting.  Figure 4.4 is a plot of the training output data along with the value predicted by the 
model for the best set of basic functions.  Figure 4.5 is a plot of the test data set with the 
predicted values.  Finally, Figure 4.6 is a plot of the error (in percent) between the 
predicted and the expected output results of the best GMDH model for predicting the flow 
rate in the tank inlet piping as a function of Bypass and Inlet MOV positions.  The plots 
indicate that the GMDH maps the input-output variables satisfactorily for both the training 
data and the test data.  Figures 4.7 through 4.15 show similar analysis for the Outlet Flow 
Rate, PID Controller Output and Tank Water Level. 
 
As an example, the RMS error between the measurement and model prediction for the tank 
outlet water flow rate is 0.11%. 
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Figure 4.4.  The GMDH predicted values (“o”) against the test output values (“x”) 
for the Inlet Flow rate as a function of Bypass MOV and Inlet MOV             
positions 
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Figure 4.5.  The GMDH predicted values (“o”) against the training output  
                   values (“x”) for the Inlet Flow rate as a function of Bypass MOV  
                   and Inlet MOV positions. 
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Figure 4.6.  The error (%) between the predicted values and the measurements for the 
       Inlet Flow rate as a function of Bypass MOV and Inlet MOV positions. 
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Figure 4.7.  The GMDH predicted values (“o”) against the test output values (“x”)  
for the Outlet Flow rate as a function of Water Level and Outlet          
MOV positions. 
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Figure 4.8.  The GMDH predicted values (“o”) against the training output  
                    values (“x”) for the Outlet Flow rate as a function of Water Level  
                    and Outlet MOV positions. 
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Figure 4.9.  The error (%) between the predicted values and the measurements for the  
       Outlet Flow rate as a function of Water Level and Outlet MOV positions. 
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Figure 4.10.  The GMDH predicted values (“o”) against the test output values (x)  
for the PID Controller Output as a function of Bypass MOV, Water    
Level and Outlet flow rate. 
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Figure 4.11.  The GMDH predicted values (“o”) against the training output  
                      values (“x”) for PID Controller Output as a function of Bypass  
                     MOV, Water Level and Outlet flow rate. 
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Figure 4.12.  The error (%) between the predicted values and the measurements for the  
         level Controller Output as a function of Bypass MOV, Water Level and  
         Outlet flow rate. 
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Figure 4.13.  The GMDH predicted values (“o”) against the test output values  
(x) for the Tank Water Level as a function of Inlet Flow rate and   Outlet MOV positions. 
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Figure 4.14.  The GMDH predicted values (“o”) against the training output  
                      values (“x”) for the Tank Water Level as a function of Inlet  
                      Flow rate and Outlet MOV positions. 
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Figure 4.15.  The error (%) between the predicted values and the measurements for the  
Tank Water Level as a function of Inlet Flow rate and Outlet MOV positions. 
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4.5.4.  Development of the Rule-based Decision Module for Fault Isolation 
The simulation data are generated for various steady-state conditions of the tank water 
level.  GHDH models are then generated for four variables – inlet flow rate, outlet flow 
rate, controller output, and water level. The prediction errors (or the residuals) are used to 
develop a comprehensive rule base.  Table 4.2 summarizes the behavior of the prediction 
errors for each of the faults (both single and dual simultaneous faults).  A cell with a '+' 
sign indicates that the measured value is greater than the predicted value, and conversely 
for a cell with a '-' sign.  A cell with no entry indicates that the predicted value is within 
3% of the measured value.  This threshold level is set by the user. 
 
During normal system operation, the predicted values obtained by the GMDH methods are 
very close to those obtained by sensor measurements.  However, when a fault occurs in 
one of the system components, one or more of these analytical redundant values will not 
match with their measurements.  
 
During the experiments, the faults mentioned in the previous section were simulated.  The 
basic type of fault imposed on the loop devices was a drift type.  In all the studied fault 
cases, the imposed drift was about 10% of the device nominal value.  Figure 4.16 shows a 
typical fault profile imposed on the tank water level sensor output.  The profile is of the 
form tanh(x). 
 
The rule-based expert system uses the system behavior characteristics for each simulated 
fault.  For most of the cases, the system dynamic behavior responds differently for each 
loop component fault.  For these cases, each multidimensional residual vector (vector 
whose components are made of each individually generated residual) is unique.  In cases 
where there are two or more different faults that produce the same system behavior, other 
system variables was supplied to the expert system:  
 
• Water level set point error. 
• Outlet MOV position error. 
• Bypass MOV position error. 
• Inlet MOV position error. 
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Figure 4.16.  Imposed fault profile on the tank water level sensor output. 
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Table 4.2.  Summary of behavior of residuals for various fault cases. 
 

Qualitative error between GMDH prediction values and the measured 
values for Single and Multiple Fault cases 

GMDH Predictions  
FAULTS 

Inlet Flow 
rate 

Outlet Flow 
rate 

Controller 
Output 

Water 
Level 

Inlet MOV Fault +  -  
Water Level Sensor Fault  -  + 
RMT Flow Meter Fault +   - 
Outlet MOV position  -  + 
Bypass MOV position +  -  
Outlet Turbine Flow meter  - +  
PID Controller Fault     
Inlet MOV Fault and Water Level Sensor          + - - + 
Inlet MOV Fault and RMT Flow meter          +  - - 
Inlet MOV Fault and Outlet MOV position             + - - + 
Inlet MOV Fault and Bypass MOV Position              
Inlet MOV Fault and Outlet Turbine Flow meter            + - +  
Water Level Sensor and RMT Flow meter   + -   
Water Level Sensor and Outlet MOV position        -  + 
Water Level Sensor and Bypass MOV Position     - - + + 
Water Level Sensor and Outlet Turbine Flow meter  - + + 
RMT Flow meter and Outlet MOV position  + -  + 
RMT Flow meter and Bypass MOV Position     + - 
RMT Flow meter and Outlet Turbine Flow meter   + - + - 
Outlet MOV position and Bypass MOV Position    - - + + 
Outlet MOV position and Outlet Turbine Flow meter  - + + 
Bypass MOV Position and Outlet Turbine Flow meter - - +  
PID controller Fault and Inlet MOV Fault     +  -  
PID controller Fault and Water Level Sensor  -  + 
PID controller Fault and RMT Flow meter    +   - 
PID controller and Outlet MOV position    + -  + 
PID controller and Bypass MOV Position  -  +  
PID controller and Outlet Turbine Flow meter  - +  
 

Using the results shown in Table 4.2 and additional measurements, a rule-based 
expert system for fault isolation was developed.  The rules consist of if-then statements 
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based on the characteristic behavior of each pre-defined fault.  A complete list of all the 
rules, used for both single and dual-fault situations, is given below. 

 
1) IF (Inlet Flow rate Error > Threshold) 

AND (Controller Output Error > Threshold) 
AND (Bypass MOV Position Error < Threshold) 

THEN Loop Faulty Component = Inlet MOV 
 
2) IF (Outlet Flow rate Error > Threshold) 

AND (Water Level Error > Threshold) 
AND (Outlet MOV Position Error < Threshold) 

THEN Loop Faulty Component = Water Level Sensor 
 

3) IF (Inlet Flow rate Error > Threshold) 
AND (Water Level Error > Threshold) 

 THEN Loop Faulty Component = Inlet Flow rate 
 

4) IF (Outlet Flow rate Error > Threshold) 
AND (Water Level Error > Threshold) 
AND (Outlet MOV Position Error > Threshold) 

 THEN Loop Faulty Component = Outlet MOV 
 

5) IF (Inlet Flow rate Error > Threshold) 
AND (Controller Output Error > Threshold) 
AND (Bypass MOV Position Error > Threshold) 

 THEN Loop Faulty Component = Bypass MOV 
 

6) IF (Outlet Flow rate Error > Threshold) 
AND (Controller Output Error > Threshold) 

 THEN Loop Faulty Component = Outlet Flow meter 
 

7) IF (Water Level Set point Error > Threshold) 

 THEN Loop Faulty Component = Water Level Controller 

 
8) IF (Inlet Flow rate Error > Threshold) 

AND (Outlet Flow rate Error > Threshold) 
AND (Controller Output Error > Threshold) 
AND (Water Level Error > Threshold) 
AND (Inlet MOV Position Error > Threshold) 
 

THEN Loop Faulty Component = Inlet MOV and Water Level sensor  
 

9) IF (Inlet Flow rate Error > Threshold) 
AND (Controller Output Error > Threshold) 
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AND (Water Level Error > Threshold) 
AND (Inlet MOV Position Error > Threshold) 

THEN Loop Faulty Component = Inlet MOV and RMT Flow meter Fault  

 
10) IF (Inlet Flow rate Error > Threshold) 

AND (Outlet Flow rate Error > Threshold) 
AND (Controller Output Error > Threshold) 
AND (Water Level Error > Threshold) 
AND (Outlet MOV Position Error > Threshold) 
AND (Inlet MOV Position Error > Threshold) 

THEN Loop Faulty Component = Inlet MOV and Outlet MOV Position 

 
11) IF (Bypass MOV Position Error > Threshold) 

AND (Inlet MOV Position Error > Threshold) 

THEN Loop Faulty Component = Inlet MOV and Bypass MOV Position  
 

12) IF (Inlet Flow rate Error > Threshold) 
AND (Outlet Flow rate Error > Threshold) 
AND (Controller Output Error > Threshold) 
AND (Inlet MOV Position Error > Threshold) 

THEN Loop Faulty Component = Inlet MOV and Outlet Turbine Flow meter  

 
13) IF (Inlet Flow rate Error > Threshold) 

AND (Outlet Flow rate Error > Threshold) 

THEN Loop Faulty Component = Water Level sensor and RMT Flow meter  

 
14) IF (Outlet Flow rate Error > Threshold) 

AND (Water Level Error > Threshold) 
AND (Outlet MOV Position Error > Threshold) 

 THEN Loop Faulty Component = Water Level sensor and Outlet MOV 

 
15) IF (Inlet Flow rate Error > Threshold) 

AND (Outlet Flow rate Error > Threshold) 
AND (Controller Output Error > Threshold) 
AND (Water Level Error > Threshold) 
AND (Bypass MOV Position Error > Threshold) 

 THEN Loop Faulty Component = Water Level sensor and Bypass MOV  
 

16) IF (Outlet Flow rate Error > Threshold) 



 

  37

AND (Controller Output Error > Threshold) 
AND (Water Level Error > Threshold) 

 THEN Loop Faulty Component = Water Level sensor and Outlet Turbine  

 
17) IF (Inlet Flow rate Error > Threshold) 

AND (Outlet Flow rate Error > Threshold) 
AND (Water Level Error > Threshold) 
AND (Outlet MOV Position Error > Threshold) 

 THEN Loop Faulty Component = RMT Flow meter and Outlet MOV 

 
18) IF (Controller Output Error > Threshold) 

AND (Water Level Error > Threshold) 
AND (Bypass MOV Position Error > Threshold) 

 THEN Loop Faulty Component = RMT Flow meter and Bypass MOV 
 

19) IF (Inlet Flow rate Error > Threshold) 
AND (Outlet Flow rate Error > Threshold) 
AND (Controller Output Error > Threshold) 
AND (Water Level Error > Threshold) 

 THEN Loop Faulty Component = RMT Flow meter and Outlet Turbine 

 

 
20) IF (Inlet Flow rate Error > Threshold) 

AND (Outlet Flow rate Error > Threshold) 
AND (Controller Output Error > Threshold) 
AND (Water Level Error > Threshold) 
AND (Outlet MOV Position Error > Threshold) 
AND (Bypass MOV Position Error > Threshold) 

 THEN Loop Faulty Component = Outlet MOV Position and Bypass MOV 
 

21) IF (Outlet Flow rate Error > Threshold) 
AND (Controller Output Error > Threshold) 
AND (Water Level Error > Threshold) 
AND (Outlet MOV Position Error > Threshold) 

 THEN Loop Faulty Component = Outlet MOV Position and Outlet 
Turbine Flow meter 

 
22) IF (Inlet Flow rate Error > Threshold) 

AND (Outlet Flow rate Error > Threshold) 
AND (Controller Output Error > Threshold) 
AND (Bypass MOV Position Error > Threshold) 
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 THEN Loop Faulty Component = Bypass MOV Position and Outlet 
Turbine Flow meter 

 
23) IF (Inlet Flow rate Error > Threshold) 

AND (Controller Output Error > Threshold) 
AND (Water Level Set point Error > Threshold) 
AND (Inlet MOV Position Error > Threshold) 

 THEN Loop Faulty Component = PID Controller and Inlet MOV faults 
 

24) IF (Outlet Flow rate Error > Threshold) 
AND (Water Level Error > Threshold) 
AND (Water Level Set point Error > Threshold) 

 THEN Loop Faulty Component = PID Controller and Water Level sensor  
 

25) IF (Inlet Flow rate Error > Threshold) 
AND (Water Level Error > Threshold) 
AND (Water Level Set point Error > Threshold) 

 THEN Loop Faulty Component = PID Controller and RMT Flow meter  

 
26) IF (Inlet Flow rate Error > Threshold) 

AND (Outlet Flow rate Error > Threshold) 
AND (Water Level Error > Threshold) 
AND (Water Level Set point Error > Threshold) 
AND (Outlet MOV Position Error > Threshold) 

 THEN Loop Faulty Component = PID Controller and Outlet MOV 
Position  

 
27) IF (Inlet Flow rate Error > Threshold) 

AND (Controller Output Error > Threshold) 
AND (Water Level Set point Error > Threshold) 
AND (Bypass MOV Position Error > Threshold) 

 THEN Loop Faulty Component = PID Controller and Bypass MOV 
Position  

 
28) IF (Outlet Flow rate Error > Threshold) 

AND (Controller Output Error > Threshold) 
AND (Water Level Set point Error > Threshold) 

THEN Loop Faulty Component = PID Controller and Outlet Turbine Flow meter  
 
 
Remarks: 

 
Using the above rules we could detect and isolate single and dual faults occurring 

in the experimental water loop, except in one case. This case occurs when we have Outlet 
MOV position fault (single fault) or Water Level sensor fault and Outlet MOV position 
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fault (dual fault). In both these cases, the values of the GMDH predictions have similar 
behavior.  In such cases, additional information or measurements are necessary to resolve 
the faulty situation. 
 

4.6  Results of Simulation of Fault Detection and Isolation Studies 
 
The following is a summary of the results of a simulation study of the fault detection and 
isolation simulation performed using the Matlab-Simulink model.  All the single and 
double fault cases were simulated.  The results of this study demonstrate that the 
performance of the FDI algorithm in detecting faulty sensors/devices is excellent. 
 
 
 
 
 
 
 
Predicted Inlet Flow rate: 0.010424 
Model Inlet Flow rate: 0.010346 
Percentage of Variation: -0.754702 (%) 
 
Predicted Outlet Flow rate: 0.083300 
Model Outlet Flow rate: 0.082766 
Percentage of Variation: -0.645251 (%) 
 
Predicted PID Output: 0.493633 
Model PID Output: 0.494193 
Percentage of Variation: 0.113352 (%) 
 
Predicted Water Level: 0.042740 
Model Water Level: 0.042857 
Percentage of Variation: 0.273263 (%) 
 
Water Level Setpoint: 0.042857 
Measured Water Level: 0.042857 
Percentage of Variation: 0.000000 (%) 
 
Outlet MOV Setpoint Position: 0.900000 
Measured Position: 0.900000 
Percentage of Variation: 0.000000 (%) 
 
Bypass MOV Setpoint Position: 0.700000 
Measured Position: 0.700000 
Percentage of Variation: 0.000000 (%) 
 
Inlet MOV Setpoint Position: 0.494193 
Measured Position: 0.494193 
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Percentage of Variation: 0.000000 (%) 
 
 
Fault Type = 
 
No fault detected                                      
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Predicted Inlet Flow rate: 0.009717 
Model Inlet Flow rate: 0.010346 
Percentage of Variation: 6.081036 (%) 
 
Predicted Outlet Flow rate: 0.083300 
Model Outlet Flow rate: 0.082766 
Percentage of Variation: -0.645251 (%) 
 
Predicted PID Output: 0.493633 
Model PID Output: 0.444940 
Percentage of Variation: -10.943678 (%) 
 
Predicted Water Level: 0.042740 
Model Water Level: 0.042857 
Percentage of Variation: 0.273263 (%) 
 
Water Level Setpoint: 0.042857 
Measured Water Level: 0.042857 
Percentage of Variation: 0.000000 (%) 
 
Outlet MOV Setpoint Position: 0.900000 
Measured Position: 0.900000 
Percentage of Variation: 0.000000 (%) 
 
Bypass MOV Setpoint Position: 0.700000 
Measured Position: 0.700000 
Percentage of Variation: 0.000000 (%) 
 
Inlet MOV Setpoint Position: 0.444940 
Measured Position: 0.494193 
Percentage of Variation: -11.069578 (%) 
 
 
Fault Type = 
 
Inlet MOV Fault                                        
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Process Time: 0.520000 
Predicted Inlet Flow rate: 0.009277 
Model Inlet Flow rate: 0.009317 
Percentage of Variation: 0.434580 (%) 
 
Predicted Outlet Flow rate: 0.083300 
Model Outlet Flow rate: 0.074539 
Percentage of Variation: -11.753406 (%) 
 
Predicted PID Output: 0.419792 
Model PID Output: 0.415886 
Percentage of Variation: -0.939251 (%) 
 
Predicted Water Level: 0.038533 
Model Water Level: 0.042857 
Percentage of Variation: 10.089986 (%) 
 
Water Level Setpoint: 0.042857 
Measured Water Level: 0.042857 
Percentage of Variation: 0.000000 (%) 
 
Outlet MOV Setpoint Position: 0.900000 
Measured Position: 0.900000 
Percentage of Variation: 0.000000 (%) 
 
Bypass MOV Setpoint Position: 0.700000 
Measured Position: 0.700000 
Percentage of Variation: 0.000000 (%) 
 
Inlet MOV Setpoint Position: 0.415886 
Measured Position: 0.415886 
Percentage of Variation: 0.000000 (%) 
 
 
Fault Type = 
 
Water Level Sensor Fault                               
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Predicted Inlet Flow rate: 0.010424 
Model Inlet Flow rate: 0.011396 
Percentage of Variation: 8.531987 (%) 
 
Predicted Outlet Flow rate: 0.083300 
Model Outlet Flow rate: 0.082766 
Percentage of Variation: -0.645251 (%) 
 
Predicted PID Output: 0.493633 
Model PID Output: 0.494193 
Percentage of Variation: 0.113352 (%) 
 
Predicted Water Level: 0.047109 
Model Water Level: 0.042857 
Percentage of Variation: -9.921735 (%) 
 
Water Level Setpoint: 0.042857 
Measured Water Level: 0.042857 
Percentage of Variation: 0.000000 (%) 
 
Outlet MOV Setpoint Position: 0.900000 
Measured Position: 0.900000 
Percentage of Variation: 0.000000 (%) 
 
Bypass MOV Setpoint Position: 0.700000 
Measured Position: 0.700000 
Percentage of Variation: 0.000000 (%) 
 
Inlet MOV Setpoint Position: 0.494193 
Measured Position: 0.494193 
Percentage of Variation: 0.000000 (%) 
 
 
Fault Type = 
 
RMT Flow meter Fault                                    
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Predicted Inlet Flow rate: 0.008303 
Model Inlet Flow rate: 0.008434 
Percentage of Variation: 1.554577 (%) 
 
Predicted Outlet Flow rate: 0.083300 
Model Outlet Flow rate: 0.067471 
Percentage of Variation: -23.460349 (%) 
 
Predicted PID Output: 0.365378 
Model PID Output: 0.356373 
Percentage of Variation: -2.526843 (%) 
 
Predicted Water Level: 0.034919 
Model Water Level: 0.042857 
Percentage of Variation: 18.521490 (%) 
 
Water Level Setpoint: 0.042857 
Measured Water Level: 0.042857 
Percentage of Variation: 0.000000 (%) 
 
Outlet MOV Setpoint Position: 0.900000 
Measured Position: 0.812597 
Percentage of Variation: 9.711405 (%) 
 
Bypass MOV Setpoint Position: 0.700000 
Measured Position: 0.700000 
Percentage of Variation: 0.000000 (%) 
 
Inlet MOV Setpoint Position: 0.356373 
Measured Position: 0.356373 
Percentage of Variation: 0.000000 (%) 
 
 
Fault Type = 
 
Outlet MOV Position                                    
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Predicted Inlet Flow rate: 0.011022 
Model Inlet Flow rate: 0.010346 
Percentage of Variation: -6.540570 (%) 
 
Predicted Outlet Flow rate: 0.083300 
Model Outlet Flow rate: 0.082766 
Percentage of Variation: -0.645251 (%) 
 
Predicted PID Output: 0.493633 
Model PID Output: 0.544582 
Percentage of Variation: 9.355584 (%) 
 
Predicted Water Level: 0.042740 
Model Water Level: 0.042857 
Percentage of Variation: 0.273263 (%) 
 
Water Level Setpoint: 0.042857 
Measured Water Level: 0.042857 
Percentage of Variation: 0.000000 (%) 
 
Outlet MOV Setpoint Position: 0.900000 
Measured Position: 0.900000 
Percentage of Variation: 0.000000 (%) 
 
Bypass MOV Setpoint Position: 0.700000 
Measured Position: 0.771373 
Percentage of Variation: -10.196140 (%) 
 
Inlet MOV Setpoint Position: 0.544582 
Measured Position: 0.544582 
Percentage of Variation: 0.000000 (%) 
 
 
Fault Type = 
 
Bypass MOV Position                                    
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Predicted Inlet Flow rate: 0.010424 
Model Inlet Flow rate: 0.010346 
Percentage of Variation: -0.754702 (%) 
 
Predicted Outlet Flow rate: 0.083300 
Model Outlet Flow rate: 0.074537 
Percentage of Variation: -11.756441 (%) 
 
Predicted PID Output: 0.419776 
Model PID Output: 0.494193 
Percentage of Variation: 15.058347 (%) 
 
Predicted Water Level: 0.042740 
Model Water Level: 0.042857 
Percentage of Variation: 0.273263 (%) 
 
Water Level Setpoint: 0.042857 
Measured Water Level: 0.042857 
Percentage of Variation: 0.000000 (%) 
 
Outlet MOV Setpoint Position: 0.900000 
Measured Position: 0.900000 
Percentage of Variation: 0.000000 (%) 
 
Bypass MOV Setpoint Position: 0.700000 
Measured Position: 0.700000 
Percentage of Variation: 0.000000 (%) 
 
Inlet MOV Setpoint Position: 0.494193 
Measured Position: 0.494193 
Percentage of Variation: 0.000000 (%) 
 
 
Fault Type = 
 
Outlet Turbine Flow meter                               
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Predicted Inlet Flow rate: 0.006892 
Model Inlet Flow rate: 0.007089 
Percentage of Variation: 2.779387 (%) 
 
Predicted Outlet Flow rate: 0.056598 
Model Outlet Flow rate: 0.056690 
Percentage of Variation: 0.162781 (%) 
 
Predicted PID Output: 0.293820 
Model PID Output: 0.283548 
Percentage of Variation: -3.622405 (%) 
 
Predicted Water Level: 0.029344 
Model Water Level: 0.029355 
Percentage of Variation: 0.037995 (%) 
 
Water Level Setpoint: 0.042857 
Measured Water Level: 0.029355 
Percentage of Variation: 31.505365 (%) 
 
Outlet MOV Setpoint Position: 0.900000 
Measured Position: 0.900000 
Percentage of Variation: 0.000000 (%) 
 
Bypass MOV Setpoint Position: 0.700000 
Measured Position: 0.700000 
Percentage of Variation: 0.000000 (%) 
 
Inlet MOV Setpoint Position: 0.283548 
Measured Position: 0.283548 
Percentage of Variation: 0.000000 (%) 
 
 
Fault Type = 
 
PID controller Fault                                   
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Predicted Inlet Flow rate: 0.008474 
Model Inlet Flow rate: 0.009308 
Percentage of Variation: 8.955284 (%) 
 
Predicted Outlet Flow rate: 0.083300 
Model Outlet Flow rate: 0.074463 
Percentage of Variation: -11.867831 (%) 
 
Predicted PID Output: 0.419165 
Model PID Output: 0.365631 
Percentage of Variation: -14.641400 (%) 
 
Predicted Water Level: 0.038494 
Model Water Level: 0.042857 
Percentage of Variation: 10.180673 (%) 
 
Water Level Setpoint: 0.042857 
Measured Water Level: 0.042857 
Percentage of Variation: 0.000000 (%) 
 
Outlet MOV Setpoint Position: 0.900000 
Measured Position: 0.900000 
Percentage of Variation: 0.000000 (%) 
 
Bypass MOV Setpoint Position: 0.700000 
Measured Position: 0.700000 
Percentage of Variation: 0.000000 (%) 
 
Inlet MOV Setpoint Position: 0.365631 
Measured Position: 0.415208 
Percentage of Variation: -13.559418 (%) 
 
 
Fault Type = 
 
Inlet MOV Fault and Water Level Sensor Fault           
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Predicted Inlet Flow rate: 0.009710 
Model Inlet Flow rate: 0.011386 
Percentage of Variation: 14.724183 (%) 
 
Predicted Outlet Flow rate: 0.083300 
Model Outlet Flow rate: 0.082766 
Percentage of Variation: -0.645251 (%) 
 
Predicted PID Output: 0.493633 
Model PID Output: 0.444491 
Percentage of Variation: -11.055774 (%) 
 
Predicted Water Level: 0.047068 
Model Water Level: 0.042857 
Percentage of Variation: -9.824562 (%) 
 
Water Level Setpoint: 0.042857 
Measured Water Level: 0.042857 
Percentage of Variation: 0.000000 (%) 
 
Outlet MOV Setpoint Position: 0.900000 
Measured Position: 0.900000 
Percentage of Variation: 0.000000 (%) 
 
Bypass MOV Setpoint Position: 0.700000 
Measured Position: 0.700000 
Percentage of Variation: 0.000000 (%) 
 
Inlet MOV Setpoint Position: 0.444491 
Measured Position: 0.494193 
Percentage of Variation: -11.181801 (%) 
 
 
Fault Type = 
 
Inlet MOV Fault and RMT Flow meter Fault                
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Predicted Inlet Flow rate: 0.007382 
Model Inlet Flow rate: 0.008439 
Percentage of Variation: 12.520947 (%) 
 
Predicted Outlet Flow rate: 0.083300 
Model Outlet Flow rate: 0.067509 
Percentage of Variation: -23.391954 (%) 
 
Predicted PID Output: 0.365648 
Model PID Output: 0.308802 
Percentage of Variation: -18.408437 (%) 
 
Predicted Water Level: 0.034939 
Model Water Level: 0.042857 
Percentage of Variation: 18.476632 (%) 
 
Water Level Setpoint: 0.042857 
Measured Water Level: 0.042857 
Percentage of Variation: 0.000000 (%) 
 
Outlet MOV Setpoint Position: 0.900000 
Measured Position: 0.812823 
Percentage of Variation: 9.686386 (%) 
 
Bypass MOV Setpoint Position: 0.700000 
Measured Position: 0.700000 
Percentage of Variation: 0.000000 (%) 
 
Inlet MOV Setpoint Position: 0.308802 
Measured Position: 0.356672 
Percentage of Variation: -15.501652 (%) 
 
 
Fault Type = 
 
Inlet MOV Fault and Outlet MOV Position                
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Predicted Inlet Flow rate: 0.010424 
Model Inlet Flow rate: 0.010346 
Percentage of Variation: -0.754702 (%) 
 
Predicted Outlet Flow rate: 0.083300 
Model Outlet Flow rate: 0.082766 
Percentage of Variation: -0.645251 (%) 
 
Predicted PID Output: 0.493633 
Model PID Output: 0.494193 
Percentage of Variation: 0.113352 (%) 
 
Predicted Water Level: 0.042740 
Model Water Level: 0.042857 
Percentage of Variation: 0.273263 (%) 
 
Water Level Setpoint: 0.042857 
Measured Water Level: 0.042857 
Percentage of Variation: 0.000000 (%) 
 
Outlet MOV Setpoint Position: 0.900000 
Measured Position: 0.900000 
Percentage of Variation: 0.000000 (%) 
 
Bypass MOV Setpoint Position: 0.700000 
Measured Position: 0.769764 
Percentage of Variation: -9.966345 (%) 
 
Inlet MOV Setpoint Position: 0.494193 
Measured Position: 0.543446 
Percentage of Variation: -9.966345 (%) 
 
 
Fault Type = 
 
Inlet MOV Fault and Bypass MOV Position                
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Predicted Inlet Flow rate: 0.009719 
Model Inlet Flow rate: 0.010346 
Percentage of Variation: 6.061601 (%) 
 
Predicted Outlet Flow rate: 0.083300 
Model Outlet Flow rate: 0.074539 
Percentage of Variation: -11.753406 (%) 
 
Predicted PID Output: 0.419792 
Model PID Output: 0.445071 
Percentage of Variation: 5.679639 (%) 
 
Predicted Water Level: 0.042740 
Model Water Level: 0.042857 
Percentage of Variation: 0.273263 (%) 
 
Water Level Setpoint: 0.042857 
Measured Water Level: 0.042857 
Percentage of Variation: 0.000000 (%) 
 
Outlet MOV Setpoint Position: 0.900000 
Measured Position: 0.900000 
Percentage of Variation: 0.000000 (%) 
 
Bypass MOV Setpoint Position: 0.700000 
Measured Position: 0.700000 
Percentage of Variation: 0.000000 (%) 
 
Inlet MOV Setpoint Position: 0.445071 
Measured Position: 0.494193 
Percentage of Variation: -11.036939 (%) 
 
 
Fault Type = 
 
Inlet MOV Fault and Outlet Turbine Flow meter           
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Predicted Inlet Flow rate: 0.009253 
Model Inlet Flow rate: 0.010346 
Percentage of Variation: 10.557606 (%) 
 
Predicted Outlet Flow rate: 0.083300 
Model Outlet Flow rate: 0.074363 
Percentage of Variation: -12.018408 (%) 
 
Predicted PID Output: 0.418342 
Model PID Output: 0.414320 
Percentage of Variation: -0.970680 (%) 
 
Predicted Water Level: 0.042740 
Model Water Level: 0.042857 
Percentage of Variation: 0.273263 (%) 
 
Water Level Setpoint: 0.042857 
Measured Water Level: 0.042857 
Percentage of Variation: 0.000000 (%) 
 
Outlet MOV Setpoint Position: 0.900000 
Measured Position: 0.900000 
Percentage of Variation: 0.000000 (%) 
 
Bypass MOV Setpoint Position: 0.700000 
Measured Position: 0.700000 
Percentage of Variation: 0.000000 (%) 
 
Inlet MOV Setpoint Position: 0.414320 
Measured Position: 0.414320 
Percentage of Variation: 0.000000 (%) 
 
 
Fault Type = 
 
Water Level Sensor Fault and RMT Flow meter Fault      
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Predicted Inlet Flow rate: 0.005767 
Model Inlet Flow rate: 0.005879 
Percentage of Variation: 1.901189 (%) 
 
Predicted Outlet Flow rate: 0.065678 
Model Outlet Flow rate: 0.047030 
Percentage of Variation: -39.651459 (%) 
 
Predicted PID Output: 0.248721 
Model PID Output: 0.245957 
Percentage of Variation: -1.123806 (%) 
 
Predicted Water Level: 0.030823 
Model Water Level: 0.042857 
Percentage of Variation: 28.079230 (%) 
 
Water Level Setpoint: 0.042857 
Measured Water Level: 0.042857 
Percentage of Variation: 0.000024 (%) 
 
Outlet MOV Setpoint Position: 0.800000 
Measured Position: 0.716747 
Percentage of Variation: 10.406626 (%) 
 
Bypass MOV Setpoint Position: 0.800000 
Measured Position: 0.800000 
Percentage of Variation: 0.000000 (%) 
 
Inlet MOV Setpoint Position: 0.245957 
Measured Position: 0.245957 
Percentage of Variation: 0.000000 (%) 
 
 
Fault Type = 
 
Water Level Sensor Fault and Outlet MOV Position       
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Predicted Inlet Flow rate: 0.009888 
Model Inlet Flow rate: 0.009290 
Percentage of Variation: -6.436993 (%) 
 
Predicted Outlet Flow rate: 0.083300 
Model Outlet Flow rate: 0.074316 
Percentage of Variation: -12.088435 (%) 
 
Predicted PID Output: 0.417960 
Model PID Output: 0.456164 
Percentage of Variation: 8.375028 (%) 
 
Predicted Water Level: 0.038419 
Model Water Level: 0.042857 
Percentage of Variation: 10.354989 (%) 
 
Water Level Setpoint: 0.042857 
Measured Water Level: 0.042857 
Percentage of Variation: -0.000000 (%) 
 
Outlet MOV Setpoint Position: 0.900000 
Measured Position: 0.900000 
Percentage of Variation: 0.000000 (%) 
 
Bypass MOV Setpoint Position: 0.700000 
Measured Position: 0.771463 
Percentage of Variation: -10.209068 (%) 
 
Inlet MOV Setpoint Position: 0.456164 
Measured Position: 0.456164 
Percentage of Variation: 0.000000 (%) 
 
 
Fault Type = 
 
Water Level Sensor Fault and Bypass MOV Position       
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Predicted Inlet Flow rate: 0.009270 
Model Inlet Flow rate: 0.009310 
Percentage of Variation: 0.439513 (%) 
 
Predicted Outlet Flow rate: 0.083300 
Model Outlet Flow rate: 0.066202 
Percentage of Variation: -25.827818 (%) 
 
Predicted PID Output: 0.356337 
Model PID Output: 0.415394 
Percentage of Variation: 14.217085 (%) 
 
Predicted Water Level: 0.038505 
Model Water Level: 0.042857 
Percentage of Variation: 10.155823 (%) 
 
Water Level Setpoint: 0.042857 
Measured Water Level: 0.042857 
Percentage of Variation: 0.000000 (%) 
 
Outlet MOV Setpoint Position: 0.900000 
Measured Position: 0.900000 
Percentage of Variation: 0.000000 (%) 
 
Bypass MOV Setpoint Position: 0.700000 
Measured Position: 0.700000 
Percentage of Variation: 0.000000 (%) 
 
Inlet MOV Setpoint Position: 0.415394 
Measured Position: 0.415394 
Percentage of Variation: 0.000000 (%) 
 
 
Fault Type = 
 
Water Level Sensor Fault and Outlet Turbine Flow meter  
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Predicted Inlet Flow rate: 0.008226 
Model Inlet Flow rate: 0.009410 
Percentage of Variation: 12.578092 (%) 
 
Predicted Outlet Flow rate: 0.083300 
Model Outlet Flow rate: 0.066955 
Percentage of Variation: -24.412211 (%) 
 
Predicted PID Output: 0.361678 
Model PID Output: 0.352275 
Percentage of Variation: -2.669276 (%) 
 
Predicted Water Level: 0.038910 
Model Water Level: 0.042857 
Percentage of Variation: 9.209935 (%) 
 
Water Level Setpoint: 0.042857 
Measured Water Level: 0.042857 
Percentage of Variation: -0.000000 (%) 
 
Outlet MOV Setpoint Position: 0.900000 
Measured Position: 0.809483 
Percentage of Variation: 10.057462 (%) 
 
Bypass MOV Setpoint Position: 0.700000 
Measured Position: 0.700000 
Percentage of Variation: 0.000000 (%) 
 
Inlet MOV Setpoint Position: 0.352275 
Measured Position: 0.352275 
Percentage of Variation: 0.000000 (%) 
 
 
Fault Type = 
 
RMT Flow meter Fault and Outlet MOV Position            
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Predicted Inlet Flow rate: 0.011006 
Model Inlet Flow rate: 0.011371 
Percentage of Variation: 3.216201 (%) 
 
Predicted Outlet Flow rate: 0.083300 
Model Outlet Flow rate: 0.082766 
Percentage of Variation: -0.645251 (%) 
 
Predicted PID Output: 0.493633 
Model PID Output: 0.543179 
Percentage of Variation: 9.121466 (%) 
 
Predicted Water Level: 0.047005 
Model Water Level: 0.042857 
Percentage of Variation: -9.677425 (%) 
 
Water Level Setpoint: 0.042857 
Measured Water Level: 0.042857 
Percentage of Variation: 0.000000 (%) 
 
Outlet MOV Setpoint Position: 0.900000 
Measured Position: 0.900000 
Percentage of Variation: 0.000000 (%) 
 
Bypass MOV Setpoint Position: 0.700000 
Measured Position: 0.769386 
Percentage of Variation: -9.912258 (%) 
 
Inlet MOV Setpoint Position: 0.543179 
Measured Position: 0.543179 
Percentage of Variation: 0.000000 (%) 
 
 
Fault Type = 
 
RMT Flow meter Fault and Bypass MOV Position            
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Predicted Inlet Flow rate: 0.010424 
Model Inlet Flow rate: 0.011405 
Percentage of Variation: 8.604518 (%) 
 
Predicted Outlet Flow rate: 0.083300 
Model Outlet Flow rate: 0.074290 
Percentage of Variation: -12.127503 (%) 
 
Predicted PID Output: 0.417748 
Model PID Output: 0.494193 
Percentage of Variation: 15.468661 (%) 
 
Predicted Water Level: 0.047147 
Model Water Level: 0.042857 
Percentage of Variation: -10.010503 (%) 
 
Water Level Setpoint: 0.042857 
Measured Water Level: 0.042857 
Percentage of Variation: 0.000000 (%) 
 
Outlet MOV Setpoint Position: 0.900000 
Measured Position: 0.900000 
Percentage of Variation: 0.000000 (%) 
 
Bypass MOV Setpoint Position: 0.700000 
Measured Position: 0.700000 
Percentage of Variation: 0.000000 (%) 
 
Inlet MOV Setpoint Position: 0.494193 
Measured Position: 0.494193 
Percentage of Variation: 0.000000 (%) 
 
 
Fault Type = 
 
RMT Flow meter Fault and Outlet Turbine Flow meter       
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Predicted Inlet Flow rate: 0.008802 
Model Inlet Flow rate: 0.008313 
Percentage of Variation: -5.874404 (%) 
 
Predicted Outlet Flow rate: 0.083300 
Model Outlet Flow rate: 0.066505 
Percentage of Variation: -25.253264 (%) 
 
Predicted PID Output: 0.358482 
Model PID Output: 0.384859 
Percentage of Variation: 6.853725 (%) 
 
Predicted Water Level: 0.034422 
Model Water Level: 0.042857 
Percentage of Variation: 19.681264 (%) 
 
Water Level Setpoint: 0.042857 
Measured Water Level: 0.042857 
Percentage of Variation: -0.000000 (%) 
 
Outlet MOV Setpoint Position: 0.900000 
Measured Position: 0.806761 
Percentage of Variation: 10.359944 (%) 
 
Bypass MOV Setpoint Position: 0.700000 
Measured Position: 0.772520 
Percentage of Variation: -10.359944 (%) 
 
Inlet MOV Setpoint Position: 0.384859 
Measured Position: 0.384859 
Percentage of Variation: 0.000000 (%) 
 
 
Fault Type = 
 
Outlet MOV position Fault and Bypass MOV Position      
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Predicted Inlet Flow rate: 0.008150 
Model Inlet Flow rate: 0.008305 
Percentage of Variation: 1.869022 (%) 
 
Predicted Outlet Flow rate: 0.083300 
Model Outlet Flow rate: 0.057826 
Percentage of Variation: -44.052817 (%) 
 
Predicted PID Output: 0.300900 
Model PID Output: 0.348203 
Percentage of Variation: 13.584896 (%) 
 
Predicted Water Level: 0.034388 
Model Water Level: 0.042857 
Percentage of Variation: 19.762091 (%) 
 
Water Level Setpoint: 0.042857 
Measured Water Level: 0.042857 
Percentage of Variation: -0.000000 (%) 
 
Outlet MOV Setpoint Position: 0.900000 
Measured Position: 0.806353 
Percentage of Variation: 10.405262 (%) 
 
Bypass MOV Setpoint Position: 0.700000 
Measured Position: 0.700000 
Percentage of Variation: 0.000000 (%) 
 
Inlet MOV Setpoint Position: 0.348203 
Measured Position: 0.348203 
Percentage of Variation: 0.000000 (%) 
 
 
Fault Type = 
 
Outlet MOV Position Fault and Outlet Turbine Flow meter 
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Predicted Inlet Flow rate: 0.011028 
Model Inlet Flow rate: 0.010346 
Percentage of Variation: -6.591704 (%) 
 
Predicted Outlet Flow rate: 0.083300 
Model Outlet Flow rate: 0.074254 
Percentage of Variation: -12.183014 (%) 
 
Predicted PID Output: 0.417447 
Model PID Output: 0.545020 
Percentage of Variation: 23.407045 (%) 
 
Predicted Water Level: 0.042740 
Model Water Level: 0.042857 
Percentage of Variation: 0.273263 (%) 
 
Water Level Setpoint: 0.042857 
Measured Water Level: 0.042857 
Percentage of Variation: 0.000000 (%) 
 
Outlet MOV Setpoint Position: 0.900000 
Measured Position: 0.900000 
Percentage of Variation: 0.000000 (%) 
 
Bypass MOV Setpoint Position: 0.700000 
Measured Position: 0.771993 
Percentage of Variation: -10.284769 (%) 
 
Inlet MOV Setpoint Position: 0.545020 
Measured Position: 0.545020 
Percentage of Variation: 0.000000 (%) 
 
 
Fault Type = 
 
Bypass MOV Position Fault and Outlet Turbine Flow meter 
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Predicted Inlet Flow rate: 0.006483 
Model Inlet Flow rate: 0.007318 
Percentage of Variation: 11.415346 (%) 
 
Predicted Outlet Flow rate: 0.058432 
Model Outlet Flow rate: 0.058516 
Percentage of Variation: 0.144084 (%) 
 
Predicted PID Output: 0.305244 
Model PID Output: 0.263691 
Percentage of Variation: -15.758305 (%) 
 
Predicted Water Level: 0.030289 
Model Water Level: 0.030300 
Percentage of Variation: 0.038683 (%) 
 
Water Level Setpoint: 0.042857 
Measured Water Level: 0.030300 
Percentage of Variation: 29.298986 (%) 
 
Outlet MOV Setpoint Position: 0.900000 
Measured Position: 0.900000 
Percentage of Variation: 0.000000 (%) 
 
Bypass MOV Setpoint Position: 0.700000 
Measured Position: 0.700000 
Percentage of Variation: 0.000000 (%) 
 
Inlet MOV Setpoint Position: 0.263691 
Measured Position: 0.292718 
Percentage of Variation: -11.008097 (%) 
 
 
Fault Type = 
 
PID controller Fault and Inlet MOV Fault               
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Predicted Inlet Flow rate: 0.006499 
Model Inlet Flow rate: 0.006612 
Percentage of Variation: 1.709294 (%) 
 
Predicted Outlet Flow rate: 0.058357 
Model Outlet Flow rate: 0.052788 
Percentage of Variation: -10.550544 (%) 
 
Predicted PID Output: 0.270009 
Model PID Output: 0.264491 
Percentage of Variation: -2.086258 (%) 
 
Predicted Water Level: 0.027503 
Model Water Level: 0.030262 
Percentage of Variation: 9.117532 (%) 
 
Water Level Setpoint: 0.042857 
Measured Water Level: 0.030262 
Percentage of Variation: 29.387886 (%) 
 
Outlet MOV Setpoint Position: 0.900000 
Measured Position: 0.900000 
Percentage of Variation: 0.000000 (%) 
 
Bypass MOV Setpoint Position: 0.700000 
Measured Position: 0.700000 
Percentage of Variation: 0.000000 (%) 
 
Inlet MOV Setpoint Position: 0.264491 
Measured Position: 0.264491 
Percentage of Variation: 0.000000 (%) 
 
 
Fault Type = 
 
PID controller Fault and Water Level Sensor Fault      
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Predicted Inlet Flow rate: 0.006892 
Model Inlet Flow rate: 0.007797 
Percentage of Variation: 11.614730 (%) 
 
Predicted Outlet Flow rate: 0.056598 
Model Outlet Flow rate: 0.056690 
Percentage of Variation: 0.162781 (%) 
 
Predicted PID Output: 0.293820 
Model PID Output: 0.283548 
Percentage of Variation: -3.622405 (%) 
 
Predicted Water Level: 0.032285 
Model Water Level: 0.029355 
Percentage of Variation: -9.983092 (%) 
 
Water Level Setpoint: 0.042857 
Measured Water Level: 0.029355 
Percentage of Variation: 31.505365 (%) 
 
Outlet MOV Setpoint Position: 0.900000 
Measured Position: 0.900000 
Percentage of Variation: 0.000000 (%) 
 
Bypass MOV Setpoint Position: 0.700000 
Measured Position: 0.700000 
Percentage of Variation: 0.000000 (%) 
 
Inlet MOV Setpoint Position: 0.283548 
Measured Position: 0.283548 
Percentage of Variation: 0.000000 (%) 
 
 
Fault Type = 
 
PID controller Fault and RMT Flow meter Fault          
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Predicted Inlet Flow rate: 0.004881 
Model Inlet Flow rate: 0.005080 
Percentage of Variation: 3.916024 (%) 
 
Predicted Outlet Flow rate: 0.050652 
Model Outlet Flow rate: 0.040638 
Percentage of Variation: -24.642490 (%) 
 
Predicted PID Output: 0.206564 
Model PID Output: 0.204004 
Percentage of Variation: -1.254906 (%) 
 
Predicted Water Level: 0.026851 
Model Water Level: 0.033143 
Percentage of Variation: 18.984938 (%) 
 
Water Level Setpoint: 0.042857 
Measured Water Level: 0.033143 
Percentage of Variation: 22.667085 (%) 
 
Outlet MOV Setpoint Position: 0.800000 
Measured Position: 0.717135 
Percentage of Variation: 10.358170 (%) 
 
Bypass MOV Setpoint Position: 0.800000 
Measured Position: 0.800000 
Percentage of Variation: 0.000000 (%) 
 
Inlet MOV Setpoint Position: 0.204004 
Measured Position: 0.204004 
Percentage of Variation: 0.000000 (%) 
 
 
Fault Type = 
 
PID controller Fault and Outlet MOV Position           
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Predicted Inlet Flow rate: 0.006142 
Model Inlet Flow rate: 0.005770 
Percentage of Variation: -6.447694 (%) 
 
Predicted Outlet Flow rate: 0.046378 
Model Outlet Flow rate: 0.046162 
Percentage of Variation: -0.468441 (%) 
 
Predicted PID Output: 0.242884 
Model PID Output: 0.264704 
Percentage of Variation: 8.243300 (%) 
 
Predicted Water Level: 0.030251 
Model Water Level: 0.030252 
Percentage of Variation: 0.003177 (%) 
 
Water Level Setpoint: 0.042857 
Measured Water Level: 0.030252 
Percentage of Variation: 29.411539 (%) 
 
Outlet MOV Setpoint Position: 0.800000 
Measured Position: 0.800000 
Percentage of Variation: 0.000000 (%) 
 
Bypass MOV Setpoint Position: 0.800000 
Measured Position: 0.882154 
Percentage of Variation: -10.269225 (%) 
 
Inlet MOV Setpoint Position: 0.264704 
Measured Position: 0.264704 
Percentage of Variation: 0.000000 (%) 
 
 
Fault Type = 
 
PID controller Fault and Bypass MOV Position           
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Predicted Inlet Flow rate: 0.005814 
Model Inlet Flow rate: 0.005920 
Percentage of Variation: 1.786318 (%) 
 
Predicted Outlet Flow rate: 0.047512 
Model Outlet Flow rate: 0.042621 
Percentage of Variation: -11.476917 (%) 
 
Predicted PID Output: 0.219426 
Model PID Output: 0.248216 
Percentage of Variation: 11.598555 (%) 
 
Predicted Water Level: 0.031041 
Model Water Level: 0.031037 
Percentage of Variation: -0.011790 (%) 
 
Water Level Setpoint: 0.042857 
Measured Water Level: 0.031037 
Percentage of Variation: 27.579513 (%) 
 
Outlet MOV Setpoint Position: 0.800000 
Measured Position: 0.800000 
Percentage of Variation: 0.000000 (%) 
 
Bypass MOV Setpoint Position: 0.800000 
Measured Position: 0.800000 
Percentage of Variation: 0.000000 (%) 
 
Inlet MOV Setpoint Position: 0.248216 
Measured Position: 0.248216 
Percentage of Variation: 0.000000 (%) 
 
 
Fault Type = 
 
PID controller Fault and Outlet Turbine Flow meter      



 

  69

Predicted Inlet Flow rate: 0.008299 
Model Inlet Flow rate: 0.008174 
Percentage of Variation: -1.518967 (%) 
 
Predicted Outlet Flow rate: 0.065678 
Model Outlet Flow rate: 0.065395 
Percentage of Variation: -0.432238 (%) 
 
Predicted PID Output: 0.384712 
Model PID Output: 0.388666 
Percentage of Variation: 1.017533 (%) 
 
Predicted Water Level: 0.042803 
Model Water Level: 0.042857 
Percentage of Variation: 0.127335 (%) 
 
Water Level Setpoint: 0.042857 
Measured Water Level: 0.042857 
Percentage of Variation: 0.000000 (%) 
 
Outlet MOV Setpoint Position: 0.800000 
Measured Position: 0.800000 
Percentage of Variation: 0.000000 (%) 
 
Bypass MOV Setpoint Position: 0.800000 
Measured Position: 0.800000 
Percentage of Variation: 0.000000 (%) 
 
Inlet MOV Setpoint Position: 0.388666 
Measured Position: 0.388666 
Percentage of Variation: 0.000000 (%) 
 
 
Fault Type = 
 
No fault detected                                      
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4.7  Implementation of the FDI Algorithm for the Experimental Control Loop 
 
The performance of the FDI algorithm was checked in the low-pressure water loop 
experimental system described earlier.  All the steps for the development and 
implementation of the FDI algorithm performed in the simulations were repeated for this 
experimental setup. The steps are: 
 

• Generation of fault free database 
• Definition of qualitative relationships among loop devices 
• Quantitative definition of those relationships by applying the GMDH method 
• Development of a rule-based expert system  

 

4.7.1. LabView Program  
A LabView program was developed for controlling the experiment, data acquisition, and 
for system perturbations (imposed single faults). 
 
LabView programs are called virtual instruments (VIs).  The VIs have three main parts: the 
front panel, the block diagram, and the icon/connector.  The front panel provides the means 
for setting input values and viewing outputs from the VI block diagram. Because the front 
panel is analogous to a front panel of a real instrument, the inputs are called controls and 
the outputs are called indicators.  Each front panel has an accompanying block diagram, 
which is the program.  The block diagram is built using the graphical programming 
language G. The icon/connector turns a VI into an object (sub-VI) that is used as a 
subroutine in the block diagrams or other VIs. 
 
The LabView program performs not only data acquisition and experiment control, but also 
artificially creates the faults in different loop components.  A TANH(X)-type function was 
used as drift.  For single fault, the drift was introduced into each loop component signal 
one at a time.  For multiple faults, the drift was introduced into two loop component signals 
at a time.  A maximum drift of 10 % of the sensor’s nominal value prior to the fault was 
added in a fifteen-minute time interval. For example, if the water level sensor output is 
sending a signal representing 20 inches of water before the fault is imposed, a drift of 2 
inches was added during a fifteen minutes of perturbation. 
 
Figure 4.17 shows the main panel of the LabView program.  The selection of the loop 
component (or components) to introduce the drift is made by the user in the front panel of 
the LabView program.  A list box at the lower left corner of the main screen makes the 
selection. According to the choice of the fault in the list box of the front panel, the drifts are 
added to the loop component. 
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Figure 4.17.  Computer monitor display of the LabView program for data acquisition  
          from the experimental control loop. 
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4.7.2. Data Filtering 
An interesting fact observed during the experiments in the loop is that even when the 
experimental water loop system was operated at steady-state conditions, a low frequency 
oscillation was observed all the time.  This oscillation is due to two factors, both coming 
from the Inlet motor-operated valve.  The first factor is that the valve’s actuator has an 
internal dead-band, that is, even though the water level controller output is increasing, the 
valve stays steady in its current position until the controller’s output reaches a threshold.  
After reaching this threshold, the motor actuator moves the valve to its new position.  The 
second factor is that the valve has a free motion of approximately five-degree in angle.  
These two factors cause the system to oscillate at a low frequency around the set point 
value.  To solve this problem a simple filter was designed.  Figure 4.18 shows the signal 
with oscillation and the signal after low-pass filtering. 
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Figure 4.18. Measured and filtered data (water level and MOV position). 
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4.7.3. Generating the Database  
Obtaining a fault-free database is important for the development of a FDI algorithm. This 
database should contain as many normal system conditions as possible.  This database was 
used for generating prediction models and allowing the FDI algorithm to determine 
whether changes in the sensors’ outputs are due to changes in the system set point or due to 
a loop component malfunction. 
 
For generating the fault-free database, a LabView program was developed to automatically 
change the system normal operational conditions every ten minutes.  The outlet motor-
operated valve position was changing from 80% to 100% open (in steps of 5%).  The 
water level set point was also changed from 10 to 28 inches (in steps of 2 inches). All 15 
available variables were collected every three seconds for each perturbation. To check the 
system reproducibility, the complete set was run two times. The results are shown in 
Figure 4.19. 
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Figure 4.19.  Fault-free database for the experimental system. 

4.7.4. Generation of Qualitative Relationships for the Control Loop Components 
The qualitative relationship among loop components were obtained by the same process 
described earlier, that is, by applying correlation coefficients method to the data in the 
fault-free database.  Because the theoretical model was based on this experimental loop, 
the same qualitative relationships among components were obtained.  However, we could 
not use the same theoretical quantitative relationships (models) for the variable prediction, 
due to the simplicity of the theoretical model.  The GMDH method was applied to the 
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experimental fault free data to get the mathematical models for variable prediction.  About 
half of the data were used for training and the other half for performance evaluation. 
 
Figures 4.20 through 4.31 show both the measured and the predicted values for the training 
and testing data set.  The predicted values are very close to the measured ones.  The error 
between these values (in percentage) is also shown.  
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Figure 4.20.  The GMDH predicted values (“o”) against the test output values  
(x) for the Inlet Flow rate as a function of Bypass MOV and Inlet MOV positions. 
 



 

  75

0 10 20 30 40 50 60
0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

Data Point Number

In
le

t W
at

er
 F

lo
w

 R
at

e
GMDH Prediction
Training Data  

 
 
Figure 4.21.  The GMDH predicted values (“o”) against the training output  
                      values (x) for the Inlet Flow rate as a function of Bypass MOV  
                      and Inlet MOV positions. 
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Figure 4.22.  The error (%) between the predicted values and the measurements for the  
          Inlet Flow rate as a function of Bypass MOV and Inlet MOV positions. 
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Figure 4.23.  The GMDH predicted values (“o”) against the test output values  
(x) for the Outlet Flow rate as a function of Water Level and Outlet      MOV positions. 
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Figure 4.24.  The GMDH predicted values (“o”) against the training output  
                      values (x) for the Outlet Flow rate as a function of Water  
                      Level and Outlet MOV positions. 
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Figure 4.25.  The error (%) between the predicted values and the measurements for the  
         Outlet Flow rate as a function of Water Level and Outlet MOV positions. 
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Figure 4.26.  The GMDH predicted values (“o”) against the test output values (x)  
       for the PID Controller Output as a function of Bypass MOV, Water  
 Level and Outlet flow rate. 
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Figure 4.27.  The GMDH predicted values (“o”) against the training output  
                      values (x) for PID Controller Output as a function of Bypass  
                      MOV, Water Level and Outlet flow rate. 
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Figure 4.28.  The error (%) between the predicted values and the measurements for the  
          PID Controller Output as a function of Bypass MOV, Water Level and  
          Outlet flow rate. 
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Figure 4.29.  The GMDH predicted values (“o”) against the test output values  
          (x) for the Tank Water Level as a function of Inlet Flow rate and  
    Outlet MOV positions. 
 

0 10 20 30 40 50 60
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Data Point Number

W
at

er
 L

ev
el

GMDH Prediction
Training Data  

 
 
Figure 4.30.  The GMDH predicted values (“o”) against the training output  
                      values (x) for the Tank Water Level as a function of Inlet Flow  
                      rate and Outlet MOV positions. 
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Figure 4.31.  The error (%) between the predicted values and the measurements for the  
          Tank Water Level as a function of Inlet Flow rate and Outlet MOV  
          positions. 
 
 

4.7.5. Experimental Results 
Several experiments were performed in the low-pressure water loop system for checking 
the performance of the fault detection and isolation algorithm developed in this research. 
The following experiments were performed: 
 
Single faults: 
 
• Inlet MOV position fault 
• Water level sensor fault 
• RMT flow meter fault 
 
Double faults: 
 
• Inlet MOV position fault and Water level sensor fault 
• Inlet MOV position fault and RMT flow meter fault 
• Water level sensor fault and RMT flow meter fault 
 
The following is a summary of the results of analysis of the experimental data for the 
imposed faults: 
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Predicted Inlet Flow rate: 0.379999 
Model Inlet Flow rate: 0.411055 
Percentage of Variation: 7.555140 (%) 
 
Predicted Outlet Flow rate: 0.263051 
Model Outlet Flow rate: 0.238558 
Percentage of Variation: -2.093661 (%) 
 
Predicted PID Output: 0.353009 
Model PID Output: 0.337290 
Percentage of Variation: -4.660607 (%) 
 
Predicted Water Level: 0.321814 
Model Water Level: 0.326577 
Percentage of Variation: -1.479895 (%) 
 
Water Level Setpoint: 0.285714 
Measured Water Level: 0.283587 
Percentage of Variation: 0.744660 (%) 
 
Outlet MOV Setpoint Position: 0.800000 
Measured Position: 0.799758 
Percentage of Variation: 0.030226 (%) 
 
Bypass MOV Setpoint Position: 0.700000 
Measured Position: 0.700292 
Percentage of Variation: -0.041646 (%) 
 
Inlet MOV Setpoint Position: 0.337290 
Measured Position: 0.326077 
Percentage of Variation: 3.324477 (%) 
 
 
Fault Type = 
 
Inlet MOV Fault 
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Predicted Inlet Flow rate: 0.437513 
Model Inlet Flow rate: 0.441625 
Percentage of Variation: -0.939755(%) 
 
Predicted Outlet Flow rate: 0.258975 
Model Outlet Flow rate: 0.276997 
Percentage of Variation: -6.958854(%) 
 
Predicted PID Output: 0.354104 
Model PID Output: 0.344888 
Percentage of Variation: 2.602761 (%) 
 
Predicted Water Level: 0.313953 
Model Water Level: 0.259312 
Percentage of Variation: -21.071753 (%) 
 
Water Level Setpoint: 0.285714 
Measured Water Level: 0.277843 
Percentage of Variation: 2.754893 (%) 
 
Outlet MOV Setpoint Position: 0.800000 
Measured Position: 0.799898 
Percentage of Variation: 0.012799 (%) 
 
Bypass MOV Setpoint Position: 0.700000 
Measured Position: 0.699989 
Percentage of Variation: 0.001584 (%) 
 
Inlet MOV Setpoint Position: 0.367339 
Measured Position: 0.359821 
Percentage of Variation: -2.046650 (%) 
 
 
Fault Type = 
 
Water Level Sensor Fault 
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Predicted Inlet Flow rate: 0.586977 
Model Inlet Flow rate: 0.443550 
Percentage of Variation: -32.336015 (%) 
 
Predicted Outlet Flow rate: 0.263210 
Model Outlet Flow rate: 0.256999 
Percentage of Variation: 2.359590 (%) 
 
Predicted PID Output: 0.362095 
Model PID Output: 0.366655 
Percentage of Variation: 1.243559 (%) 
 
Predicted Water Level: 0.421617 
Model Water Level: 0.286259 
Percentage of Variation: -47.285338 (%) 
 
Water Level Setpoint: 0.285714 
Measured Water Level: 0.286259 
Percentage of Variation: -0.190490 (%) 
 
Outlet MOV Setpoint Position: 0.800000 
Measured Position: 0.801131 
Percentage of Variation: -0.141426 (%) 
 
Bypass MOV Setpoint Position: 0.700000 
Measured Position: 0.700161 
Percentage of Variation: -0.022940 (%) 
 
Inlet MOV Setpoint Position: 0.366655 
Measured Position: 0.355885 
Percentage of Variation: -2.937322 (%) 
 
 
Fault Type = 
 
RMT Flow meter Fault 
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Predicted Inlet Flow rate: 0.400076 
Model Inlet Flow rate: 0.446718 
Percentage of Variation: 10.441050 (%) 
 
Predicted Outlet Flow rate: 0.263192 
Model Outlet Flow rate: 0.279461 
Percentage of Variation: 5.821468 (%) 
 
Predicted PID Output: 0.364706 
Model PID Output: 0.349312 
Percentage of Variation: -4.406872 (%) 
 
Predicted Water Level: 0.434217 
Model Water Level: 0.286012 
Percentage of Variation: -51.817437 (%) 
 
Water Level Setpoint: 0.285714 
Measured Water Level: 0.286012 
Percentage of Variation: -0.104350 (%) 
 
Outlet MOV Setpoint Position: 0.800000 
Measured Position: 0.799745 
Percentage of Variation: 0.031818 (%) 
 
Bypass MOV Setpoint Position: 0.700000 
Measured Position: 0.700043 
Percentage of Variation: -0.006199 (%) 
 
Inlet MOV Setpoint Position: 0.349312 
Measured Position: 0.364997 
Percentage of Variation: -4.490270 (%) 
 
 
Fault Type = 
 
Inlet MOV Fault and Water Level Sensor Fault           
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Predicted Inlet Flow rate: 0.455162 
Model Inlet Flow rate: 0.533609 
Percentage of Variation: 14.701316 (%) 
 
Predicted Outlet Flow rate: 0.334127 
Model Outlet Flow rate: 0.342804 
Percentage of Variation: 2.531280 (%) 
 
Predicted PID Output: 0.404606 
Model PID Output: 0.380670 
Percentage of Variation: -6.288062 (%) 
 
Predicted Water Level: 0.398560 
Model Water Level: 0.287169 
Percentage of Variation: -38.789047 (%) 
 
Water Level Setpoint: 0.285714 
Measured Water Level: 0.287169 
Percentage of Variation: -0.509260 (%) 
 
Outlet MOV Setpoint Position: 1.000000 
Measured Position: 0.998297 
Percentage of Variation: 0.170297 (%) 
 
Bypass MOV Setpoint Position: 0.700000 
Measured Position: 0.700367 
Percentage of Variation: -0.052437 (%) 
 
Inlet MOV Setpoint Position: 0.380670 
Measured Position: 0.397486 
Percentage of Variation: -4.417556 (%) 
 
 
Fault Type = 
 
Inlet MOV Fault and RMT Flow meter Fault                
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Predicted Inlet Flow rate: 0.466461 
Model Inlet Flow rate: 0.505581 
Percentage of Variation: 7.737662 (%) 
 
Predicted Outlet Flow rate: 0.304979 
Model Outlet Flow rate: 0.324003 
Percentage of Variation: 5.871538 (%) 
 
Predicted PID Output: 0.392468 
Model PID Output: 0.393446 
Percentage of Variation: 0.248585 (%) 
 
Predicted Water Level: 0.318716 
Model Water Level: 0.309679 
Percentage of Variation: -2.835419 (%) 
 
Water Level Setpoint: 0.285714 
Measured Water Level: 0.277838 
Percentage of Variation: 2.756431 (%) 
 
Outlet MOV Setpoint Position: 1.000000 
Measured Position: 1.003776 
Percentage of Variation: -0.377636 (%) 
 
Bypass MOV Setpoint Position: 0.700000 
Measured Position: 0.699858 
Percentage of Variation: 0.020284 (%) 
 
Inlet MOV Setpoint Position: 0.393447 
Measured Position: 0.404018 
Percentage of Variation: -2.686962 (%) 
 
 
Fault Type = 
 
Water Level Sensor Fault and RMT Flow meter Fault 
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4.8  Summary of the GMDH Approach 
 
The performance of the FDI algorithm using the GMDH prediction and rule-based decision 
making was excellent with applications to detect and isolate single and multiple faults.  
The fault isolation could also be made using a classification of the prediction error patterns 
for each fault-type.  Figure 4.32 shows the prediction error of the four variables (inlet flow 
rate, outlet flow rate, tank water level, and controller output) for the six single-fault cases.  
Twenty samples each were simulated for the six fault scenarios.  Each fault case has a 
unique residual pattern.  In some cases two faults may have similar error behavior.  In 
these cases it is necessary to have additional information about sensors/devices, such as 
set point values.   
 
The system diagnostics was performed in two modules.  The first module monitors the 
system variables and checks if the changes in them are due to changes in system operating 
level or due to device faults.  The second module was used when an incipient fault is 
detected.  A rule-based logic algorithm was developed to associate the measurements to 
one or multiple fault types.  This module can be implemented for on-line applications and 
was evaluated for false and missed alarm rates. 
 
The rule-base is often plant specific.  In this project the GMDH module for state, 
controller, and actuator function prediction and the decision-making module are evaluated 
using a simulation model of an existing process control loop.  The rule-base is established 
for detecting single faults and two simultaneous faults in sensors and other field devices.  It 
is important to note that no assumption is made as to the nature of the incipient fault and the 
types of devices where the faults may occur. 
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Figure 4.32.  Plots of residual patterns for the six single device faults: inlet MOV, Water 
level sensor, Orifice flow meter, outlet MOV position, Bypass MOV position, and outlet 
turbine flow meter.  The four variables are: 1. Inlet flow rate, 2. Outlet flow rate, 3. 
Controller output, and 4. Water level. 

 

-0.1

0

0.1
Fault # 1

-0.1
0

0.1
0.2

Fault # 2

-0.2
-0.1

0
0.1

Fault # 3

-0.2

0

0.2

Fault # 4

1 2 3 4
-0.1

0

0.1

Variable #

Fault # 5

1 2 3 4

-0.1
0

0.1
0.2

Variable #

Fault # 6

 



 

 85

5.  APPLICATION OF PCA AND PATTERN CLASSIFICATION 
APPROACH FOR FAULT DETECTION AND ISOLATION IN A PWR 
U-TUBE STEAM GENERATOR 
 

5.1  Introduction 
 
The objective of this application is to demonstrate the fault isolation in a complex system 
such as a U-tube steam generator (UTSG) in a pressurized water reactor (PWR) plant.  The 
approach integrates the measurement characterization using the principal component 
analysis (PCA) and a pattern classification approach.  Normal operational data and 
measurements with device faults were simulated using a Simulink model of a PWR plant 
with a UTSG.  The focus is on the fault isolation for the UTSG system. 
 
 

Review of Principal Component Analysis (PCA) 
 
This section provides a brief description of PCA and the prediction error parameters used 
for fault detection.  For the details of PCA refer to Section 3 and the list of References. 
 
Principal Component Analysis (PCA) is an exploratory data analysis technique that is very 
popular for analyzing data sets with significant redundant (collinear) information. Consider 
an I by J matrix X where each row represents an observation. PCA decomposes the matrix 
as a product of scores (T) and loadings (P) as 

 
   X = TPt + E      (5.1) 

where E represents the residuals remaining after projection onto the principal component 
loadings.  The PCs are obtained so that the successive PCs explain the maximum amount of 
variance in X.  Thus, if the data are highly redundant with high correlation among the 
measurements, the first few PCs that explain most of the variation in the data can be 
retained and the higher PCs rejected leading to small residuals in E.  PCA is thus a very 
efficient data compression technique. 
 
To understand PCA better, consider X such that its columns are auto-scaled to zero mean 
and unit variance. The successive PCs then represent the directions of the principal axes of 
the hyper-ellipsoid that contains the data and are in descending order of the length of the 
principal axes. PCA is closely related to the singular value decomposition (SVD) of X, 
which decomposes X as 

 
   X = USV’      (5.2) 

where 

 U: Orthogonal matrix (n by n) spanning the column space of X 
 S : Diagonal matrix (n by m) with the singular values in descending order 
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 V: Orthogonal matrix (m by m) spanning the row space of X 

For understanding, consider a column vector b (m by 1) in the row space of X so 
that 

 
   Xb = US  (Vtb)     (5.3) 

The term in the brackets represents a rotation of the reference frame from IJxJ to V. 
Multiplication by S  represents the scaling of the representation of b in the V frame by the 
corresponding singular values and transforms b to the column space of X.  The 
representation of the resulting vector is, however, in the U frame and the multiplication by 
U transforms to the IIxI reference frame. In terms of PCA, the columns of V are the PCs and 
the singular values are the lengths of the principal axes of the hyper-ellipsoid.  The scores 
T are the projections onto the PCs and are obtained as 
 
   T = XV 
       = USVtV 
                                       = US  

It is worth mentioning that the scores are decorrelated or TtT is a diagonal matrix since 

   T’T = (XV)tXV 
           = (USVtV)t(USVtV) 
           = S tUtUS  
           = S tS  
           = S2 

PCA thus represents a rotation of the IJxJ reference frame to the PC reference frame so that 
in the PC frame, the data appears uncorrelated. Note that in cases where high redundancy 
exists in the data, the higher PCs would correspond to very small singular values and can 
be rejected with negligible loss of information. This leads to the residuals E and we have 
 
   X = UrS rVr

t + E 

The subscript r is used to emphasize the fact that only r of a maximum of rank(X) PCs are retained. 

 Any new test sample x can be projected on the retained PCs to obtain the scores (t) 

and the residuals (e) as 

   t = xVr 

and 

   e = x – tVr
t 

      = x – xVrVr
t 

      = x(I – VrVr
t)     (5.4) 

In applications to monitoring industrial processes, PCA is typically used to build a model 
of the nominal operation data.  Multivariate SPC charts can then be used to detect 
abnormalities in the PC space and the residuals space.  For the PC space, the Hotelling’s 
T2 statistic can be used while a sum-of-squared error can be used for the residuals.  Table 
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5.1 summarizes the PCA equations, the monitoring statistics, and the expressions for 
obtaining the confidence limits on the statistics. 
 
 

Application to a PWR Steam Generator System 
 
A U-tube steam generator (UTSG) in a typical PWR is chosen to illustrate the application 
of PCA data characterization and pattern classification approach for fault isolation.  The 
steam generator is used because of its importance in transferring energy from the primary 
system to the balance-of-plant system, and because of its dynamic complexity.  Schematic 
of a typical UTSG is shown in Figure 5.1.  The total number of signals used in the PCA 
analysis is m=18 and are listed in Table 5.2.  Variables that directly influence the 
performance of the UTSG are used, including reactor power set point and the steam 
generator water level set point.  The simulation study consisted of the following 
specifications: 
 

• Number of measurement samples for PC estimation: 500 
• Reactor power range: 75% - 100% 
• Six devices were selected for fault analysis.  Drift magnitudes of 0.5 – 2% of 

nominal values were imposed on the following devices: 
§ SG water level sensor 
§ Steam pressure sensor 
§ Steam flow rate sensor 
§ Feedwater flow rate sensor 
§ Feedwater valve signal 
§ Steam valve signal. 

 
Table 5.3 shows the behavior of the prediction errors of the six variables (without the SG 
water level).  The faults correspond to the devices associated with the UTSG only.  The 
simulation takes into account the interaction in all the control loops in a typical PWR.  
Twenty samples each for the various fault scenarios were simulated.  This study 
demonstrates the application of PCA for data characterization using eighteen variables.  By 
retaining seven PCs to model the hyper-plane that best fits the data, five of the six single 
device faults are detected.  The fault corresponding to a drift in the level sensor is not 
detected.  The reason is that there are no other measurements that are highly correlated with 
the level. The absence of such alternative measurements makes drifts in the steam generator 
inventory unobservable.  This situation may be resolved by using set point information and 
redundant measurements.  For the other cases, alternate highly correlated measurements are 
available so that the faults are observable. The residuals produce unique fault patterns.  By 
applying the rule base, all the observable fault scenarios are correctly isolated. 
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 Table 5.1  PCA model equations and statistics 
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  Table 5.2.  Nuclear power plant measurements used in the UTSG system (PCA) 
 

 

Index  

Description 

 

Index 
 

 

Description 

1 
SG level 

10 
Pressurizer level 

2 SG pressure 11 Pressurizer pressure 
3 SG steam flow 12 

Primary side PC 
output 

4 SG FW flow 13 Pressurizer LC Output 
5 SG LC output 14 

Turbine power 
6 Reactivity 15 Turbine RPM 
7 Hot leg temperature 16 RPM controller output 
8 Cold leg temperature 17 Power set point 
9 Tavg controller output 18 Level set point 
SG: steam generator; FW: feed water; PC: pressure controller; 

  LC: level controller; RPM: revolutions per minute. 
 
 

Table 5.3.  Fault isolation table for the nuclear plant data.  All the faults 
      are associated with the UTSG system 

 
Variables ?  

Fault Scenarios? 

 

2 
 

3 
 

4 
 

5 
 

10 
 

14 
 

15 
 

17 

SG Pressure +      -  
SG Steam flow  +       
SG FW flow   +      
SG FW valve    -     

SG Steam valve  + + + + -  - 
SG: Steam Generator; FW: Feed Water 

 
 
Figure 5.2 shows the plots of PCA eigenvalues, Q-statistic, prediction errors and the fault 
directions.  The patterns of prediction errors and fault directions indicate clearly the type 
of fault.  The reason for the failure in not being able to identify the level senor error was 
due to the fact that the SG level was fixed for all power levels.  This is not true in practice.  
The future work will use a full-scope PWR simulator that will include the water level 
dynamics.  The knowledge of the level set point and fluid inventory balance may also be 
used to monitor a level sensor measurement in situations where the level is maintained 
constant for all conditions. 
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Figure 5.1.  Schematic of a U-tube steam generator (UTSG) used in a 

       pressurized water reactor (PWR) plant. 
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Figure 5.2.  Results of principal component analysis of data from a 

       U-tube steam generator system in a PWR plant. 
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6.  CONCLUDING REMARKS AND FUTURE WORK 
 

6.1  Summary and Concluding Remarks 
 
An integrated method for incipient fault detection and isolation of sensors and field 
devices, using structured residuals, has been developed.  The FDI system uses two 
approaches for characterizing system variables – states and control functions.  These are 
(1) group method of data handling (GMDH) with rational function approximation, and (2) 
principal component analysis (PCA).  The latter may be performed using both linear and 
nonlinear representation of the measurements.  The isolation of device faults is performed 
using both a rule-based decision-making and a pattern classification of prediction error 
vectors in the fault space.  This integrated approach enhances the fault diagnostics 
capability and provides a robust method for FDI.  The integration of model predictive 
control [40, 41], stateflow graphical simulation environment [42], and the FDI module will 
be considered during future continuing work. 
 
The methods being developed under this task for the DOE-NERI project have been tested 
and illustrated using measurements from a laboratory process control loop and simulation 
studies of a U-tube steam generator in a PWR.  All the faults being simulated were detected 
successfully.  The faults were primarily of the drift-type.  Two manuscripts were prepared 
for presentations at scientific meetings that are sponsored by the American Nuclear Society 
during 2000. 
 
 

6.2  Plans for Future Work 
 
The following research tasks have been planned for completion during Phases 2 and 3 of 
this three-year project. 
 

Phase 2 R&D Tasks 
 
§ Implementation of the FDI method for a UTSG system as part of a full-scope PWR 

plant.  This would incorporate interactions among the various plant control loops. 
§ Development and extension of the current methods for the case of fault detection 

during plant transients. 
§ Interfacing the FDI module with the control system module through a system 

executive.  A currently available virtual instrument platform will be used. 
§ Identification of realistic faults in a PWR and establishment of the characteristics of 

transient faults as compared with steady-state operation faults. 
 

Phase 3 R&D Tasks 
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§ Development of minimum requirements for application to an existing PWR plant. 
§ Fully automated implementation of the FDI system as part of the overall control 

architecture demonstration. 
§ Identification of issues in technology transfer to nuclear power industry. 
§ Resolution of algorithmic issues of concern in system implementation. 
§ Deliverables: Annual Reports and a Final Report. 

FDI software system and User’s Manual. 
Conference and journal manuscripts. 
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SUMMARY 
 
 This report describes the tasks performed and the progress made by The University 
of Tennessee (UTK) during 2000-2001 on the DOE-NERI project entitled Automatic 
Development of Highly Reliable Control Architecture for Future Nuclear Power 
Plants.  UTK is collaborating with the Instrumentation & Controls Division of ORNL (lead 
organization) and the North Carolina State University (NCSU).  The objective of the UTK 
research task is to develop an on-line monitoring system for Fault Detection and Isolation 
(FDI) of sensors and field devices in a nuclear power plant.  This phase of the research 
has been focused on sensors and field devices in a nuclear power plant and the detection of 
dual faults in a steam generator system.  Sensors include temperature, pressure, flow, level 
transmitters, and measurements of control functions, and field devices include valve 
actuators, spray and heater systems, pumps, and other similar equipment.  The goal of this 
task is to provide diagnostics information to a central executive for enhanced decision-
making by the plant control system. 
 
 The following R&D tasks have been accomplished during this reporting period: 
 

• Development of data-driven models for the characterization of sub-system 
dynamics for predicting state variables, control functions, and expected control 
actions. 

• Enhancement of the nonlinear system modeling approach called the Group Method 
of Data Handling (GMDH) with rational functions, to include non-linearity and 
temporal correlation (fault detection during plant transient). 

• Enhancement of the Principal Component Analysis (PCA) to non-linear PCA. 
• Development of a fault detection and isolation module based on pattern 

classification of fault residuals. 
• Development of a technique for the isolation of simultaneous dual faults in the 

steam generator system. 
• Development of an FDI demonstration module using the Halden PICASSO platform. 

 
The above techniques have been applied to a laboratory process control loop and to data 
from a full-scope pressurized water reactor (PWR) simulation system. 
 
 During Phase-3 of this project (FY 2001), the FDI algorithms will be fine-tuned 
with the extension of the technique to the whole PWR plant.  This phase will also include 
the development of minimum requirements for application to an existing PWR, and the 
limitations imposed by the measurements.  The information generated by the FDI module 
will be interfaced with the control design system.  A paper was presented at the ANS 
Topical Meeting on NPIC&HMIT, November 2000, and another paper will be presented at 
the American Nuclear Society Winter Meeting, November 2001.  A journal publication in 
Nuclear Technology is due for November 2001.
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1. INTRODUCTION 

1.1 Background and Motivation 

Existing and new generation of nuclear power plants have economic and reliability 
concerns as addressed by overall plant performance, unscheduled downtime and the long-
term management of critical assets.  The key to achieving these needs is to develop an 
integrated approach for monitoring, control, fault detection and diagnosis of plant 
components such as sensors, actuators, control devices and other equipment.  Several 
methods developed by industry and academia, for monitoring isolated sensors and system 
components were reported [1-8].  Model-based local sensor validation and fault diagnosis 
methods were developed for specific applications [3,8].  These approaches assume that a 
system fault being monitored occurs in a specific plant component and in an isolated 
fashion.  Fault detection and isolation (FDI) of sensors and field devices is an important 
step towards the implementation of an automated and intelligent process control strategy 
[12]. 

 
A large-scale system, such as a nuclear power plant, has several feedback control 

loops.  This makes the identification and isolation of faults in these interconnected systems 
highly complex.  Even when a sensor used for set point control is faulty, the control system 
through feedback, tries to vary the actuating signals until the error in the set point is 
eliminated.  The sensor-alone type validation will fail in this situation.  It is therefore 
necessary to consider fault detection and isolation at the system level rather than at the 
device level.  The objective of this R&D task is to develop an on-line sensor and field 
device monitoring and fault detection system, when simultaneous faults may occur in two 
or more of these devices.  This goal will be achieved by a two-step approach: (1) 
Development of data-driven models for predicting multiple variables, using rational 
function approximation and group method of data handling;  (2) A decision-making module 
that uses system functional knowledge base and pattern classification algorithms, that will 
be deployed in a distributed configuration.  High priority will be given to the 
computational efficiency of these techniques, with the capability to change the module 
structure with changing plant conditions.  The intrinsic merit of the project lies in the 
development of an autonomous global monitoring and fault detection approach that would 
be executed with minimal human interaction. 
 
 

1.2 Objectives of R&D and Definition of Tasks 

 
The objective of this research task is to develop an on-line monitoring system for 

Fault Detection and Isolation (FDI) of sensors and field devices in a nuclear power plant. 
 The sensor suite consists of major process variables in a plant, such as temperature, 
pressure, flow, level, and control functions.  Field devices in a power plant include, but 
are not limited to, valve actuators, control modules, spray and heater systems, pumps, and 
similar equipment.  Figure 1.1 shows an integrated plant monitoring, diagnosis, and 
prognosis system, with the ability to estimate the remaining useful life of plant devices.   
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The objectives of this R&D are being accomplished through the completion of the 
following technical tasks: 
 

• Review of literature and previous work. 
• Characterization of sub-system dynamics using data-driven models for predicting 

state variables, control functions, and expected control actions. 
• Development of a Group Method of Data Handling (GMDH) modeling algorithm 

with rational function approximation. 
• Development of a Principal Component Analysis (PCA)  algorithm with linear and 

nonlinear mapping. 

PROCESS
PLANT

MONITORING
SYSTEM

DIAGNOSIS

SYSTEM

PROGNOSIS

SYSTEM

INFORMATION
INTEGRATION

DECISION AND

PLANNING
 

Figure 1.1 Integrated plant monitoring, diagnosis and prognosis system 
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• Development of an FDI module that combines system operational knowledge and a 
rule-based logic for both single and dual faults in dissimilar sensors and field 
devices. 

• Development of a complimentary module that quantifies the prediction error using a 
fault pattern classification technique. 

• Demonstration of the FDI system with application to an experimental process 
control loop. 

• Demonstration of the FDI system with application to a U-tube steam generator 
(UTSG) in a full-scope simulation model of a 1,300 MWe PWR. 

• Development of minimum requirements for FDI system implementation. 
• Extension of the techniques for the case of fault detection during plant transients. 
• Identification of realistic faults in a PWR and establish the characteristics of 

transient faults as compared with steady-state faults. 
• Interfacing the FDI module with control system module via the system executive 

and development of a graphical user interface (GUI) for the FDI system 
demonstration. 

• Identification of issues in technology transfer to nuclear power industry. 
• Deliverables: Annual Reports and a Final Report. 

FDI software system and User’s Manual. 
Conference and journal manuscripts. 

 
 

1.3 Summary of Significant Accomplishments During 2000-2001 

 

The following major milestones were accomplished during this reporting period: 

 

• Development and testing of time-dependent GMDH modeling module for state and 
control function prediction. 

• Development and testing of linear and non-linear PCA method for system 
characterization. 

• Generation of an extensive simulation database for normal and fault operation for a 
1,300 MWe PWR plant in the power range 20% - 100%. 

• Demonstration of the FDI module for both single and dual/simultaneous faults and 
includes the following highlights: 

Ø Rule-based decision making. 

Ø Fault isolation using fault residuals and pattern classification. 

Ø Steady state and transient plant operation conditions. 
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Ø Combination of sensors and valve actuators. 

Ø Use of both Simulink and NCSU-PWR simulation codes. 

• Demonstration of the FDI module using the Halden PICASSO 
platform. 

• Preparation of the following manuscripts for publication. 

Ø Fault Detection and Isolation of Nuclear Power Plant Sensors and Field 
Devices, ANS Topical Meeting on NPIC & HMIT, November 2000. 

Ø Incipient Fault Detection and Isolation in a Nuclear Power Plant Using 
Principal Component Analysis, American Control Conference, 
Washington, D.C., June 2001. 

Ø Summary submitted to the ANS Winter Meeting, November 2001. 

Ø Incipient Fault detection and Isolation of Field Devices in Nuclear 
Power Systems Using Principal Component Analysis, to appear in Nuclear 
Technology, November 2001. 

 

 

1.4 FDI Architecture and Issues in Developing a Robust FDI Algorithm 

 

Figure 1.2 shows the functional modules of the FDI system being developed in this 
project.  GMDH, PCA and Artificial Neural Network (ANN) modeling of process 
measurements are considered.  This provides a crosschecking of prediction techniques 
applied to the measurements.  Fault isolation is based on either a rule-based algorithm or a 
pattern classification algorithm.  The following issues must be considered in developing a 
robust FDI algorithm. 

 

• Sensor faults may not be detected in a closed-loop control system. 

• Redundancies in sensors and controllers are used in nuclear power plants (NPPs). 

• Separation of process variations from sensor/field-device faults must be 
considered. 

• Noise levels in measurements can increase false alarms.  It may be necessary to 
pre-process signals to eliminate this effect at different sub-bands. 
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• The use of physics models and data-driven models to understand and characterize 
the process dynamics. 

1.5 Organization of the Report 

 

The principal component analysis (PCA) and its applications are described in 
Section 2.  The group method of data handling (GMDH) algorithm and its extensions to 
transient data are presented in Section 3.  Applications to the FDI of dual faults through 
multiple observers are discussed in Sections 4.  Section 5 describes the development of an 
FDI demonstration module for a PWR using the Halden PICASSO platform.  Concluding 
remarks and plans for Phase-3 are given in Section 6. 
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Figure 1.2 The schematic shows the FDI system functional modules. 
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2. PRINCIPAL COMPONENT ANALYSIS (PCA) AND ITS GENERALIZATION 
FOR INCIPIENT FAULT DETECTION 

2.1 Introduction 

 
 Over the past few decades, industrial process systems have moved towards 
automation, and most processes are very well instrumented with various sensors providing 
both control and safety-related measurements.  The automation is achieved through control 
systems that use the sensor measurements to make adjustments to the manipulated variables 
such as fluid and energy flows to maintain the process at the desired set points.  Field 
devices such as sensors for measurements and actuators (valves, heaters, control rod 
drives, etc.) for process adjustment are thus central to any control system and their reliable 
functioning is crucial for optimal process operation.  Incipient faults in the field devices 
such as a drift in the sensor or change in the valve characteristics can occur, adversely 
affecting the plant performance. Considerable research in the recent past has therefore 
focused on the development of methods for incipient fault detection and isolation (FDI), 
especially in the sensors. 
 
 The underlying philosophy in any fault detection and isolation approach is to 
exploit the relationships that exist between the various measurements due to constraints 
imposed by the process.  As a simple example, the temperature and pressure in a steam 
generator are related through the liquid-vapor equilibrium. This nominal relationship 
would not be followed in case one of the sensors fails. Basic principles or data based 
methods can be used to model these relationships and then use the model to capture the 
breakdown in the relationships due to incipient fault conditions. 
 
 Given the availability of information in historical databases in modern computer 
controlled industry, data-based empirical modeling techniques such as GMDH13, principal 
component analysis (PCA)14, and artificial neural networks15-17 have been applied to 
capture the relationships between the various measurements for fault detection and 
isolation (FDI).  Matrix projection equations to eliminate unmeasured variables in the 
balance equations have been used for data reconciliation.18  An unbiased fault magnitude 
estimation technique has also been proposed.19  Other data reconciliation approaches 
include the use of recurrent neural networks and model based filters.20  
 

Multivariate statistical process control using empirical techniques, such as PCA and 
partial least-squares for data characterization, have been used successfully in the process 
industry.21,22  Contribution plots23 can be used as a tool for diagnosing the variables that 
numerically contribute to abnormal statistics on the SPC (statistical process control) 
charts. Structured residuals for isolation of faults have also been proposed.24,25 Gertler26 

provides a good overview of common model-based techniques for fault detection and 
isolation in engineering systems. 

 
More recently, the use of the squared prediction errors for fault detection, an 

optimization approach for reconstructing the fault, and isolation by reconstructing each 
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sensor in turn has been proposed.  The method uses PCA or PLS to build the process 
model.  Qin and Li27 have extended the work of Gertler et al.28 for sensor fault 
identification and reconstruction with maximized sensitivity.  The main criticism of the 
work is that the methodology is tested using artificial drifts imposed on nominal data 
available offline. However, in real systems, the control system uses the sensor reading and 
makes adjustments so that the drift is transformed to the manipulated variable. This aspect 
of transformation of variability, which is characteristic of any industrial process, is thus 
completely ignored.  This FDI approach, as is the case with most other reported 
applications, is therefore of limited utility. 

 
Realistic methods for FDI must take into account the plant-wide nature of the problem 

and the flow of information, including feedback through a complex plant and non-linearities 
associated with plant components.  The research reported here develops a quantitative 
framework for plant-wide fault detection and isolation in field devices. 

 
The approach is based on the fact that data for normal operation lies on a low 

dimension surface in the measurement space.  Faulty conditions in one or more of the field 
devices lead to deviations from the surface.  These deviations from the surface can be used 
for fault detection.  Fault isolation is possible when the deviations are in different 
directions for different faults.  In other words, different fault conditions lead to different 
patterns in the measurement space.  We refer to the various prediction error directions as 
the fault directions, and the particular fault may be isolated as the one with the maximum 
projection on the enumerated set of fault direction. 

 
The method thus consists of modeling the normal operation plant database using 

empirical methods, proposing statistical limits on deviations from the surface for fault 
detection and extracting systematic directions of deviations from the surface as observed in 
the historical faulty data.  The basis for FDI is the exploitation of the redundancy that exists 
between the process measurements.  Principal component analysis (PCA) is a technique 
especially suitable for this purpose and is used in this work for empirical modeling of the 
data. 

 
In the following sections, PCA as a data-modeling tool is briefly described.  A fault 

detection algorithm using statistical limits on the residuals, and fault isolation using 
projections on the systematic fault directions, is formulated.  A technique based on singular 
value decomposition (SVD)29 for extracting the fault directions given the samples in the 
different fault clusters is presented.  Two case studies are used to demonstrate the 
application of the integrated approach: (a) a PWR plant steam generator and (b) a 
laboratory process control loop.  The latter example also illustrates augmented PCA using 
nonlinear terms in the data matrix for enhanced FDI capabilities.  A comparison with 
earlier work30 on this system, using GMDH for empirical modeling, shows the efficacy of 
augmented PCA with a better fault isolation.  Finally, the various engineering issues and 
some concluding remarks are presented. 
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2.2 Principal Component Analysis (PCA) 

 
 PCA is an exploratory data analysis technique that has become very popular among 
researchers for the analysis of ill-conditioned data.  Consider an (m x n) data matrix X, 
with n samples along the rows and each sample consisting of m measurements. PCA 
decomposes X into a product of scores (T) and orthogonal loadings (P) as 
 
   X = TPT + E      (2.1) 
 
where E contains the residuals.  The principal components (PCs) in the successive 
columns of P are obtained such that maximum variance in X is explained. Thus in case the 
data are highly collinear, the first few PCs explain most of the variability in the data and 
are retained.  The residuals in E constitute the unexplained variation in the data and contain 
the higher PCs that are rejected.  PCA is thus a very efficient data compression technique.  
The scores so obtained are uncorrelated, that is, TTT is a diagonal matrix.  The PCA 
represents the rotation of the laboratory reference frame to the principal component frame 
in which the data appear uncorrelated.  Another interpretation of PCA for data centered 
around the origin is that the PCs are in the direction of the major and minor axes of the 
ellipse (or hyper-ellipse) that contains the data.  The variances of the scores represent the 
lengths of the axes.  For our purpose, it is sufficient to note that PCA represents a low 
dimensional hyperplane that best fits the data in the highly redundant measurement space.  
The PCs can easily be obtained as the right singular vectors of X using the singular value 
decomposition (SVD).29 

 

 A new sample x can be projected on an existing PCA model to obtain the scores  
 
   t = xP 
 
and the residuals as 
 
   e = x – tPT 

      = x – xPPT 

   e = x(I – PPT)     (2.2) 
 
 

2.3 FDI Methodology 

 
The FDI methodology consists of building a model to characterize the relationships 

between the various measurements.  A breakdown in the relationships is indicated as 
abnormal prediction residuals or lack of fit with the model and may be used for fault 
detection.  Characteristic patterns in the residuals most probably correspond to faults of a 
particular type and may be used for fault isolation.  It is emphasized that the above is true 
irrespective of the type of model that is used.  More formally, given a model, the detection 
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and isolation of faults may be achieved using the residuals that signify the mismatch 
between the model and the actual data as follows. 

 

2.3.1 Fault Detection 

 
 The residuals e obtained from a model can be combined into a squared prediction 
error statistic Q as 

 

   Q = eeT      (2.3) 

 

The Q statistic quantifies the lack of fit between the sample and the model and denotes the 
distance of the sample from the nominal operation surface.  Under the standard assumptions 
of a multivariate normal distribution for e, e ~ N(0, 1), control limits at confidence level a 
may be obtained using the ?2 distribution as30 
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and ca is the standard normal deviate (2.57 for α = 0.01).  In the above equations, I is the 
number of samples (rows) in the normal operation set and Θi is the sum of the ith power of 
the singular values of E/(I-1)0.5.  For normal operation, the Q-statistic would be very small. 
 Detection of faults is accomplished as violations of the control limit, that is, when Q 
exceeds Qα.   
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2.3.2 Fault Isolation 

 
Let F = [f1 f2 … fR], where f1 f2 … fR are (m x 1) column vectors, denote the fault 

directions for the various fault scenarios that are observed in the database.  Clustering 
techniques on an existing database can be used to automatically obtain these fault 
directions.  In case the fault is of a particular type j, then the projection of the residuals on 
fj would be very high.  Fault isolation is accomplished by calculating the projections onto 
F and classifying the fault as the one with the maximum projection norm.  For example, a 
fault isolation index for the ith fault is defined as 

 
   FIi = 1 - Qi/Q      (2.7) 
where 
   Qi = e(I-fifi

T)(I-fifi
T)eT     (2.8) 

 
In the above equations, Qi denotes the distance of the sample from the origin after 
subtracting the projection of the residuals on the fault direction fi.  It represents the sum of 
squares of residuals remaining after removing the contribution from the ith fault direction. 
The fault isolation index quantifies the fraction of Q that is due to fi.  If the jth fault scenario 
occurs, FIi would be the largest and nearly 1 for i = j where i varies from 1 to R. This 
results in the isolation of the fault from the various existing scenarios.  The fault matrix F 
can be extracted from the historical data as described in the next section. 
 

2.4 Establishing Fault Directions 

 
The fault direction fi in the matrix F = [f1, f2, …, fi, …, fR] represents the direction in 

the residuals space for the ith fault such that the samples corresponding to the fault have the 
maximum projection on fi.  In other words, if Ei denotes the residuals for samples 
corresponding to the ith fault, the optimization problem is 

 
J = max fi

TEi
TEifi      (2.9) 

               fi 

subject to the constraint 
 

fi
Tfi = 1 

 
Using the Lagrangian multiplier and differentiating J with respect to fi and setting the 
derivative to zero for maximization, we get 
 

   2EiTEifi - 2σfi = 0 
   Ei

TEifi = σfi      (2.10) 
 
The fault direction fi is thus obtained as the first eigenvector of Ei

TEi.  The singular value 
decomposition (SVD)29 may be used to obtain the eigenvector. 
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 In historical databases, the number of fault scenarios and the correspondence of the 
fault samples to the particular fault scenarios are not known apriori.  Classification of the 
residuals must then be used to establish the number of fault scenarios and also the 
correspondence of the samples to the particular scenarios.  Existing classification 
algorithms24 can be suitably adapted for this purpose. 
 
 The overall method as described in the above sections thus consists of the 
following steps: 
1. Building a model for historical normal operation data. 
2. Subjecting the complete database to the monitoring scheme to identify samples that 

deviate abnormally from the model and are therefore faulty. 
3. Classifying the abnormal (faulty) samples in the database to find the fault directions. 
Once a reasonable model is built, the FDI scheme can be implemented for the detection and 
isolation of faults in new samples.  The next section applies the methodology to two 
examples: 1. A simulated nuclear power plant steam generator system, and 2. A laboratory 
process control loop. 
 

2.5 FDI Case Studies 

2.5.1 A PWR Plant U-Tube Steam Generator (UTSG) System 

 
 The simulation developed by Naghedolfeizi and Upadhyaya29 is used in this work 
to demonstrate the implementation of the FDI system.  The focus of the study is the U-tube 
steam generator (UTSG) in a typical 1,140 MWe PWR plant and the propagation of faults 
in the sensors or valves associated with it.  Schematic of a typical UTSG and the 
associated measurements are shown in Figure 2.1.  In order to build the model for nominal 
operation, 500 cases are simulated for randomly selected power set points between 70 to 
100% of the plant capacity and also in the level set point in the steam generator. The 16 
measurements that are available are listed in Table 2.1.  The fault cases, shown in Table 
2.2, are simulated with randomly selected drifts.  The range of the drifts is also given in the 
table.  A total of 120 (20 per fault type) single fault cases are simulated. 
 
 A PCA model is built on the data for the nominal operation case.  The nominal 
operation data matrix is pre-processed by auto-scaling the columns in the data matrix to 
zero mean and unit variance.  This puts all the measurements with their different units on a 
common unit variance scale.  The results of analysis are plotted in Figure 2.2.  The 
eigenvalues are shown in subplot 2.2a.  Seven PCs are retained, and they explain about 
99.9% of the total variation in the data, indicating the high degree of redundancy in the 
measurements.  The Q-statistic for the samples in the complete database is plotted in 
Figure 2.2b.  All the samples with faults, except for the case of drifts in the level sensor, 
are detected on the SPC monitoring chart.  This is an expected result and indicates that for 
the particular set of measurements, the correlation structure between the measurements 
remains the same as for normal operation even when a drift in the level sensor occurs. The 
reason is that there are no other measurements that are highly correlated with the level. The 
absence of such alternative measurements makes drifts in the steam generator inventory 
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unobservable.  For the other cases, alternate highly correlated measurements are available 
so that the faults are observable.  The residuals for each of the observable fault scenarios 
are plotted in subplot 2.2c.  Each of the fault scenarios has unique pattern.  The 
corresponding fault directions obtained from an SVD on the faulty samples are plotted in 
2.2d. 
 

The fault isolation indices for each of the detected fault scenarios are plotted in Figure 
2.3.  Note that the fault index is close to unity for the particular fault that occurs and is 
smaller for the others.  All the fault cases are detected correctly using the fault isolation 
approach described earlier. This demonstrates the effectiveness of the proposed method 
for fault detection and isolation in complex systems with several interacting units and 
feedback control loops. 

 

2.5.2 Laboratory Process Control System 

 
A schematic of the laboratory process loop with a tank water level control system is 

shown in Figure 2.4.  The 12 measurements that are available for the system are listed in 
Table 2.3 and the various fault types are given in Table 2.4.  The normal operation 
database consists of 500 samples at various randomly chosen set points for the water level, 
and positions of outlet and bypass motor operated valves (MOVs).  Fifty samples each, for 
the various fault scenarios, are also simulated. 

 
Using the linear PCA on the measurement data and retaining six PCs, the Q statistic 

detects five of the six fault types.  The fault corresponding to a drift in the level sensor goes 
undetected.  This is not reasonable since the tank level significantly affects the flow out of 
the tank.  One possible reason is the non-linearity present in the system, and the linear PCA 
does not properly characterize the relationships among the various measurements.  Indeed, 
in the previously reported application12, GMDH (group method of data handling) was 
used with non-linear rational terms to achieve good prediction models, indicating the 
presence of significant non-linearity in the system. One simple modification to incorporate 
non-linearity in the PCA analysis is to augment the data matrix with non-linear terms such 
as higher order terms and rational functions of the measurements.  See Section 3 for details 
of GMDH method. 

 
In order to decide the terms to be used for augmenting the matrix, we note that a drift in 

the level sensor causes the actual level in the tank to be different than under nominal 
operation.  Since level affects the flow out of the tank, a mismatch in the predicted versus 
measured flow out would occur when a level sensor drift is present. For nominal 
operation, good predictions of the flow out can be obtained using the level set point (x7) 
and the measured outlet MOV position (x3). The measurement matrix is thus augmented 
using the nonlinear terms x3

2, x7
2, x3.x7 and x3/x7.  The last term is rational and is used since 

previous experience with GMDH had shown that the incorporation of such terms 
significantly enhanced the prediction accuracy.12  Note that division by zero must be 
avoided by adequately scaling the data between 0.5 and 2.0.  Once all the columns in the 
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data matrix are defined, the nominal operation data is auto-scaled to obtain columns with 
unit variance and zero mean values. 

 
A total of seven PCs are retained to model the augmented normal operation data. The 

Q-statistic is obtained and plotted for all the samples in Figure 2.5.  All the six fault types 
are now detected.  A single false alarm is observed while 50 faulty samples are not 
detected.  These results are better than for the case of linear PCA. 

 
As a comparison, GMDH models (described in earlier work12) with four predicted 

variables are developed.  Using the mismatch between the measured and predicted values 
for the four variables, the residuals are obtained.  The residual patterns for the fault cases 
are plotted in Figure 2.6.  Only three unique patterns for the six scenarios are observed.  
The patterns for two pairs of faults (1 and 5; 2 and 4) are very similar so that isolation 
between the pairs is not possible as the fault directions are shaped similarly (collinear).  
Also, 78 faulty samples go undetected.  The better performance of augmented PCA, both in 
terms of detection and isolation, is due to the fact that it is truly a multivariate technique 
that exploits the correlation structure of all the measurements rather than using only a few 
measurements for prediction, as was the case with GMDH.  The augmented PCA is thus a 
more powerful FDI technique.  This completes the demonstration of the FDI method for the 
example cases.  Several issues relevant to the implementation of the method are discussed 
in the next section. 

 

2.5.3 Engineering Issues 

 
We described a method for fault detection and isolation of field devices using 

structured residuals from historical data and demonstrated using engineering systems as 
examples.  The availability of a fault free database is implicitly assumed.  In practice, even 
though a historical database may be available, the distinction between faulty and fault-free 
samples is generally not very clear.  A few iterations in the model building exercise may 
be needed before the distinction becomes clear. 

 
Once a nominal operation model is built, the various fault scenarios are easily 

obtained.  The challenge, however, lies in pinpointing the physical cause for each of the 
scenarios.  A substantial engineering judgement is involved in the exercise and the effort 
spent is probably the most useful for process improvements. Simulations that 
approximately represent the system behavior can be very instructive for this purpose. Most 
engineering systems have certain characteristic failure modes so that the particular 
signature of a fault in the measurement space may be obtained from the simulation.  For 
practical applications, a very powerful hybrid approach for FDI would utilize historical 
data mining in conjunction with approximate simulations. 

 
The FDI approach uses empirical data-based modeling technique for characterizing the 

system under study.  It is therefore applicable only in the operating region for which data 
were used to build the model.  Rich data sets with a wide operating region should therefore 
be used for building the model.  New faults with a distinct signature that have not been 
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characterized earlier can occur and would lead to low projections on all the fault 
directions.  In such situations, the enumerated fault set can be updated to include the new 
fault direction so that the fault can be correctly isolated in the future.  It is also noted that 
the fault isolation results indicate the most likely cause of a particular abnormal deviation 
based on past experience.  Faults due to other physical reasons that have a similar effect on 
the measurements are also possible and the inferences from the isolation module are at best 
tentative and require verification. 

 
We emphasize that the sensor-alone type validation, for which a significant body of 

literature exists, and the plant-wide FDI as demonstrated here are complimentary in nature. 
 The former is useful at the device level in detecting device faults quickly.  The latter is 
useful for anomalies that go undetected at the device level and propagate through the plant 
to be detected by the plant-wide system.  The plant-wide FDI system is thus a useful tool 
for the detection of subtle faults. 

 
For the plant-wide FDI problem, multivariate methods such as PCA that study the 

covariance structure of all the variables as a whole, are very powerful.  The only issue, as 
was shown in the level control example, is that the technique is linear and therefore not 
adequate for highly non-linear systems. This research has shown that augmenting the 
measurement matrix with non-linear terms and then performing PCA on the augmented 
matrix is an effective way of enhancing the non-linear PCA.  Alternatively, more rigorous 
methods such as principal curves26 may be used and is a recommended goal for future 
research. 

 
Lastly, the framework at present is applicable to steady state data. It can be applied 

only after the process settles down (or during slow drifts) and not during transients.  One 
notable exception is that of redundant sensors where the correlation structure between the 
sensor measurements is valid even during transients.  The present method can be extended 
to transient FDI by including time-lagged measurements in the data matrix to capture the 
normal dynamic signature of a process.  This is referred to as dynamic PCA and should be 
an effective tool for FDI since the first sign of field device degradation is quite often a 
change in its dynamic response.  The training data should be rich in dynamic information so 
that the transient relationships are captured well by the PCA model.  Data from periods of 
startup, shutdown and operational changes are especially suitable for this purpose.  A 
logical direction for future work would be the extension and demonstration of the current 
framework to transient FDI. 



 16

Table 2-1 Nuclear plant steam generator system variables 

 
 
Index 
 

 
Description 

 
Index 
 

 
Description 

 
1 
 

 
SG Level 

 
9 

 
Tavg Controller Output 

 
2 
 

 
SG Pressure 

 
10 

 
Pressurizer Level 

 
3 
 

 
SG Steam Flow 

 
11 

 
Pressurizer Pressure 

 
4 
 

 
SG FW Flow 

 
12 

 
Primary Side PC Output 

 
5 
 

 
SG LC Output 

 
13 

 
Pressurizer LC Output 

 
6 
 

 
Reactor Reactivity 

 
14 

 
Turbine Power 

 
7 
 

 
Hot Leg Temperature 

 
15 

 
Turbine RPM 

 
8 
 

 
Cold Leg Temperature 

 
16 

 
RPM Controller Output 

 
SG: steam generator; FW: feed water; PC: pressure controller; LC: level controller. 
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Table 2.2. Steam generator fault cases 

 
 
Index 
 

 
Description 

 
Drift Magnitude (Sign) 

 
1 

 
Level sensor 
 

 
0.5 – 2% (-ve) 

 
2 

 
Pressure sensor 
 

 
0.5 – 2% (-ve) 

 
3 

 
Steam flow sensor 
 

 
0.5 – 2% (+ve) 

 
4 

 
FW flow sensor 
 

 
0.5 – 2% (+ve) 

 
5 

 
FW valve signal 
 

 
0.5 – 2% (+ve) 

 
6 

 
Steam valve signal 
 

 
0.5 – 2% (+ve) 

FW: feed water 
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Table 2-2 Laboratory process control system variables 

 
 
Index 
 

 
Description 

 
Index 
 

 
Description 

 
1 
 

 
Bypass MOV SP 

 
7 

 
Water level SP 

 
2 
 

 
Inlet MOV SP 

 
8 

 
Water level 

 
3 
 

 
Outlet MOV SP 

 
9 

 
Controller output 

 
4 
 

 
Bypass MOV position 

 
10 

 
Inlet flow (TFM) 

 
5 
 

 
Inlet MOV position 

 
11 

 
Inlet flow (RMT) 

 
6 
 

 
Outlet MOV position 

 
12 

 
Outlet flow (TFM) 

 
MOV: motor operated valve; SP: set point; TFM: turbine flow meter; 

RMT: Rosemount mass flow transmitter 
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Table 2.4. Laboratory tank level control system fault cases 

 
 
Index 
 

 
Description 

 
Drift Magnitude (Sign) 

 
1 
 

 
Inlet MOV position 

 
5 – 10% (+ve) 

 
2 
 

 
Level sensor 

 
5 – 10% (+ve) 

 
3 
 

 
Inlet flow RMT sensor 

 
5 – 10% (+ve) 

 
4 
 

 
Outlet MOV position 

 
5 – 10% (+ve) 

 
5 
 

 
Bypass MOV position 

 
5 – 10% (+ve) 

 
6 
 

 
Outlet flow TFM sensor 

 
5 – 10% (+ve) 

 
MOV: motor operated valve; SP: set point;  

TFM: turbine flow meter; 

RMT: Rosemount mass flow transmitter 
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Figure 2.1 Schematic of a typical steam generator system (UTSG) showing the 
various 
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Figure 2.2  PCA results: A PWR U-tube steam generator 
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Figure 2.3 Fault isolation index for an example sample for each detectable fault case: 
steam generator example 
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Figure 2.4 Schematic of a tank level control system 
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Figure 2.5 Augmented PCA results: Tank level control example 
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Figure 2.6 Augmented PCA results: Tank level control example 
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Figure 2.7  Fault residuals for GMDH: Tank level control example. 
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3. ENHANCED GROUP METHOD OF DATA HANDLING (GMDH) FOR 
TRANSIENT PROCESS CHARACTERIZATION 

3.1 The GMDH Method with Rational Function Approximation 

The objective of this sub-task is to characterize the mapping among process 
variables and control functions using self-organizing and data-driven modeling.  The so-
called Group Method of Data Handling (GMDH) is an algebraic method for predicting 
system states, controller and actuator functions.  A new algorithm, that will create 
appropriate prediction models for different nuclear plant sub-systems, will be developed 
by a rational function approximation of the original GMDH algorithm [11,12].  The GMDH 
approach has the advantage over artificial neural networks in not requiring tedious network 
training procedures.  It is also easy to update the prediction models during plant operation. 
 Extension of the GMDH to fault detection during plant transient has been developed during 
Phase-2. 
  
 The GMDH constructs a model, of a desired output as a function of a set of related 
inputs from a subsystem, by a successive polynomial approximation.  The general 
relationship has the form shown in Equation (2.1) where  {x1, x2, … , xm} is a vector of 
input variables and y is the variable to be predicted.  This formulation can be extended to 
the prediction of multiple outputs  {y1, y2, … , yn} as well. 
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ii xxxdxxcxbay L  (3.1) 

 
A typical node of a GMDH modeling layer is a basic quadratic predictor using variables 
[xi, xj].  The model parameters such as {A, B, C, D, E, F}, are estimated from a least-
squares fit using N observations of the input and output variables.   

 
jijiji xFxExDxCxBxAy +++++= 22     (3.2) 

 
Figure 3.1 illustrates that the predicted values of y are propagated to successively 

higher layers of the algorithm, with the approximation of ypred improving at successive 
stages.  At each stage of the approximation, ypred is formed from pairs of input signals (to 
that layer), and new values of the predicted variable are propagated pair-wise to the next 
layer.  The iteration is continued until the mean-squared error between the predicted and 
the measured values of the output variable attains a desired value. 
 
 Parsimony in model fitting is achieved by comparing the fractional prediction 
errors from one generation to the next, and by terminating the algorithm when the error is a 
minimum or when the difference between errors from successive approximation stages is 
less than a preset limit [12]. 
 
 The GMDH approach described above uses polynomial approximation.  This 
polynomial set may be satisfactory in establishing some of the relationships of interest.  In 
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characterizing the subsystems in a nuclear power plant it may be necessary to use terms 
containing rational functions (for example, ratios of polynomials in x1 and x2).  The 
expression (2.3) represents a set of such terms that forms a complete set of terms in a given 
domain. 
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The new set should facilitate the development of prediction models with a 
minimum number of terms.  The computational efficiency of establishing these models will 
be enhanced by a systematic choice of the terms in the set shown in Expression (2.3). 

Figure 3.1  GMDH network showing m inputs and K layers 
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3.2 The GMDH Algorithm 

 
 The following steps explain the procedure used in developing data-driven models 
using the group method of data handling. 
 

• Consider N observations of m variables X ≡ {x1, x2, … , xm} and the measurements 
of the variable to be estimated, Y ≡ {y1, y2, … , yN}. 

 
• Divide the data into a training set (nt) and a test set (N-nt). 

 
• For each pair {xi, xj} and Y, compute the regression polynomial 

 

jijiji xFxExDxCxBxAy +++++= 22
 

 
A total of m(m-1)/2 polynomials are computed. 
 

• Create new observations, Z, for each of the new m(m-1)/2 variables. 
• Screening out the least effective variables:  Compute the SSE 
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• Pick those new inputs for which rj < R (choice of the user). 

 
• Repeat the stage-wise computation until the method starts over-fitting the data.  Plot 

the smallest of {rj} at each stage and look for a minimum.  This is called the 
minimum Ivakhnenko polynomial. 

 
• Using the best-fit model, compute the prediction errors using the test data of length 

(N-nt).  Check if the error rbest is satisfactory. 
 
 

3.3 Enhancement of the GMDH Algorithm 

 
To improve model building with a minimum number of layers, the set of terms in 

the regression model is generalized to include rational functions of {x1, x2, … , xm}. 
 

• The choice of terms in the regression is made according to a binary selector:  For 
example, for k=8, the binary number is between 0 and 255 (a total 256 input 
vectors). 
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• Example: model number 179 has the terms [1 0 1 1 0 0 1 1] 
• Choose ~ ten best-fit models.  From this set, choose the model with the least 

number of terms! 
 
• To avoid unlimited increase in the number of nodes in a higher GMDH layer, use 

the best m nodes for the succeeding layer.  All layers have the same number of 
nodes, m. 

 
• Make sure that the number of input variables in the first layer is m > 2, in order to 

avoid the termination of GMDH after the first (input) layer. 
 
• To avoid long training times, limit the maximum number of layers for a single 

model (30 was suggested in this study, since no improvement was observed beyond 
this level). 

 
• Transient models were developed by incorporating time-correlated data as part of 

the measurement set. 
 

3.4 Summary of Accomplishments during Phase-2 

 
 The following key tasks were accomplished in the development and application of 
GMDH models. 

• Generation of PWR database using the full-scope PWR simulator developed by 
NCSU.  Steady-state data cover 20% - 100% power level. 

• Transient data were generated between 80% and 100% power levels. 
• Development of temporal GMDH models for transient data. 
• Detection and isolation of faults in sensors, feed water and turbine control valve 

position, and valve actuation time constant. 
• Integration of rule-base and pattern classification techniques for fault isolation. 

 
The method was demonstrated by application to the UTSG system.  The following 
variables were used for developing GMDH models: 
 
x1 = SG  water level 
x2 = Feed water flow rate 
x3 = Feed control valve position 
x4 = Steam flow rate (for one steam generator) 
x5 = TCV1 flow rate 
x6 = TCV2 flow rate 
x7 = TCV3 flow rate 
x8 = TCV4 flow rate 
x9 = Reactor power level 
TCV:  Turbine Control Valve 
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3.5 Summary of Results of Application to the UTSG System 

3.5.1 Fault Detection During Steady-State Operation 

The following single device faults were diagnosed:  
§ TCV1 fault during valve open stroke (increased time constant and dead band). 
§ TCV1 fault during valve close stroke. 
§ SG level sensor (offset and drift). 
§ Feed water flow meter (offset and drift). 
§ FCV dead-band error. 
§ Steam pressure sensor (offset). 
§ Steam flow meter (offset). 

 
The following GMDH models were developed in order to predict the device degradation. 
 
§ Narrow range level sensor = f(x9, x4, x2) 
§ Feed water flow rate = f(x9, x4, x3) 
§ FCV position = f(x9, x4, x1, TCV1 position) 
§ Steam flow rate = f(x9, x3) 
§ TCVi flow rate = f(x9, x4, x2, x1, TCVi position), i = 1, 2, 3, 4. 

 
Figure 3.2 shows a comparison of the feed control valve (FCV) position and the GMDH 
model prediction.  Model error is less than 0.5% for this case.  The following eight fault 
cases were demonstrated. 

 
Fault type 1: One TCV under degradation under valve opening process (time constant) 
Fault type 2: One TCV under degradation under valve closing process (time constant) 
Fault type 3: Water level sensor (Narrow range) fault (offset or drifting). 
Fault type 4: Flow meter sensor fault (offset) 
Fault type 5: FCV stuck at 70% position. 
Fault type 6: FCV dead band error. 
Fault type 7: Steam pressure sensor drifting (5% per hour) 
Fault type 8: Steam flow rate sensor drifting. 
 
Figure 3.3 shows the prediction errors of the seven variables for the eight different faults.  
 
   variable 1:  error between NR model prediction and measurement 
   variable 2:  error between Feed water flow rate model prediction and measurement 
   variable 3:  error between steam flow rate model prediction and measurement 
   variable 4:  error between TCV1 flow rate model prediction and measurement 
   variable 5:  error between TCV2 flow rate model prediction and measurement 
   variable 6:  error between TCV3 flow rate model prediction and measurement 
   variable 7:  error between TCV4 flow rate model prediction and measurement. 
 
The residual pattern due to FCV dead band change is plotted separately in Figure 3.4. 
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Figure 3.2  Static GMDH model training results for feed control valve (FCV) 

 

 



 29

 

Figure 3.3  Plots of residual errors for the eight different device faults 

Figure 3.4 Plots of prediction errors of the seven variables for the case of feed control 
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3.5.2 Fault Detection During Plant Transient 

 The degradation of the turbine control valve (TCV) flow rate during a power 
transient from 100% to 95% was simulated.  Figure 3.5 shows the comparison of the actual 
and indicated steam flow rates.  Note that the prediction error changes with time, and is 
typical of patterns of faults during a plant transient. 
 

 

Figure 3.5  TCV flow rate showing the actual and predicted values for the case of 
TCV degradation. 

3.6 Remarks 

All the single fault cases, for both stationary and transient plant operation cases have 
been successfully isolated.  Future work will include the diagnosis of controller 
degradation and certain equipment degradation, such as pump performance.  Both a rule-
based expert system and a pattern classification algorithm have been used for fault 
isolation.
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4. DETECTION AND ISOLATION OF DUAL FAULTS IN THE PWR STEAM 
GENERATOR SYSTEM 

4.1 System Description 

 The multi-model observer approach, for the detection of dual faults in the steam 
generator system, is presented in this section.  The current available previous work in 
simulataneous multiple fault detection is limited.31,32  The research results presented in this 
section are original contributions to this area of fault diagnosis.  The steam generator (SG) 
water level control system is a typical multiple-input multiple-output (MIMO) feednback 
system.  This sub-system has the following inputs and measured outputs: 
 

a) Control variables: 
Feed water control valve(FCV) position. 

b) Reference signals: 
Steam generator water level set point. 

c) Measured outputs: 
Steam generator narrow range water level. 
Steam generator wide range water level. 
Feed water flow rate. 
Steam flow rate. 
Steam generator pressure. 
Steam generator temperature. 
 

4.2 Selected Faults 

           The following single faults are defined in the designed FDI scheme: 
a) SG  narrow range level sensor offset 
b) SG pressure sensor offset 
c) FCV position offset 
d) Steam flow meter offest 
e) Feed water flow meter offset 
f) FCV controller offset fault. 

 
The following dual faults are considered: 

a) Feed water flow meter offset and steam flow meter offset 
b) Feed water flow meter offset and SG  narrow range level sensor offset 
c) Steam water flow meter offset and SG  narrow range level sensor offset 
d) Feed water flow meter offset and SG  pressure sensor offset 
e) Steam water flow meter offset and SG  pressure sensor offset 
f) SG  narrow range level sensor offset and SG  pressure sensor offset 
g) Feed water flow meter offset and FCV position offset 
h) Steam water flow meter offset and FCV position offset 
i) FCV controller offset fault and FCV valve position offset 
j) SG pressure sensor offset and FCV controller offset fault. 
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        The above dual faults include all the four  types of possible combinations of single 
component faults: 
      a) sensor + sensor 
      b) sensor + controller 
      c) sensor + actuator 
      d) actuator + controller. 

 

4.3 Development of Observers 

4.3.1 Model Structure 

 A process system can be characterized by a set of plant models, control models and 
measurement models.  These models constitute a block diagram showing the relationship 
among plant parameters, state variables and measurement variables.  Figure 4.1 shows 
such a diagram for the steam generator water level system in a PWR power plant.  If all the 
inputs and the outputs of each model in the diagram are measured variables, these models 
will provide a reliable means to predict the output measurements under normal operation.  
Hence, each model can be considered as a constraint imposed on the measurements during 
normal operation.  Any significant difference between the measured value and the 
predicted value will signify that the inherent relationship among the measurements has been 
violated due to faulty measuements or process faults. Assuming different faults will result 
in different patterns of models being violated, the patterns may be used as signatures to 
isolate the faults. 

 
       Some advantages of using this approach to build input-output models are 

summarized as follows: 
 

a) Simplify the FDI scheme. 
      Separate sets of models are built for different subsystems after the interaction 

between them is properly considered and the method can be easily extended to a large 
scale process plant.  
b) Helpful to evaluate the detectability and isolatability of the faults. 

 
       Based on whether a faulty signal is involved in a model, the model 

consistency can be performed without the need to actually build a model.  This makes it 
easy to             determine whether two faults are isolatable.   

 

4.3.2 General Considerations in Building Models 

        The process models can be derived either from physical laws or from 
historical data.  In most cases, it would be too complicated to build analytical models 
based on  physical laws, not only due to the interactions of systems and the interactions of 
physical phenomina but also due to nonlinear system behavior.  However, the advantage of 
either of the two types of models can be taken advantage of by extracting qualitative  
relationships among the measured variables based on phyisical laws while extracting 
quatitative relationships  using data-driven models. 
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          In order to achieve the goal of isolating the specified faults in an FDI 

system, an ideal situation is that one model is only sensitive to one fault  and insenstive to 
all the other faults.  In order to describe a process more accurately and make the model 
applicable over a wider normal operation condition or even fault conditions, more 
variables are generally needed.  For this reason, a model should be as simple as possible 
as long as it is able to accurately estimate the output under both normal and faulty 
conditions. 

 
          Since dynamic models are able to capture more information than static models, 
dynamic models are usually used in an FDI system.  For instance, the steam generator level 
sensor offset cannot be detected using a static model because the controller can always 
bring the water level back to the indicated level.  However, if a dynamic model is used, an 
immediate inconsistency between the measured level and the estimated level will occur.  
The residual between the measured level and the estimated level will eventually be 
brought back to zero when a new steady state is reached.  The dynamic feature can thus be 
used to characterize SG level sensor fault.  Moreover, a dynamic model tends to be more 
robust than a static model when there is disturbance in the process.  In addition, a static 
model cannot be used to detect controller faults.  
 

4.4 Model Development 

 

4.4.1 4.4.1  Searching for Qualitative Relationships 

      The qualitative input-output relationship can be easily determined by using the 
block diagram shown in Figure 4.1.  If the system is assumed to be of first order, the model 
structures can then be determined.  

 
      The model structure with FCV flow rate as output: 

FCV flow rate(t) = f(FCV valve position(t), SG pressure(t)) 
The model structure with FCV valve position as output: 

FCV valve position(t+1) = f(controller output(t),FCV valve position(t)) 
The model structure with SG pressure as output: 

SG pressure(t) = f(SG temperature(t)) 
The model structure with Steam flow rate as output: 

Steam flow rate(t+1) = f(Steam flow rate(t),feed water temperature(t), SG 

pressure(t), hot leg temperature(t), cold leg temperature(t)) 

The model structure with SG level as output: 

SG level(t+1) = f(SG level(t),Feed water flow rate(t), steam flow rate(t)) 
The model structure with controller output as output: 
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Controller output(t+1) = f(SG level(t), SG reference level(t), steam flow rate(t), feed 

water flow rate(t))    

Figure 4.1  Block diagram of the structural models of nuclear steam generator water 
level control system 

4.4.2 Collecting Data 

       In order to build data driven models to describe the dynamic behavior of 
the SG water level system under normal operation, the data being used must cover the 
entire possible opeartion range.  Otherwise, the data driven models would try to perform 
extrapolation and the prediction would not be reliable. 

 
       The following operation conditions are considered in order to collect the 

data: 
(1) slow power transient beginning from 20% to 100% at an interval of 2%. 
(2) large power transient from 20% to 100% power level. 
(3) large power transient from 100% to 20% power level. 

 
      The data collected during large power transients are used to build data driven 

models to predict controller output and valve position.      
 

4.4.3 ANFIS Model and Model Validation 

        Adaptive Network-based Fuzzy Inference System (ANFIS) is selected to build 
system models during nominal operation. ANFIS is a fuzzy inference system implemented 
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in the framework of neural network.  It combines the reasoning capability of fuzzy logic 
with the learning capability of neural networks. 
 

         Six ANFIS models were built to estimate the feed control valve (FCV) flow 
rate, steam flow rate, SG water level, SG pressure, FCV position and controller output.  
The six models were validated by reconstructing a dynamic process for a power transient 
that the models have not learned before.     

 
 

4.5 FDI Results Using Local Models 

 
       Table 4.1 shows the residual patterns and the distinguishability of the 16 

faults defined in the FDI scheme.  In the table, the sign 0 indicates that the model to predict 
the specific variable is not violated while the sign 1 indicates that the model to predict the 
specific variable is violated.  The threashold to distinguish whether a model is violated or 
not is determined by the model accuracy and the level of plant disturbance.  Careful 
inspection of the model inconsistences shows that a model is violated only if there are 
faulty inputs or fault outputs in the model.  It thus indirectly proves that the selected model 
structure and the ANFIS models are correct. 

 
      It is interesting to notice the sign ? in the table representing that residual is not 

stable for different fault magnitudes.  The residuals to predict SG level are not stable for 
the following combination of faults: 
a) Steam flow meter offset plus feed flow meter offset. 
b) SG pressure sensor offset and SG level sensor offset. 
c) FCV valve position offset and Feed water flow meter offset. 

 
       The reason why the residual is not stable is that either of the element faults 

has the possibility of cancelling the contribution of the other fault to the SG level for these 
three  dual faults.  From table 4.1, it is found that some of the dual faults are not 
distinguishable from their element faults. 
a) Feed flow meter offset plus SG level sensor offset cannot be separated from feed flow 

meter offset.  
b) Steam flow meter offset plus SG level sensor offset cannot be separated from steam 

flow meter offset.  
c) SG pressure sensor fault plus Feed flow meter offset cannot be separated from steam 

SG pressure sensor fault.  
d) SG pressure sensor fault plus SG level sensor offset cannot be separated from SG 

pressure sensor fault plus SG steam flow meter offset. 
 
      The reason why some of the dual faults are not separable from their element faults 
is that the fault signatures of the two elements are not independent. For instance, feed flow 
meter offset will result in all the fault signatures that SG level sensor offset will create, so 
feed flow meter offset plus SG level sensor offset will exhibit the same fault signatures as 
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will the feed flow meter offset.  Therefore, feed flow meter offset plus SG level sensor 
offset cannot be separated from feed flow meter offset. 
 
        In conclusion, checking the consistency of the constraint models imposed only on 
the dynamics of a feedback control loop is sometimes not enough to isolate the dual faults, 
such as two sensor faults or a sensor fault and an actuator fault in the control system.   The 
reason is that some dual faults will result in violating the same pattern of constraint models 
as one of their element faults.  In addition, the consistency of some constraint equations 
may not be stable for dual faults with different combination of fault magnitudes. 
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Table 4-1Checking the consistency of local mode 

 
          functional 

   Model 
Faults 

FCV flow 
rate 

Steam 
flow rate  

SG 
pressure 

FCV valve 
position 

SG level Controlle
r output 

Feed Flow Meter Offset 
 

1 0 0 0 1 0 
Steam Flow Meter Offset 

 
0 1 0 0 1 0 

Steam Flow Meter and 
Feed Flow meter Offset 

 

1 0 0 0 ? 0 

SG NR Level Sensor 
Offset 

 

0 0 0 0 1 0 

Feed Flow Meter offset 
and SG Level 
Sensor Offset 

1 1 0 0 1 0 

Steam Flow Meter Offset 
and SG Level 

4.5.1.1.1.1.1.1.1 Se
nsor Offset 

0 1 0 0 1 0 

SG Pressure 
Sensor offset 

 

1 1 1 0 1 0 

Feed Flow Meter offset 
and SG Pressure Sensor 

Offset 
 

1 1 1 0 1 0 

Steam Flow Meter Offset 
and SG Pressure 

Sensor Offset 
 

1 1 1 1 1 0 

SG Level Sensor Offset 
and SG Pressure 

Sensor Offset 
 

1 1 1 1 ? 0 

Feed water Flow Meter 
Offset and FCV Position 

Offset 
 

1 0 0 1 ? 1 

Steam Flow Meter Offset 
and FCV Position Offset 

 

0 1 0 1 1 1 

FCV Position Offset 
 

0 0 0 1 1 1 

4.5.1.2 FCV 
Controller Gain Offset 

0 0 0 0 ? 1 

FCV  Controller Gain 
Offset and FCV Valve 

Position Bias  

0 0 0 1 1 1 

FCV  Controller Gain 
Offset and SG Pressure 

Sensor Offset 

1 1 1 0 1 1 
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4.6 FDI Results Using Global Models  

 
         It is found that dual faults are strongly distinguishable from single faults on the 
condition that either of the element faults can be isolated whatever the other fault it is 
combined with.  Considering this, appropriate constraint models can be built following 
some empirical rules.  For a sensor fault, other than the controlled variable related sensor 
(SG level in the case of SG water level control system), the constraint equation should 
relate the variable measured by the sensor and some variables which will not be affected 
by any faults in the considered control loop.  A dynamic model based on controller output 
needs to be built in order to isolate an actuator fault from some other sensor fault in the 
control loop.  In order to isolate the controlled variable related sensor fault from its 
combination with some other sensor fault, a redundant measurement is needed.  For 
instance, the measurement of wide range level sensor needs to be used in order to check if 
the narrow range level sensor is in good condition. 
 

         In order to achieve the goal of strong separation of dual faults from their element 
faults for the SG level system, six ANFIS models were built based on the following 
qualitative relationships:   
 
FCV valve position(t+1) = f(controller output(t),FCV valve position(t)); 
SG pressure(t) = f(SG temperature(t)) 
FCV flow rate(t) = f(Power(t)) 
Steam flow rate(t+1) = f(Power(t)) 
SG NR level(t) = f(SG WR level) 
Controller output(t+1) = f(SG level(t), SG reference level(t), steam flow rate(t), feed 
water flow rate(t)). 

 
       Table 4.2 shows the residual patterns and the distinguishability of the 16 

faults defined in the FDI scheme.  In the table, 0 indicates that the model to predict the 
specific variable is not violated while 1 indicates that the model to predict the specific 
variable is violated.  It is found that all the sixteen faults are separable.  A careful 
inspection of the model inconsistencies shows that a model is specifically designed to 
isolate one fault. Such a model is senstive to the fault it is designated to isolate and 
insensitive to all the other faults that are not designated to isolate.    
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Table 4.2. Consistency Checking of Global Models 

 
          functional  

  Model 
Faults 

FCV 
flow 
rate 

steam 
flow 
rate  

SG 
pressure 

FCV valve 
position 

SG level Controller 
output 

Feed Flow Meter Offset 
 

1 0 0 0 0 0 
Steam Flow Meter Offset 

 
0 1 0 0 0 0 

Steam Flow Meter and Feed 
Flow meter Offset 

 

1 1 0 0 0 0 

SG Level Sensor Offset 
 

0 0 0 0 1 0 
Feed Flow Meter offset and 

SG Level 
Sensor Offset 

1 0 0 0 1 0 

Steam Flow Meter Offset 
and SG Level 

4.6.1.1.1.1.1.1.1 Sen
sor Offset 

0 1 0 0 1 0 

SG Pressure 
Sensor offset 

 

0 0 1 0 0 0 

Feed Flow Meter offset and 
SG Pressure Sensor Offset 

 

1 0 1 0 0 0 

Steam Flow Meter Offset 
and SG Pressure 

Sensor Offset 
 

0 1 1 1 0 0 

Steam Level Sensor Offset 
and SG Pressure 

Sensor Offset 
 

0 1 1 1 1 0 

Feed water Flow Meter 
Offset and FCV Position 

Offset 
 

1 0 0 1 0 1 

Steam Flow Meter Offset 
and FCV Position Offset 

 

0 1 0 1 0 1 

FCV Position Offset 
 

0 0 0 1 0 1 

4.6.1.2 FCV 
Controller Gain Offset 

0 0 0 0 0 1 

FCV  Controller Gain 
Offset and FCV Valve 

Position Bias  

0 0 0 1 0 1 

FCV  Controller Gain 
Offset and SG Pressure 

Sensor Offset 

1 0 1 0 0 1 
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4.7 Remarks 

 
     Checking the model consistency in a structural sense provides a systematic way to 

design an FDI system.  It makes it easy to extend the design scheme from subsystems to the 
whole plant.  Based on whether a faulty signal is involved in a model, the model 
consistency can be performed without the need to actually build a model.  This makes it 
easy to determine whether two faults could be isolated before the models are actually built. 

 
This approach has been implemeted to diagnose six single faults and ten dual faults 

for the SG water level system of a typiocal PWR power plant. 
 

        Checking the consistency of the models imposed locally on the dynamics of a 
feedback control loop is sometimes not enough to isolate some of the dual faults. The major 
reason is that the fault signatures of the two device faults  are not independent. 
 
        Dual faults are strongly distinguishable from the single faults on the condition that 
either of the element faults can be isolated whatever the other fault it is combined with. To 
achieve this goal, some empirical rules have been found for selecting model structures.  
For a sensor fault, other than the controlled variable related sensor, the constraint equation 
may relate the variable measured by the sensor and some variables which will not be 
affected by any faults in the considered control loop.  A dynamic model based on 
controller output may be built in order to isolate an actuator fault from some other sensor 
fault in the control loop.  In order to isolate the controlled variable related sensor fault 
from its combination with some other sensor fault, a redundant measurement is usually 
needed.  Using six models specifically designed for separating each fault, all the dual faults 
have been successfully isoalted for the SG water level system.    
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5. DEVELOPMENT OF A GRAPHICAL USER INTERFACE FOR THE 
DEMONSTRATION OF THE FDI SYSTEM 

5.1 Introduction 

       In order to demonstrate the effectiveness of the method of fault detection and 
isolation (FDI) for nuclear power plants, a graphical user interface software was 
developed under using Halden’s PICASSO-3 platform which is a user interface 
management system33,34. The software is able to create a fault by changing the fault 
characteristic parameters, display key parameters on a flowchart of the reactor system, 
exhibit the residual patterns specific to the fault, trend the process variables relevant to the 
fault, and echo the FDI results.  The software integrates the NCSU-PWR simulator (a 
reactor system analysis code in FORTRAN) and the FDI code in MATLAB, and the C++ 
code to control the graphical user interface. NCSU code is the driving code in the 
software, which makes it possible to advance simulation time without interrupting the 
simulation after the data are flushed to the user interface. The Picasso Real Time Manager 
is controlled by a C-code that keeps running using multithread mode while the NCSU 
simulator is running so that the performance of the user interface display does not degrade 
due to possible time delay before the C code can get data from the simulation code. 
 

It is a very important task to evaluate the overall performance of a newly 
developed FDI system.  Although quite a few FDI methods have been available, all of 
these methods have their inherent weakness as compared with the others.  This is mainly 
due to the great challenges to the comprehensive requirements of an FDI system such as 
early detection and diagnosis, isolatability, robustness, novelty identification, multiple 
fault identifiability, explanation facility, adaptability, etc.  None of a single FDI method is 
able to have all these preferred characteristics. 

 
Development of a graphical user interface (GUI) provides a convenient and cost 

effective way to make the evaluation.  A simulation code can be used to study the process 
behavior under normal and faulty conditions.  A fault can be created without much effort by 
changing some parameters related to the fault.  Some noise can be easily added to the input 
and the output of the simulation codes in order that the robustness of the FDI method can be 
tested.  With regard to testing the adaptability of the FDI method, the operational power 
levels can be modified or some disturbances such as steam generator tube fouling factor 
can be changed on the user interface.  In addition, a GUI can also facilitate the evaluation 
of the FDI performance in detecting and isolating a single fault or multiple faults during a 
transient.   
 

5.2 PICASSO-3 Development Environment 

        Picasso-3 is a User interface Management Systems (UIMS) developed as part of 
the OECD Halden Reactor Project. 
 
        Picasso-3 has three components.  Graphics Editor (GED) is a tool for designing the 
user interface.  GED can be used to design some user interface components, draw some 
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pictures, set up some dialogues and define dynamic attributes to some user interface 
components.  User interface database is where the GED saves the information containing 
the complete specification of the user interface.  Run-time manager (RTM) actually 
realizes the application’s user interface. Application process is the C-code written by the 
user to guide how RTM is to generate the user interface as desired by the user. Application 
Programmer’s Interface (API) is a library of C-functions that is linked to the application 
process to enable it to communicate with RTM. 
 

 

 When an application is started, the application process calls functions in the API 
library in order to connect to the RTM.  RTM responds by loading the application’s user 
interface from the UI database and displaying it on the screen.  By calling API functions 
periodically, RTM will continue to handle incoming events generated by the end user or by 
the processes. 
 

 

GED

API

Application Process

API

       UI
DataBase Picasso-3 RTM

 

Figure 5.1  Block diagram of Picasso-3 system 
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5.3 Application Process Design 

 Figure 5.2 shows the block diagram of the application process design. 
 

 
         The NCSU code is the main program.  Before entering the main body of the 
computation, initial_link is called in order to set up a connection with the Picasso RTM. 
Meanwhile, some initialization data for NCSU calculation is transferred to RTM.  The 
main body of NCSU code is run in a loop.  At the end of the loop, the simulation time 
advances one second.  The loop keeps running until the simulation time exceeds the 
specified maximum time.  When the NCSU code steps out of the loop, terminate_link is 
called in order to end Picasso gracefully. 
 
       The application process program is written in multithread operation mode.  The 
application process code is connected with the Picasso RTM.  The function 
process_picasso is called periodically.  On the one hand, it flushes the results calculated 

Initialization of
Simulation Code
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If   Time>
Tmax

Yes
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Process
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RT
M

Time=Tm
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Figure 5.2 Flowchart of the application process. 
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by NCSU to Picasso-3 RTM so that they can be displayed on the flowchart of the reactor 
system and can be trended on the trending plots.  On the other hand, it detects whether some 
parameters defined on the screen to create some faults have been changed by the end user.  
If so, the process_picasso will transfer the changed parameters to NCSU for a new NCSU 
simulation.  If process_picasso detects the request from the end user to perform fault 
detection and fault diagnosis, it will call the FDI module and compute the residuals due to 
the fault and send the residuals to RTM for display.  The FDI diagnostic results will also 
be transferred to the FDI diagnostic information window indicating what is the fault 
according to the FDI algorithm. 
 
      The data exchange between the Picasso-3 application process and the NCSU 
simulation code is through global variables.  These global variables exist as a structure in 
the C++ part of the application process and as a common block in the Fortran part of the 
application process.  The data exchange between the Picasso-3 RTM and the Picasso-3 
application process is through process structures and process variables.  Both these data 
exchanges are two-way due to their global attributes. 
     
       Two remote functions, stopApplication() and datMount(), are defined.  These two 
remote functions can be called directly by the user interface.  The function 
stopApplication() can help the API code end its task gracefully.  The function datMount 
enables the user to input the samples and sampling interval for the NCSU code to return 
adequate amount of data for fault diagnosis.   
 
 

5.4 Descriptions of the Major Functions 

    A list of user interface files is given in Table 5.1.  A description of the major 
functions is in this section. 
  
1)  Header 
    The header files for Picasso API, MFC socket, FDI module, MATLAB as well as 
the C++ application process itself are included in this part of the code.  The header file for 
the C++ application process declares the function prototypes, structures for sensor 
characteristics, valve characteristics, controller characteristics, simulation data for 
display, and residuals.  It also defines the global variables or structures used in the 
application process.  In addition, the global variables used to access the common blocks in 
the NCSU FORTRAN code are also declared here.    
2)  int Initialize_link() 
     The functions of this link are as follows: 
a) initialization of  the variables for display on the screen of end user  
b) calling PfInitialize to connect the application process to the RTM. 
3) int process_picasso 
     This is the kernel code to be executed periodically.  It is this code that calls PfSend 
and PfFlush to update the variables in all user windows.    
      The functions of this code are as follows: 
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a) calling some functions to transfer data from RTM to NCSU in order to follow the 
recent changes in the parameters by end users; 
b) sending the most recent NCSU simulation results to RTM; 
c) sending data to the FDI module or extract data from FDI module if FDI is 
requested. 
4) terminate_link 
    This function calls PfEndLoop to end the picasso application process. 
 
5) int32 createRecords() 
    It calls PfReadScript to create records and variables according to specification in 
RecordDefs.pdat. 
6)  int32 createVariables() 

    It calls PfCreateVar to create variables locally in API and puts the information into 
a local buffer to be used by PfFlushCreateVar. 
7)  void whenRtmConnects() 
     PfInitialize calls this function. It establishes connection with RTM and calls 
createRecords, createVariables and registerFunctions to let both RTM and the application 
process know the declarations of some process variables, structures and functions. 
8) int32 registerFunctions(); 

This calls  PfRegisterFunction to Register the function stopApplication  to 
terminate the API and the function datMount to receive the user’s input of samples and 
sampling interval from NCSU code. 
9) int32 stopApplication() 
        This is a function defined in API code but available to RTM as a remote function. 
Its function is to end the application.   
10)  int32 datMount() 
        This is a function defined in API code but available to RTM as a remote function. 
Its function is to receive the user’s input of samples and sampling interval from NCSU 
code. 
11)  void whenRtmDisconnects() 
      It is a function to give a message if connection has been lost with RTM. 
12) RESD class_conversion 
      It is a function to convert the residual array to the structure type RESD. 
13)  void Pushdata() 
       It is a function to convert a double matrix into a mxArray data structure used as 
input of Matlab function. 
14)  void Extractdata() 
       It is a function to convert mxArray data structure used as output of Matlab function 
to a one-dimensional array.   
15) char* faultType() 
       It is a function to determine the type of faults according to the residuals.  
 

5.5 User Interface Design 

        The graphic user interface consists of five main windows.  
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          The main window is designed to facilitate switching between functional windows. 
This provides the following options: 
a) switch to the simulation window; 
b) switch to the trending plot window; 
c) switch to the FDI diagnostic results window; 
d) switch to the fault creation window;  
e) end task. 
 
         The fault creation window is designed to create faults by changing the parameters of 
the sensors, controllers, and actuators. The following parameters can be changed on this 
window: 
a) FCV1 valve stuck position; 
b) FCV1 offset; 
c) FCV1 time constant; 
d) FCV2 valve stuck position; 
e) FCV2 offset; 
f) FCV2 time constant; 
g) TCV1 valve stuck position; 
h) TCV1 offset; 
i) TCV1 time constant; 
j) TCV2 valve stuck position; 
k) TCV2 offset; 
l) TCV2 time constant; 
m) TCV3 valve stuck position; 
n) TCV3 offset; 
o)  TCV3 time constant; 
p) TCV4 valve stuck position; 
q) TCV4 offset; 
r)  TCV4 time constant; 
s) Reactor power; 
t) FCV1 controller offset; 
u)  Proportional gain of FCV1 controller; 
u) Integral gain of FCV1 controller; 
v) FCV2 controller offset; 
w) Proportional gain of FCV2 controller; 
x) Integral gain of FCV2 controller; 
y) SG1 narrow range level sensor drifting rate; 
z) SG2 narrow range level sensor drifting rate; 
aa)  SG1 flow meter drifting rate; 
bb) SG2 flow meter drifting rate; 
 
       The trending plot window trends the following plots, which are important to 
represent the reactor system responses to the created faults: 
a) Reactor nuclear power; 
b) Reactor power output; 
c) SG 1 water level; 
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d) SG 2 water level; 
e) Hot leg temperature; 
f) Cold leg temperature; 
g) Feed water temperature; 
h) Feed water flow rate; 
i) SG 1 steam flow rate; 
j) TCV 1 flow rate; 
k) TCV 2 flow rate; 
l) TCV 3 flow rate; 
m) TCV 4 flow rate. 
 
   The fault diagnostic result windows shows the residual patterns of the following 
variables: 
 
(a) SG1 narrow range water level; 
(b) SG2 narrow range water level; 
(c) FCV1 flow rate; 
(d) FCV2 flow rate; 
(e) SG 1 steam flow rate; 
(f) TCV1 flow rate; 
(g) TCV2 flow rate; 
(h) TCV3 flow rate; 
(i)  TCV4 flow rate; 
(j)  hot leg temperature; 
(k) cold leg temperature; 
(l) FCV1 valve position; 
(m)  FCV2 valve position; 
(n) feed water temperature(lumped loop); 
(o)  pressurizer temperature; 
(p)  presurizer level; 
 

The simulation window shows the following variables on the schematic of the 
reactor system: 
(a) reactor nuclear power; 
(b)  hot leg temperature; 
(c)  cold leg temperature; 
(d)  pressure in the pressurizer; 
(e)  water level in the pressurizer; 
(f)  steam generator water level; 
(g)  feed water flow rate to SG1; 
(h)  feed water temperature; 
(i)  steam flow rate from SG1; 
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5.6 How to Use the FDI User Interface 

 
1) Configuration of Picasso-3 environment 
         It is important to define a unique Picasso-3 Environment variable in the operating 
system in order to make copying and system commands easier.  This variable is 
PICASSOPATH referred to by putting % before and after the variable.  
   In addition, the Windows environment variable PATH should include where Picasso3 is 
installed such as C:\Picasso3\bin\win32. 
2) Copying files 
        For convenience, all the files necessary for Picasso, NCSU code, application process 
code would better be placed in one directory. A complete list of the required files is 
shown in table 1.  
3) Starting the Picasso-3 Program 
         It is required to start two main programs, GED and RTM before any other application 
programs. GED can then be used to load the application process NERI. Finally, all the 
pictures should be loaded using GED before the FDI application program SimPWRP is 
run. 
4) Running the FDI application program 
       The FDI application program SimPWRP can be run under DOS by typing: 
SimPWRP<input.txt 
5) Using the interface program 
       As soon as SimPWRP is running, the user is able to switch between the five windows 
back and forth. In most cases, the user may firstly go to the fault creation window and 
create a fault. Secondly, the user may go to the fault diagnostic window, click either 
transient or steady state button to find out the diagnostic results.  
 
 Figure 5.3 – 5.7 shows the various windows created by the FDI demonstration 
system.  A PWR plant was simulated using the full-scope simulator.  All the screen 
displays are obtained from the PICASSO interface. 
 

Table 5-1 A list of files for FDI user interface 

File Name File Size(Bytes) 

ANNt_PBK.c 15,182 

ANNt_PBK.h 3,531 

ANNt_PBK.m 1,018 

BOP.dat 13,541,837 

brent.f 683 

ButtonLib.plib 9,164 

close.c 62,525 

close.h 3,537 

Comp3DLib.plib 163,512 
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compLib.plib 76,112 

Components.plib 64,188 

convert.c 10,696 

convert.h 3,508 

convert.m 157 

convert2.c 7,735 

convert2.h 3,476 

convert2.m 81 

Faults.ppic 53,212 

Faults.Tdoc 44,373 

faulttest.m 7,428 

fault_det.c 75,237 

fault_det.h 3,436 

fault_det1.c 62,319 

fault_det1.h 3,491 

fault_det1.m 6,983 

fbInterface.h 1,062 

FCV_Pos_Coef.output967 12,690 

FCV_Pos_LayerOrder.output967 505 

FDI.ppic 21,568 

FDI.Tdoc 29,181 

FDImain.c 28,244 

FDIres.ppic 28,100 

FDIres.Tdoc 26,915 

Feed_Flow_Coef.output967 774 

Feed_Flow_LayerOrder.output967 63 

fun3.c 18,022 

fun3.h 3,463 

fun3.m 1,309 

gcbf.c 10,040 

gcbf.h 3,377 

Gmdh_residual.dat 70 

input.txt 38 

InputFields.plib 70,064 

Logics.plib 43,112 

MotifCtrLib.plib 68,172 

MotifLib.plib 91,212 
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MyBinaryGenerator.c 17,225 

MyBinaryGenerator.h 3,561 

MyBinaryGenerator.m 885 

myVars.pdat 295 

NewJimSimPWRP.f 581,055 

NewJimSimulatorInterface_test2.cpp 29,312 

NewSimPWRP.f 581,604 

new_database.txt 250,100 

NR_level_Coef.output967 5,355 

NR_level_LayerOrder.output967 284 

Pressurizer.dat 2,733,945 

REACTOR.plib 25,408 

RECORD.pdat 2,447 

RecordDefs.pdat 2,532 

restart.dat 4,878 

S1zscore.c 9,773 

S1zscore.h 3,517 

S1zscore.m 614 

S2zscore.c 10,162 

S2zscore.h 3,508 

S2zscore.m 192 

SGData.f 2,472 

SGdatabase2.dat 18,480 

SGdatabase2.txt 18,480 

SGlevel.f 7,289 

SimCntrl.exe 2,781,246 

SimPWRP.dsp 5,546 

SimPWRP.dsw  537 

SimPWRP.exe 2,170,926 

SimPWRP.ncb 214,016 

SimPWRP.opt 51,712 

SimPWRP.plg 4,703 

SimPWRP_Tmax.f 577,261 

SimulatorInterface.h 10,415 

Steam_Flow_Coef.output967 1,161 

SYSTEM.ppic 37,768 

SYSTEM.Tdoc 41,872 
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TCV_Flow_Coef.output967 6,345 

TCV_Flow_LayerOrder.output967 255 

TloopLib.plib 5,352 

trendLib.plib 18,092 

Trips.dat 113 

UTSG.plib 212 

Valves.plib 29,948 

we4bop.dat 1,221 

we4bop2.dat 1,217 

we4core.boc.dat 1,085 

we4core.boc2.dat 1,083 

we4core.eoc.dat 1,081 

we4core.eoc2.dat 1,079 

we4geom.dat 1,592 

we4geom2.dat 1,590 

we4init.boc.dat 5,292 

we4init.boc2.dat 5,224 

we4init.eoc.dat 5,292 

we4init.eoc2.dat 5,224 

we4init0.boc.dat 5,292 

we4init0.boc2.dat 5,224 

we4init0.eoc.dat 5,292 

we4init0.eoc2.dat 5,172 

we4init20.boc.dat 5,292 

we4init20.boc2.dat 5,224 

we4init20.eoc.dat 5,292 

we4init20.eoc2.dat 5,224 

we4init40.boc.dat 5,292 

we4init40.boc2.dat 5,224 

we4init40.eoc.dat 5,292 

we4init40.eoc2.dat 5,224 

we4init60.boc.dat 5,292 

we4init60.boc2.dat 5,224 

we4init60.eoc.dat 5,292 

we4init60.eoc2.dat 5,224 

we4init80.boc.dat 5,292 

we4init80.boc2.dat 5,224 
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we4init80.eoc.dat 5,292 

we4init80.eoc2.dat 5,224 

we4prz.dat 239 

we4prz2.dat 213 

we4utsg.dat 1,074 

we4utsg2.dat 1,024 

zscore2.c 12,061 

zscore2.h 3,495 

zscore2.m 812 

 

 
 

Figure 5.3  .  PICASSO GUI main window 
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Figure 5.4  PWR plant simulation window 

 

Figure 5.5  Device fault creation window 
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Figure 5.6  FDI window showing fault diagnostics results. 

 
 

Figure 5.7  Illustration of fault detection during transient operation: stuck feed control 
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6. CONCLUDING REMARKS AND FUTURE WORK 

6.1 6.1  Summary and Concluding Remarks 

 An integrated method for incipient fault detection and isolation of sensors and field 
devices, using structured residuals, has been developed.  The FDI system uses three 
approaches for characterizing system variables – states and control functions.  These are 
(1) group method of data handling (GMDH) with rational function approximation, (2) 
principal component analysis (PCA) with nonlinear extension, (3) artificial neural network 
models.  The isolation of device faults is performed using both a rule-based decision-
making and a pattern classification of prediction error vectors in the fault space.  This 
integrated approach enhances the fault diagnostics capability and provides a robust method 
for FDI.  The enhancements of the methods for the detection and isolation of dual faults in 
the steam generator system of a PWR plant and fault detection during plant transients are 
presented.  A stand-alone demonstration of the FDI system has been developed using the 
Halden’s PICASSO GUI platform. 
 
 The methods being developed under this task for the DOE-NERI project have been 
tested and illustrated using process measurements from a laboratory process control loop 
and a U-tube steam generator in a PWR.  All the faults being simulated were detected 
successfully.  The faults were primarily of the drift-type.  Two manuscripts were prepared 
for presentations at scientific meetings during 2000-2001 and a journal publication is due 
in November 2001. 
 
 

6.2 Plans for Future Work 

Phase-3 R&D Tasks 
§ Fine tuning of the FDI algorithms. 
§ Extension of the FDI method by increasing the system boundary to include 

equipment faults beyond the UTSG system. 
§ Development of minimum requirements for application to an existing PWR plant. 
§ Fully automated implementation of the FDI system as part of the overall control 

architecture demonstration. 
§ Identification of issues in technology transfer to nuclear power industry, including 

implementation requirements. 
§ Completion of the FDI module demonstration system. 
§ Deliverables: Annual Reports and a Final Report. 

FDI software system and User’s Manual. 
Conference and journal manuscripts for dissemination. 
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SUMMARY 

 
 This report presents a summary of the overall project and describes the tasks 
performed and the progress made by The University of Tennessee (UTK) during Phase-3 
(2001-2002) on the DOE-NERI project entitled Automatic Development of Highly 
Reliable Control Architecture for Future Nuclear Power Plants.  UTK is collaborating 
with the Instrumentation & Controls Division of ORNL (lead organization) and the North 
Carolina State University (NCSU).  The objective of the UTK research task is to develop 
an on-line monitoring system for Fault Detection and Isolation (FDI) of sensors and field 
devices in a nuclear power plant.  The focus of this phase of the research has been on the 
refinement of fault isolation techniques, fault tracking during transient operation, and the 
development of a new multi-observer method for detecting and isolating dual device 
faults with applications to a nuclear power plant steam generator system.  Sensors include 
temperature, pressure, flow, level transmitters, and measurements of control functions, 
and field devices include valve actuators, spray and heater systems, pumps, and other 
similar equipment.  The Phase-3 sub-tasks include the refinement of software systems 
and the completion of two demonstration modules. 
 
 The following R&D tasks have been accomplished during Phase-3 of the project: 
 

• Development of data-driven models for characterizing transient operation and for 
predicting state variables, control functions, and expected control actions for FDI 
in the steam generator system. 

• Development of multiple observers using the adaptive network fuzzy inference 
system (ANFIS) modeling approach.  This also provides a systematic approach 
for physical interpretation of system behavior during a fault condition. 

• Development of a directional graph (digraph) approach for detecting and isolating 
dual faults in the steam generator system. 

• Extension of the Principal Component Analysis (PCA)  of model prediction 
residuals for establishing fault directions.  This approach has been very effective 
in fault isolation. 

• Development of a stand-alone demonstration module that cycles through the 
various steps of the FDI system. 

• Development of additional software modules and complete refinement of all the 
codes developed under the project. 

 
All the software systems and the data used for analysis are available on a CD-R, included 
as part of the deliverables of the project. 
 
 Several publications were generated during Phase 3.  These include papers 
presented at SMORN-8 (Conference on Nuclear Reactor Surveillance and Diagnostics), 
Goteborg, Sweden; MARCON-2002, Maintenance and Reliability Conference; 
Conference on Statistical Data Mining and Knowledge Discovery, June 2002; American 
Nuclear Society Annual Meeting, June 2002; publication in a journal by Springer-Verlag. 
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 1

1. INTRODUCTION 
 

(neriFinalReport02-02) 
 

1.1. Background and Motivation 
 

Existing and new generation of nuclear power plants have economic and 
reliability concerns as addressed by overall plant performance, unscheduled downtime 
and the long-term management of critical assets.  The key to achieving these needs is to 
develop an integrated approach for monitoring, control, fault detection and diagnosis of 
plant components such as sensors, actuators, control devices and other equipment.  
Model-based local sensor validation and fault diagnosis methods were developed for 
specific applications.  These approaches assume that a system fault being monitored 
occurs in a specific plant component and in an isolated fashion.  Fault detection and 
isolation (FDI) of sensors and field devices is an important step towards the 
implementation of an automated and intelligent process control strategy. 

 
A large-scale system, such as a nuclear power plant, has several feedback control 

loops.  This makes the identification and isolation of faults in these interconnected 
systems highly complex.  Even when a measurement used for set point control is faulty, 
the control system through feedback, tries to vary the actuating signals until the error in 
the set point is eliminated.  The sensor-alone type validation will fail in this situation.  It 
is therefore necessary to consider fault detection and isolation at the system level rather 
than at the device level.  The overall objective of this R&D task is to develop an on-line 
sensor and field device monitoring and fault detection system, when one or more faults 
may occur in two or more of these devices.  This goal has been achieved by a two-step 
approach: (1) System characterization using data-driven models;  (2) A decision-making 
module that uses system functional knowledge base and pattern classification algorithms, 
that is deployed in a distributed configuration.  High priority will be given to the 
computational efficiency of these techniques, with the capability to change the module 
structure with changing plant conditions.  The intrinsic merit of this high-level project 
task lies in the development of an autonomous global monitoring and fault detection 
approach that would be executed with minimal human interaction. 
 
 
1.2. Objectives of R&D and Definition of Tasks 
 

The objective of this research task is to develop an on-line monitoring system for 
Fault Detection and Isolation (FDI) of sensors and field devices in a nuclear power plant.  
The sensor suite consists of major process variables in a plant, such as temperature, 
pressure, flow, level, and control functions.  Field devices in a power plant include, but 
are not limited to, valve actuators, control modules, spray and heater systems, pumps, and 
similar equipment.  Figure 1.1 shows an integrated plant monitoring, diagnosis, and 
prognosis system, with the ability to estimate the remaining useful life of plant devices.   
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Figure 1.1. Integrated plant monitoring, diagnosis and prognosis system. 
 
 
 
 
 
 
 
 
 
The objectives of this R&D have been accomplished through the completion of the 
following technical tasks during the three phases of the project: 
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• Review of literature and previous work (see bibliography). 
• Characterization of sub-system dynamics using data-driven models for predicting 

state variables, control functions, and expected control actions. 
• Development of a Group Method of Data Handling (GMDH) modeling algorithm 

with rational function approximation. 
• Development of a Principal Component Analysis (PCA)  algorithm with linear and 

nonlinear mapping. 
• Development of multiple observers using the adaptive network fuzzy inference 

system (ANFIS). 
• Development of an FDI module that combines system operational knowledge and 

a rule-based logic for both single and dual faults in dissimilar sensors and field 
devices.  An automated pattern classification technique, based on the PCA of 
model residuals, has been developed and applied successfully. 

• Development of a directional graph (digraph) approach for fault isolation with 
minimum prior knowledge of the system. 

• Demonstration of the FDI system with application to an experimental process 
control loop. 

• Demonstration of the FDI system with application to a U-tube steam generator 
(UTSG) in a full-scope simulation model of a 1,300 MWe PWR. 

• Development of minimum requirements for FDI system implementation. 
• Extension of the techniques for the case of fault detection during plant transients. 
• Identification of realistic faults in a PWR and establish the characteristics of 

transient faults as compared with steady-state faults. 
• Extension of the FDI method to systems beyond the steam generator. 
• Deliverables:  

Ø Annual Reports and the Final Report. 
Ø FDI software system and User’s Manual.  A CD-R, containing the various 

computer codes, readme files, and plant data, is attached. 
Ø Conference and journal manuscripts. 

 
 
1.3. Summary of Significant Accomplishments During 2001-2002 
 

The following major milestones were accomplished during Phase-3 of the project: 
 

• Development of data-driven models for characterizing transient operation and for 
predicting state variables, control functions, and expected control actions for FDI 
in the steam generator system. 

• Development of multiple observers using the adaptive network fuzzy inference 
system (ANFIS) modeling approach.  This also provides a systematic approach 
for physical interpretation of system behavior during a fault condition. 

• Development of a directional graph (digraph) approach for detecting and isolating 
dual faults in the steam generator system. 
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• Extension of the Principal Component Analysis (PCA)  of model prediction 
residuals for establishing fault directions.  This approach has been very effective 
in fault isolation. 

• Development of a stand-alone demonstration module that cycles through the 
various steps of the FDI system. 

• Development of additional software modules and complete refinement of all the 
codes developed under the project. 

• Demonstration of the FDI module for both single and dual/simultaneous faults:  
 

Ø Rule-based decision making. 
Ø Fault isolation using PCA of fault residuals and pattern classification. 
Ø Steady state and transient plant operation conditions. 
Ø Combination of sensors and valve actuators. 
Ø Use of both Simulink and NCSU-PWR simulation codes. 

 
• List of Publications during Phase-3: 

Ø N. Kaistha and B.R. Upadhyaya, Incipient Fault Detection and Isolation 
of Field Devices in Nuclear Power Systems Using Principal Component 
Analysis, Nuclear Technology, Vol. 136, No. 2, pp. 221-230, November 
2001. 

Ø B.R. Upadhyaya, K. Zhao, B. Lu, and M. Doster, Fault Detection and 
Isolation of Sensors and Actuators in a Nuclear Plant Steam Generator, 
Transactions of the American Nuclear Society, Vol. 85, pp. 350-351, 
November 2001. 

Ø B.R. Upadhyaya, B. Lu, K. Zhao, and J.M. Doster, Equipment Monitoring 
During Process Transients and Multiple Fault Conditions, Proceedings of 
MARCON 2002, Knoxville, TN, May 2002. 

Ø B.R. Upadhyaya, K. Zhao, and B. Lu, Fault Monitoring of Nuclear Power 
Plant Sensors and Field Devices, Proceedings of SMORN-8, Symposium 
on Nuclear Power Plant Surveillance and Diagnostics, Goteborg, Sweden, 
May 2002. 

Ø B.R. Upadhyaya, K. Zhao, B. Lu, J.M. Doster, M.G. Na, Y.R. Sim, and 
K.H. Park, Nuclear Plant System Monitoring Under Process Transients 
and Multiple Fault Conditions, Transactions of the American Nuclear 
Society, Vol. 86, pp. 482-484, June 2002. 

Ø B.R. Upadhyaya and B. Lu, Data Mining for Monitoring Plant Devices 
Using Group Method and Pattern Classification, Conference on Statistical 
Data Mining and Knowledge Discovery, June 2002. 

 
 
1.4. FDI Architecture and Issues in Developing a Robust FDI Algorithm 
 

Figure 1.2 shows the functional modules of the FDI system being developed in 
this project.  GMDH, PCA and Adaptive Network Fuzzy Inference System (ANFIS) 
modeling of process measurements are considered.  This provides a crosschecking of 
prediction techniques applied to the measurements.  Fault isolation is based on either a 
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rule-based algorithm or a pattern classification algorithm, or both.  The following issues 
must be considered in developing a robust FDI algorithm. 
 

• Sensor faults may not be detected in a closed-loop control system. 
• Redundancies in sensors and controllers are used in nuclear power plants (NPPs). 
• Separation of process variations from sensor/field-device faults must be 

considered. 
• Noise levels in measurements can increase false alarms.  It may be necessary to 

pre-process signals to eliminate this effect at different sub-bands. 
• The use of physics models and data-driven models to understand and characterize 

the process dynamics. 
 
The following are some additional issues to be reviewed before developing an FDI 
system. 
 
1.4.1. Multi-operational regimes 

A nuclear power plant may operate at numerous operational points due to the 
change in power demand, the evolution of fuel cycle, performance change of components 
throughout its lifetime, the change in system configuration to meet safety requirements, 
and others.  The designed FDI system must be adaptable to all these operational points. 
For instance, the FDI system should be able to correctly distinguish a fault under all these 
operational conditions.  A normal operational transient such as a power change, a 
chemical volume control system startup or shutdown, a steam generator blow down 
system startup or shutdown, must not trigger a false alarm.  This requires that the 
developed FDI system be able to adaptively adjust its models at all operational points. 
 
1.4.2. Dynamic process behavior  

A nuclear power plant always experiences internal disturbances such as the 
vibration of machinery components and turbulence induced fluctuation and some external 
disturbances such as the change in power demand.  Therefore, dynamic models need to 
be used to capture the system characteristics.  In addition, all the state variables and/or 
the measured variables are random variables due to measurement disturbances or process 
disturbances. 

Unlike a process, electric circuit exhibits static behavior.  Once an electric circuit 
is around its operation point, a set of algebraic equations can always be found to 
characterize the relationship of the voltage, the current and the resistance among certain 
nodes.  Through systematically checking the consistency of all the algebraic equations, it 
is not difficult to detect a faulty component and isolate it within the circuit. 

For a dynamic process, a set of algebraic equations may not be able to 
characterize the relationship among process variables.  Different initial conditions may 
result in different sets of relationships.  A group of differential equations is usually 
required to characterize a dynamic system. 

Non-linearity results in additional difficulties in modeling the behavior of a 
dynamic system especially for a nuclear power plant where many nonlinear components 
such as valves, pumps, and controllers with dead band and saturation limits are utilized. 
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The existence of non-linearity would also result in certain features of many FDI design 
schemes unavailable. 
 
1.4.3. Controller feedback effects  

Feedback control loops are common in nuclear power plants in order to maintain 
the operation within the designed operation regimes.  Power control system controls the 
reactor power such that the power generation from the core matches the power output of 
the plant.  Steam generator (SG) water level control system controls the feed water 
control valve position such that the SG level is maintained at the set point.  Pressurizer 
level and pressure control system manipulates the power of electric heaters and spray 
flow rate such that the level and pressure are maintained at desired set points. 

Because of feedback controller, a sensor fault or an actuator fault will propagate 
throughout the system. The fault propagation will result in challenges in designing an 
effective FDI system in the following aspects (Dash and Venkatasubramanian, 2000): 
• Data reconciliation approach is not applicable. 
• A minor fault is harder to be detected and isolated. 
• A fault may propagate from one subsystem to another subsystem through a control 

system bridging them. 
• A comparison between set points and measured values after a new steady state cannot 

reveal the occurrence of a sensor fault that is involved in the feedback control loop. 
 

1.4.4. Complexity of faults 
In a large process like NPPs, the natures of possible faults are very complicated 

because many different components ma y be involved.  From the FDI methodology point 
of view, these components may be categorized as sensor fault, actuator fault, controller 
fault and process fault.  With regards to fault effects on the measurements, a fault can be 
classified as additive fault and multiplicative fault. The time dependence of fault 
magnitude allows categorizing a fault as abrupt fault, drift fault and intermittent fault. 
None of the available FDI approaches has acceptable performance for all the different 
types of faults. 
 
1.4.5. Multiple faults 

The importance of multiple fault diagnosis in the entire FDI picture should not be 
underestimated simply because its probability is much lower than single faults.  In 
practice, in a facility such as a nuclear power plant where safety is always placed at first 
place, multiple fault diagnosis plays a role as important as single fault diagnosis because 
the risk contribution due to multiple faults is much higher than single faults. The major 
reason for multiple faults is common cause failure.  

Multiple fault diagnostics is challenging because of the interactive nature of most 
faults (Dash and Venkatasubramanian, 2000).  In a complicated process such as a nuclear 
power plant, the control systems will be involved in the process. The interaction of 
different faults through a closed control loop will make the symptoms more complicated. 
The non-linearity makes it even impossible to develop analytical methods to infer 
multiple faults simply based on the information contained in single faults.  
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1.4.6. Complex systems 
When most FDI techniques are applied to a complex system such as a nuclear 

power plant, some serious difficulties may occur.  These difficulties are: 
• Many input variables may be involved in a model that makes the model accuracy 

deteriorate significantly. 
• Faults in many subsystems may have the same symptoms. 
• The system interaction or controller interaction among the subsystems may make the 

cause-effect relationship highly complicated. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1.2.  The schematic shows the FDI system functional modules. 
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1.5. Organization of the Report 
 
 Pattern classification techniques for fault isolation are presented in Section 2.    
The development of data-driven models for the UTSG is described in Section 3.  The 
results of applications of FDI for single faults in the UTSG system are described in 
Section 4.  Detailed PCA-based approaches for FDI and comparison with parity space 
method are described in Section 5.  The ANFIS based approach and multiple observer 
digraph method for FDI are presented in Sections 6 and 7, respectively.  The results of 
applications are also presented in Sections 6 and 7.  Section 8 describes the application to 
the extended system and the development of the demonstration module.  Concluding 
remarks and suggestions for future research are given in Section 9.  A complete 
bibliography appears at the end of the report.  A summary of FDI computer codes and 
guidance for executing these codes are described in Appendix A.  A CD-R, with all the 
computer codes developed during the project, plant data, and appropriate readme files, is 
attached to the report. 
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2. PATTERN CLASSIFICATION TECHNIQUES FOR FAULT 

ISOLATION 

(neriFinalReport02-03) 

2.1. Introduction 
 

Pattern recognition techniques implemented in this research form a key step 
towards the successful application of FDI algorithms to a nuclear power plant SG system.  
Since all types of data driven models describe the system operating status, the residual 
patterns are formed through the comparison of system measurements with model 
predictions.  The residual pattern generally indicates the existence of any possible fault 
in a postulated device. 

 
In this research, pattern classification techniques are used for fault device 

isolation from the coupled system measurements.  This is based on the premise that each 
device fault results in a unique pattern of the residual vector.  Otherwise, it is impossible 
to perform fault isolation.  Since different pattern classification techniques 
accommodate different data structures, several different kinds of pattern recognition 
methods, such as rule-based expert system, data clustering, and PCA of the residual 
vectors, are developed and implemented. 

 
Pattern recognition methods are concerned with the identification of pattern 

classes from among a set of multiple patterns or behaviors, and are based on the 
comparison of known patterns to those derived from process measurements and the 
derived signatures [10].  Patterns, also referred to as signatures, are derived from 
different types of transformations of measurements.  Raw data can also be used directly 
in pattern recognition in order to find abnormal changes in the system.  However, it is 
very difficult to do so due to the huge number of variables, extreme complexity and 
overlapping of system variables in measurement data space.  In fact, feature selection 
and extraction is always a problem that must be considered by every system designer.  
The feature selection, of course, is closely related to other problems of pattern 
recognition.  From this point of view, GMDH/PCA serves as a data representation and 
feature formulation approach and is developed in this research.  

 
In the process dynamics considered in this thesis, the interaction between system 

variables causes the overlapping of model residuals patterns, especially during transient 
case.  An example is that narrow range (NR) level sensor in a steam generator, feed flow 
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sensor and steam flow sensor measurements are strongly coupled through the feedback of 
the water level controller.  Thus, efforts have been put in appropriate feature extraction 
and selection of pattern recognition techniques.  

 
Uncertainty, such as the random noise, is another problem in dealing with 

industrial systems.  Therefore, the robustness of the pattern recognition, which will 
generate out reliable output, is very important for the successful implementation of FDI 
in a nuclear power plant.  Rule based expert system, PCA, and distance comparison in 
residual space are utilized and evaluated in this study.  In addition, several other pattern 
classification methods such as Fuzzy C-means and discriminant function [27] are also 
studied so that suitable methods can be selected for the current application. 

 

2.2 Pattern Recognition Techniques 
 

Pattern recognition often includes the process of feature extraction and feature 
classification into clusters.  Many techniques are focused on finding optimal objective 
functions for all clusters of data.  Cluster analysis is the search for structure in data sets 
or samples [10, 12].  A mathematical model of the prediction residuals is a vehicle for 
organization, recognition, and representation of the information included.  Two main 
types of pattern classifier models exist: supervised learning (parametric and non- 
parametric models) and unsupervised clustering. 

 
 Supervised learning uses data groups from which classifiers can learn how to 

organize data into indicated groups.  This information about the clusters is supplied 
from a knowledge base.  The most fundamental principle for the problem of 
classification is the Bayesian decision theory [27].  Many models based on this theory 
are postulated in parametric form, and the data are used to identify the parameters, such 
as the maximum a-posteriori probability.  The basic principle of Bayesian decision 
theory is summarized below. 

 
Suppose we have two classes C1 and C2 in the sample space with a priori 

probabilities of P1 and P2, where P1+P2 = 1.  Our objective is to partition all sample 
observations into class C1 and class C2.  For all the samples in the space, the probability 
densities for both classes are greater than zero, thus misclassification exists.  
The overall probability of correctly classifying samples from class C1 is: 

 

∫=
1

)1/()1/1(
S

dxCxpCdP             (2.1) 
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p(x/C1): the conditional probability density for measurement x from class C1. 
S1: part of sample space, patterns that are classified to C1. 
d1: the decision that samples belong to class C1. 

The probability of correctly classifying samples from class C2 is 
 

∫=
2

)2/()2/2(
S

dxCxpCdP               (2.2) 

p(x/C2): the conditional probability density for measurement x from class C2. 
d2: the decision that samples belong to class 2. 
S2: part of sample space, patterns that are classified to C2. 
S1+S2 = S, the sample space. 
 

The probability of incorrectly classifying samples from class C1 is given by 
 

∫=
2

)1/()1/2(
S

dxCxpCdP           (2.3) 

And the probability of misclassifying samples from class C2 is given by 
 

∫=
1

)2/()2/1(
S

dxCxpCdP           (2.4) 

 
The cost function from misclassification is 

)2/(),()1/(),( 11222211 CdPdCLPCdPdCLP +       (2.5) 

 
L(C1,d2) denotes the cost caused by the decision d2 when samples are from class C1.  
L(C2,d1) denotes the cost caused by the decision d2 when samples are from class C2. 
The Bayesian decision procedure is to minimize the cost function.  
 

The theory of Bayesian decision is fundamental to the development of the 
discriminant function.  Unfortunately, Bayesian decision theory assumes that the forms 
of the underlying density functions are known and all of the parametric densities are 
unimodal.  However, in practice, many problems involve multi-modal densities and we 
usually are not able to estimate their distributions.  

 
Fortunately, non-parametric methods are designed to deal with arbitrary 

distributions without the assumption that the forms of the underlying densities are known 
[27], such as the PCA and rule base expert systems.  The discriminant function is also 
one type of non parametric learning algorithm.  The main goal in discriminant analysis 
is to construct a linear composite of the observed variables so as to maximize the 
difference between groups.  
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The new variables constructed from the linear combination of input variables: 

nn XaXaXaY +++= ...2211            (2.6) 

Where n is the number of variables used to separate the groups.  Define B as the 
between-groups sum of squares and Cross-Products matrices) and W as the within-groups 
SSCP.  Then 
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          (2.7) 

Where: [ ]naaaa ,...,, 21=  

       m1 and m2 are the mean vectors for group 1 and group 2, respectively.  
       Dj represent the jth data group. 
 

The well-known Fisher discriminant analysis is the procedure to find general eigenvalues 
and eigenvectors of the problem: WaBa λ= . 
 

Neither parametric nor non-parametric methods can be universally effective 
because the extensive change of data structure, especially for the complex SG system.  It 
is obvious that no clustering criterion or measure of similarity will be applicable to all 
situations, and selection of a particular criterion is at least partially subjective, and should 
always be open to question.  Therefore, we compare several pattern recognition 
algorithms in order to find the optimum. 

2.3. Feature Extraction 
Feature extraction is usually the first step in patter recognition, and is very critical 

in correctly classifying test samples into groups.  An ideal feature extractor would yield 
a representation that makes the job of the classifier easy [27].  The traditional goal of the 
feature extractor is to characterize an object to be recognized by measurements whose 
values are very similar for objects in the same category, and very different for objects in 
different categories.  Although raw data from an industrial plant can represent the 
characteristics of current plant status, the data from different plant conditions overlap 
with each other and thus are very difficult to classify.  By the careful selection of input 
and output variables, GMDH modules are able to extract the system abnormal 
characteristic changes into an error space and discard the unimportant part of the 
information for FDI.  These error vectors are easier to be isolated with proper 
classification algorithms compared with original data from plant measurements.  A 
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rule-based expert system is very useful for its robustness and easy implementation in 
analyzing the properties of the residuals.  The PCA method is also very powerful when a 
specific error vector changes toward a certain direction due to a fault in a specific device.  
Discriminant functions can be applied if there is no special shape found in patterns. 

 
Different data features will dictate how to arrange effective classification methods.  

The following methods describe the main purposes of these classification methods in 
general. 

 
l Hierarchical methods 
This group of methods had their origin in taxonomic studies [10,12].  The 
connections between groups are calculated using the Mahalanobis distance, which is a 
type of weighted distance between data points considering the covariance of vectors 

∑ TEE ** .  Data groups are divided into subgroups according to the distance 

between groups.    
 
l Graph-theoretic Method 
This technique is suited for data with chains, or pseudo-linear structure [10].  The 
criterion for clustering is typically some measure of connectivity or bonding between 
groups of nodes.  The PCA method is useful when these chains are not parallel, 
otherwise Fisher’s discriminant function can transfer them into more distinct scale 
space.  Breaking edges in a minimal spanning tree to form sub-graphs is often the 
clustering strategy.  
 
l Objective Function Methods 

These methods ordinarily allow the most precise formulation of clustering 
criterion.  For each cluster, a criterion or objective function measures the desirability 
of clustering candidates.  If one uses the Euclidean distance as the similarity measure 
of data and as a measure of cluster quality, the objective function is the sum of squared 
errors.  This clustering criterion is called a minimum variance objective.  This 
algorithm is regarded as the most applicable method if the clusters are basically 
hyper-spherical and of roughly equal in proportion. 

 

2.4. Rule Based Expert System 
 

Clustering of numerical data forms the basis of many classification and system 
modeling algorithms.  The purpose of clustering is to identify natural groupings of data 
from a large data set to produce a concise representation of a system's behavior [27].  A 
rule-based expert system is specific to a system.  Its robustness makes it the most 
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commonly used diagnostics tool for operators in power and process plants [1].  

 

The recognition system of human beings is a complex rule based expert system in 
some sense.  Basic rules for identifying a pattern are established to recognize the 
specific type of data character.  A simple example is to distinguish a passenger car from 
a truck.  The rules may be simple or complex. 

 
It is a typical deductive process.  The correct recognition of certain patterns 

depends on the how accurate the rules are.  The rules are also based on the collection of 
experience.  The rules could be added or deleted as the environment changes.  
Therefore, a rule-based expert system can always be revised and thus, evolves with time.  

 
The robustness of rule-based expert systems compared with other methods, such 

as PCA, comes from its capability to include all distinguished characters into it, without 
being limited to a specific data structure.  

2.5. Nearest-Neighbor Classification 
 The nearest-neighbor classifier relies on a metric or distance function between 
patterns.  The test data are grouped into a class that is nearest to the data set.  This is 
decided by a distance metric.  The metric must have the following four properties [27]. 
 

i. Nonnegativity: D(a,b) ≥ 0; 
ii. Reflexivity:  D(a,b) = 0 ⇔ a = b; 
iii. Symmetry: D(a,b) = D(b,a); 
iv. Triangle inequality: D(a,b) +D(b,c) ≥ D(a,c). 

 
Let Ci (i=1,2, …) represent the reference points for the ith class.  Ci may be, for 

example, the mean value of a number of samples from the ith class.  The Euclidean 
distance from point x to point Ci is defined as 

 

)()(),( i
T

iii CxCxCxCxd −−=−=         (2.8) 

 
Other general or weighted distances such as the Mahalanobis distance can also be used in 
this classification method, especially for special type of pattern classification such as 
number-alpha recognition, where Euclidean distance is of little use. 

 
The Mahalanobis distance is a multivariate measure of the separation of a data set 

from a point in space.  It is a universally applied metric in statistical classification study.  
It is also the criterion minimized in linear discriminant analysis.  However, singular data 
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matrices are not suitable for this type of distance calculation.  
 

The minimum distance classifier is a subclass of linear decision functions.  The 

measurement x is assigned to the class which has the smallest distance iCx −  to it. 

However, since multi-dimensional residual patterns from data driven models have the 
same scale unit, when we assume those error patterns are separable in the residual space, 
it is convenient to do classification according to the nearest neighbor rule.  The residual 
pattern due to a specific component abnormality may concentrate in a certain area in the 
multivariate residual space, whose scattering relies on severity, random noise, and other 
uncertainties.  

 
The advantages of the nearest neighbor classifier over the PCA method include: PCA 

classifier depends very heavily on the first principal component of residual patterns, if the 
residual vectors do not concentrate heavily in one direction, vector projection is not as 
attractive as other methods. 

2.6. PCA Method for Data Clustering 
PCA is a method used to reduce a set of observed variables into a relatively small 

number of components that account for most of the observed variance.  This is 
accomplished by mathematical linear transformations of the observed variables under two 
conditions.  The first condition is that the first component accounts for the maximum 
amount of variance possible, and the others following the decreasing order of importance. 
The second condition is that all components are uncorrelated with each other. 

 
The PCA algorithm is also a powerful modeling tool for industrial systems.  The 

transformed data sets represent the variance directions arranged in descending order.   
PCA is especially useful when the high dimensional data sets could be represented by the 
first several PCs if heavy covariance redundancy exists in the data sets.  Since a few 
number of dimensions (less than 3) is typically sufficient to represent the data, the PCA 
algorithm has a computational advantage in data clustering.  The important prerequisite 
is that the data in groups must have different main variance direction and can be 
summarized by one or two PCs. 

 
Principle of PCA algorithm in fault isolation:  

Suppose we have several multi-dimensional data groups, g1, g2, ... gm.   We can 
manipulate PCA on every group and thus get: 

[ PC11, PC21, PC31.. PCn1] and [ ]41312111 ...,, λλλλ  

[ PC12, PC22, PC32.. PCn2] and [ ]42322212 ...,, λλλλ  
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[ PC13, PC23, PC33.. PCn3] and [ ]43332313 ...,, λλλλ  

[ PC14, PC24, PC34.. PCn4] and [ ]44342414 ...,, λλλλ      (3.9) 

. 

. 

. 
where λij is the ith eigenvalue for data group j.  
If  λ11 >> Σλ1i , d1 = PC11 can be used to represent g1. 
 
The same process is applied to other groups generates d2 = PC12,  d3 = PC13 ,… 

Therefore a matrix representing all group variation directions is [ ]mddd ,...,, 21 . 

When a test data set comes in, it will be projected onto each direction or PCA module. 
The residuals (distance from test point to the ith direction) of using this data direction to 
fit test data is given by 

TT
iii XddIXr )( −=              (2.10) 

The closeness of test data to the ith data group is measured by 

r
ri

                (2.11) 

where XXr T=  is the Euclidean length of the test data vector.  
 
Before the test data enter into the group isolation engine, it is necessary to scale 

the test data to the center of every group.  The scaling method selection is flexible, but 
the training data must be scaled the same as the test data. 

 
Since we could assume that there are changes only in residual magnitude during a 

transient process, it is feasible to find changing direction of the residuals for one specific 
type of fault without caring too much about the changing process.  In other words, as 
long as the residual direction remains constant for a transient fault case, and different 
types of faults give rise to different directions in the hyperplane, we can utilize the 
projection of residuals (from our system simulation module) onto these vectors 
representing fault directions to find the most likely type of fault.  

2.7. Selection of Different Models for Pattern Classification 

No one pattern classification algorithm is universally effective and generally 
useful. Therefore, different models of the same process are usually utilized and compared 
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with each other.   Since different models may compete, and they may also supplement 
one another, it is possible to find an optimum solution through comparison.  This section 
compares the performance of several pattern classification methods in order to decide 
which ones are more suitable for the robust on-line FDI process implemented in this 
research.   

 
l Discriminant Function Algorithm: 

For the SG system studied, multivariate variance analysis was introduced here to 
perform error space data cluster analysis.  The results are shown in Figures 2.1 and 2.2.  
The first Figure 4.1 shows the pattern classification results for training data collected 
under 100% nominal power level, we can find it performs very well.  However, this 
classifier performs very bad for the test data as shown in Figure 2.2, which is collected 
under 80% nominal power level.  

 
It is obvious that discriminant function method is very vulnerable to the subtle 

changes in residual vectors, even if the vectors are very similar, as shown in the figures.  
Although the residual vectors from test data are actually very close to the vector form 
training data, the ANOVA gives out large different scale in the new transformed analysis 
space.  Therefore, the discriminant function algorithm will not be adopted in the final 
FDI structures in this research.  
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Figure 2.1. Pattern classification results for training data sets using discriminant function. 

 

 

Figure 2.2. Pattern classification results for test data sets using discriminant function. 
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The definitions of various fault types are given below.  
Fault 1: NR degradation 
Fault 2: Feed water flow sensor degradation 
Fault 3: TCV1 degradation 
Fault 4: Steam flow sensor degradation 
Fault 5: Steam pressure sensor degradation 

 
l FCM (fuzzy C means) for Residual Space Data Clustering 

The FCM method is substantial to the variance of data group.  This method may 
not provide satisfactory results if a large difference exists between the data distribution 
groups.  Therefore, the FCM algorithm will not be used in the final FDI method 
developed in this research, even though it has good properties in considering uncertainty 
in the data.  
 
l Rule Based Expert System 

By comparison, the rule-based expert system is the most robust, intuitive, and 
easily applicable pattern classification method in this research.  This algorithm can be 
applied in both static and transient study for the SG system.  The difficulty is in 
extracting useful properties from the large amounts of collected information, which is 
also experience based.  The results of applying rule-based expert system in FDI will be 
discussed in detail in Section 4.  
 
l Principal Component Analysis (PCA) 

The PCA method for data classification performs very well in dealing with the 
data with a few main directions or principal components.  The result of application of 
PCA for residual pattern classification is described in Section 4.  Good performance is 
found when PCA is applied to transient case residuals analysis.  However, PCA 
algorithm will perform badly if data are uniformly distributed in groups. 
 
l Minimum Distance Cluster  

Minimum distance analysis is very useful when the data groups are distributed 
uniformly.  The implementation of this algorithm is easier than other methods.  
Disadvantages include the lack of a confidence level, and the lack of ability to detect 
unknown faults.  The implementation results will be discussed in Section 4. 

 
Multiple pattern classification techniques have been utilized in residual space 

analysis in order to find the faulty device in a steam generator system.  Different pattern 
recognition modules transmit different kinds of information or perspective of properties 
stored in residual space.  They extract different amounts of information about the 
process they represent, even though the same residual data is processed.  Through the 
comparison of their performance in the SG system, we finally select three types of 
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methods to be included in the FDI structure, for the purpose of cross checking and 
compensation.  They are: rule based expert system, which is applied to both static and 
transient analysis; PCA, which is applied to both static and transient analysis, but 
performs better for transient conditions; and the nearest-neighbor pattern classification 
method, which is only applied to static system analysis because the residual cluster center 
are not constant during transient processes.  

 
Based on the methods of pattern classification discussed here, the modeling 

residuals will be analyzed in order to isolate the faulty component.   
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3. DEVELOPMENT OF DATA-DRIVEN MODELS FOR A U-TUBE 

STEAM GENERATOR 

(neriFinalReport02-04) 

3.1 Introduction 
 A nuclear plant steam generator is one of the key components in a nuclear power 

plant.  Depending on the complexity of the model about 20 state variables are used to 
describe its response characteristics.  The causal relations between these variables are so 
complicated that it is a tedious task to explore accurate mathematical formulas to express 
all the interactions among them.  Fortunately, the data driven model provides us a 
practical approach in reaching this goal.  The development of these models requires an 
extensive database.  This database could be a combination of plant measurements and 
data generated from a physics model simulation.  With the aid of GMDH, ANN, PCA or 
other modeling algorithms, process measurements from an industrial system are used to 
generate accurate models that can simulate system behavior.  New operational data were 
then used to monitoring changing conditions of the process or field devices. 
 

Different forms of data-driven models are developed for the U-Tube Steam 
Generator (UTSG) system, for the reason that they may transmit different kinds and 
amount of information about the process they represent, even if they model the same 
process.  In general, different models may compete and supplement each other.  

 
Traditional GMDH models have been used in many areas such as industry 

monitoring, market prediction, ocean wave study, and others.  GMDH modeling is 
developed in this research to map relationship between a desired output and a set of 
related inputs.  Models developed using steady-state or quasi steady-state operational 
data are well-suited to detect and isolate incipient faults under stationary operation 
conditions.  However, some faults may occur during the transient operation, such as 
reactor start-up, and it is necessary to monitor the plant at these conditions.  Moreover, 
some fault types may not be detected during steady-state operation, especially in devices 
that contain moving elements, such as valve actuators, control rod drives, and some 
transmitters.  An example is the case of four turbine control valves (TCVs) degrading 
simultaneously, in which case static models do not provide any early warning of the 
impending failure.  But transient data analysis would provide this information, since 
actuators respond during plant maneuvers. 
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3.2. GMDH Algorithm for Modeling the UTSG System 
The Group Method of Data Handling (GMDH) approach is a self-organizing 

modeling method, that may be utilized for automatically mapping the complicated 
relationships among a set of process variables and control functions.  The GMDH 
algorithm (described in Phase-2 Report) is extensively used in this research due to the 
advantages of this algorithm over other modeling methods: 
l The capability of mapping nonlinear relations between model input and output 

variables. 
l The flexible selection of GMDH network structure during the training phase, 

instead of pre-estimated structure. 
l GMDH can be designed to be free from the problem of over-fitting.  The 

GMDH method divides the input data into training and checking sets in order to 
select an optimal model structure.   

 
The input-output relationship for a specific cell in the GMDH structure is often 

described by a second order polynomial, although other necessary functional terms can 
also be included into this function.   
 
3.2.1 Database generation 

In this research the necessary database has been generated using a full-scope 
simulation code for a typical 1,300 MWe PWR, developed by the North Carolina State 
University.  The code is able to simulate PWR normal operations under different power 
levels from zero power to 100% power.  In addition, reactor operation under different 
fault conditions can be simulated.  Furthermore, many specific types of abnormal cases 
can be studied such as sensor fault (drift, offset, noise), actuator fault (time constant, dead 
band), controller fault (proportional gain and integral gain), heat transfer capacity change, 
and others.  Schematic of a typical UTSG with measurement points is shown in Figure 
3.1. 

 
In order to generate a good data-driven model, a large representative database 

must be prepared before the modeling process.  One complete database is created for the 
conditions of BOL (Beginning of Life) in PWR, the power level changes from zero 
power to 100% power level.  The data is collected at every 2% power level interval.  A 
total of 480 stationary data sets are generated.  

 
A separate steady state database is also generated for EOL (End-of-Life) condition 

in a PWR system considering the system characteristics change along with the change of 
fuel enrichment and boron concentration.  

 
Another separate database is generated for transient study in a PWR system.  

The power increase and power decrease conditions were studied individually for 
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evaluating the performance of some devices, such as the turbine control valve during 
these processes.  A summary of data information will be given in next section. 

 
The database under different types of faults is also generated.  The details of 
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Figure 3.1. Schematic of a UTSG showing measurement points. 
 
these are given in Section 4.  About 0.2% system noise are imposed on all of the sensors 
related to SG system in a nuclear power plant.  Thus the noise filtering becomes one 
property in evaluating the performance of the models established. 
 
3.2.2 Static system model  

Static GMDH models are developed for nine variables of the UTSG system in 
order to perform redundant analysis for this complex system.  The model outputs are 
compared with system measurements to check whether the models perform well.  The 
residuals are evaluated using the percentage difference between model simulation and the 
actual values.  

 
 The models are created under the philosophy that there are constant parity 
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relations among the variables in a complex system, such as the UTSG.  The relationship 
can be expressed in a functional form:  

( )nxxxfYVariableedicted K,,Pr 21= , where x1 x2 ,,, xn are predictor variables such 

as NR water level, TCV position, etc.  Furthermore, the relationship can be 
approximated by higher order polynomials.  Table 3.1 shows the input terms selected 
and the corresponding modeling errors.  Note that most of the models include thermal 
power level as one of the input regressors, this is because we are trying to include the set 
point information into the models.  The input selection of the referential models is based 
on correlations between output and input and engineering experience. 
 

For the models with only two input variables such as FCV position and steam 
pressure, one additional multiplication term of those two input variables must be 
generated so that GMDH training process can continue and will not stop at the first layer.  
The various model responses are shown in Figures 3.2 – 3.13. 

 
The model residuals show that GMDH algorithm works great in mapping relations 

among system variables.  The largest prediction error is less that 1%.  The prediction 
error includes two parts, the error due to noise in measurement and the modeling error.  
When the training process begins to learn the noise, the GMDH algorithm stops the 
training process automatically. 
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Table 3.1 List of GMDH models for PWR SG system under static conditions 
 

Predicted 
variable 

Input variables Figures Maximum 
error (%) 

NR Thermal power Level, Steam flow rate, Feed water 
flow 

5.2&5.3 0.7 

Feed water 
flow rate 

Thermal power level, Steam flow rate 5.4&5.5 0.6 

FCV position Thermal power level, Steam flow rate, TCV1 flow 
rate 

5.12&5.13 <0.6 

Steam flow 
Rate 

Thermal power level, FCV position 5.6&5.7 <0.35 

Steam Pressure Hot leg temperature, Steam flow rate 5.8&5.9 <0.45 
TCV1 flow Thermal power level, Steam flow rate, FCV position, 

NR level for SG1, TCV1 position  
5.10&5.11 <0.25 

TCV2 flow Thermal power level, Steam flow rate, FCV position, 
NR level for SG1, TCV2 position  

5.10&5.11 <0.25 

TCV3 flow Thermal power level, Steam flow rate, FCV position, 
NR level for SG1, TCV3 position  

5.10&5.11 <0.25 

TCV4 flow Thermal power level, Steam flow rate, FCV position, 
NR level for SG1, TCV4 position  

5.10&5.11 <0.25 
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Figure 3.2. Narrow range steam generator level model with FCV position and Steam flow rate as 

model inputs. 
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Figure 3.3 Error between training data and model prediction for NR level model.  
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Figure 3.4. Feed water flow model with FCV position, Steam flow rate and power level as model 

inputs. 
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Figure 3.5. Error between training data and model prediction for feed water flow model.  
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Figure 3.6. Steam flow model with FCV position and thermal power level as model inputs. 
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Figure 3.7. Error between training data and model prediction for SG steam flow model.  
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Figure 3.8. Steam pressure model with steam flow and hot leg temperature as model inputs. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

0 50 100 150 200 250
1.005

1.01

1.015

1.02

1.025

1.03

1.035

1.04

1.045

1.05

Data Point Number

S
te

am
 P

re
ss

ur
e

GMDH Prediction
Training Data  



 34

 
 
 

 
Figure 3.9. Error between training data and model prediction for SG steam pressure model.  
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Figure 3.10. TCV flow model with steam flow, hot leg temperature and three more variables as 

model inputs. 
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Figure 3.11. Error between training data and model prediction for SG TCV steam flow model.  
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Figure 3.12. FCV Position model with steam flow, TCV position and power level as model 

inputs. 
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Figure 3.13. Error between training data and model prediction for SG FCV position model.  
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3.2.3 Transient modeling of steam generator system 
Considering the fact that system faults may occur during transient PWR operation, 

it is necessary to develop transient system models.  Another reason is that some fault 
types may not reveal their signature during the static condition.  As an example, 
consider the case when four TCVs in a PWR are under similar degradation 
simultaneously (for example, time constant change), all the relationships among the 
variables will be the same when the system reaches steady state.  This does not indicate 
an anomaly in any device.  However, if we follow the transient dynamics of these TCVs 
during opening or closing conditions, we can identify the abnormal behavior (Figure 
3.13).  Therefore, transient models become absolutely necessary in this environment.  
It will increase our confidence of the judgment of whether there is any abnormal scenario 
in the system. 

 
For time series to be included in the input data for the GMDH transient models, 

time lag terms need to be added.  Thus the functional relationship between an output 
variable and the input variables becomes:  

( )ktktktttt xnxxxnxxxnxxftYVariableedicted −−−−−−= KLKK ,2,1,,2,1,,2,1)(Pr 111  

Where x1 x2 ,,, xi are the input variables at time t, x1(t-1) x2 (t-1),,, xi(t-1) are the 
independent variables at time t-1; x1(t-k) x2 (t-k),,, xi(t-k) are the input variable values 
tracing back k time steps.  The lag k can be obtained from the autocorrelation analysis 
of model residuals.  Usually, if the model residuals change regularly, it indicates that 
time lag effects exist.  This can be established using the MATLAB Statistics toolbox or 
other Statistical Software (SAS).  Through our study, we have found that the first two 
time steps (two seconds) may have a significant effect on the distribution of the residuals.  
Hence, up to two time lags may be added to the PWR SG GMDH transient models.  
 

However, as we can see in the results, sometimes time lag terms have little effect 
in reducing the magnitude of model prediction error, especially when the transient 
dynamics process is slow.  And usually PWR operation procedures require the power 
changing process as steady as possible due to safety considerations.  Therefore, time-lag 
terms will not be included in transient models unless a fast transient is present, such as 
shown in Figure 3.14.  In the transient modeling process of this research, the principle 
about time lag terms is: time lag terms are added if they can improve model prediction 
significantly, otherwise, no such terms will be included in the model. 

 
Figure 3.15 shows the training results for narrow range level transient model.  More 

transient models and residual patterns are presented in Section 4. 
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Figure 3.14. Fast transient process modeling of a TCV and residual generation. 

 

 

Figure 3.15. NR level model under transient dynamics. 
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3.3. PCA Algorithm for Modeling the PWR Steam Generator 

Another important data-driven method, the PCA algorithm, is tested in this study.  
PCA modeling performs very well in extracting useful information in the full scope of 
variables.  All input variables have contributions to the new constructed vectors, which 
free us from processing the redundant information in order to select useful input data.  
PCA assumes that a set of orthogonal vectors from the original data construct a new 
hyper- plane, where normal operation is located.  Any significant deviation from this 
plane indicates device or system faults.  Table 3.2 lists 38 variables included in the PCA 
model in this thesis. 

 
Table 3.2. Process variables in the database 

 
Variable # 1 2 3 4 5 6 7 8 
Variable  
name: 

Qthnew Ref. Tave Tinlet T CL 1 T CL 2 T HL Tsat Qhtr 

Variable # 9 10 11 12 13 14 15 16 
Variable  
name 

Psg 1 Psg 2 SG 1 Tsat SG 2 Tsat Feed 
Temp. 

SG 1 
Flow 

Feed 
Flow 1 

FCV 1 
Pos. 

Variable # 17 18 19 20 21 22 23 24 
Variable  
name 

SG 1 WR SG 1 NR SG 1 WR 
Ind 

SG 1 NR 
Ind 

SG 1 
Mass 

SG Ref 
WR 

SG Ref 
NR 

SG 2 
Flow 

Variable # 25 26 27 28 29 30 31 32 
Variable  
name 

Feed 
Flow 2 

FCV 2 
Pos. 

SG 2 WR SG 2 NR SG 2 WR 
Ind 

SG 2 NR 
Ind 

TCV 1 
Pos. 

TCV 1 
Flow 

Variable # 33 34 35 36 37 38  
Variable  
name 

TCV 2 
Pos. 

TCV 2 
Flow 

TCV 3 
Pos. 

TCV 3 
Flow 

TCV 4 
Pos. 

TCV 4 Flow  

 

 

Qthnew:   Heat generated in Core. 
Ref. Tave:  Reference Average Temperature. 
Tinlet:     Temperature of inlet Plentum. 
T CL 1 and T CL2: Cold leg Temperature: 
T HL:      Hot leg temperature 
Tsat:       Saturate Temperature 
Qhtr:       Heat transferred in SG. 
WR:       Wide Range of SG water level 
NR:        Narrow Range of SG water level 
FCV:       Feed Water Valve 
TCV:       Turbine Control Valve 
Ind :      Indicated  
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The Principal Component Analysis (PCA) model for the variables shows that 
the first 12 significant PCs, where the 12th PC is a breakpoint, should be retained in 
the model.  The other 26 PCs will be discarded because of their insignificant 
contribution in state prediction.  Figure 3.16 shows the percentage of information 
explained by each principal component.  T-square and Q -statistics with 95% 
confidence level show the significance of the PCA model (Figure 3.17 and 3.18), 
though several outliers exist in Figure 3.17. 

 
However, we should still keep in mind that a complicated system such as a 

PWR always has nonlinear relationship among its process variables.  This part of 
information is discarded by PCA model as noise.  This may cause problems in fault 
diagnosis and will be discussed in Section 4..  

 
 

 
Figure 3.16. Percentage of variance explained by principal components. 
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Figure 3.17. Q -statistic test for PWR SG PCA model.  
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Figure 3.18.  T2 statistic test for PWR SG PCA model.  
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series, they are not always necessary for transient analysis.  Actually when a PWR 
system is under slow dynamics, time lags are not included in the model inputs in order to 
save memory and time.  However, they cannot be neglected during fast transient 
operation.    

 
The PCA model successfully reduces the data dimension from 38 to 10 in this 

study. The Q-statistic and the T2 -statistic indicate the quality of this model.  However, a 
potential problem exists due to the loss of nonlinear information.  This may create 
problems when the PCA model residuals are used for fault monitoring.  In spite of this 
limitation of PCA, another exciting application is found when it is combined with the 
GMDH method for fault device isolation.  This is described in detail in Section 4. 
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4. RESULTS OF APPLICATIONS TO A PWR U-TUBE STEAM 

GENERATOR 

(neriFinalReport02-05) 

4.1. Introduction 
For a complicated system such as a PWR, the on line monitoring of components 

is very important in improving plant performance through the reduction of unscheduled 
shutdowns and maintenance costs.  Hardware redundancy is one of the traditional 
methods usually adopted to ensure the availability of sensor data.  The technique of 
analytical redundancy performs a similar task and is cost-effective if implemented 
properly.  Many analytical techniques, which predict parameter values by using the 
information in other correlated sensors, have been developed in recent years.  However, 
the application of these algorithms is still a challenging task, especially when the 
nonlinear measurements propagate through feedback control loops and disseminates the 
effect of a faulty component onto other variables. 

 
In order to solve the problem of system level fault detection and isolation, 

data-driven models are established for generating residual signatures and to simulate the 
signature patterns under faulty device operation conditions.  Two approaches for 
building data-driven models, GMDH and PCA, are used in this study to capture any 
abnormal system changes.  However, the residuals from GMDH models have been 
found more useful in due to the capability of GMDH in mapping nonlinear relationships 
among process variables.  By comparison, PCA model residuals are not able to 
distinguish between the faulty variables closely related through controller such as SG 
water level and SG feed water flow.  In this research, the PCA algorithm is successfully 
applied in classifying the residual directions derived from nonlinear models. 

 
Nearest neighbor classification and rule-based expert system are also 

implemented and compared to find a robust algorithm suitable for fault monitoring in the 
UTSG system.  Different pattern recognition techniques are evaluated based on their 
ability to identify the faulty devices. 

4.2. Fault Detection Using System Models 
As described in Chapter 5, three different types of data driven models, static GMDH, 

transient GMDH, and PCA models, which can simulate system process accurately, are 
developed for the PWR SG system.  Section 3 results illustrate the successful 
performa nce of these models.  
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Under normal conditions, small residuals would be generated and limited to a 

certain range.  In the test cases when one or several components in the system are under 
degradation, the so-called causal relations among these variables will be violated.  As a 
result, the mapping of residuals from residual generators or system models will increase 
in a specific direction.  As an example, Figure 4.1 shows the residual pattern from 
GMDH models when one of the TCVs is under degradation.  The residuals are the 
difference between the measurement values and their GMDH predictions.  Figure 4.2 
shows a significant increase in the Q -statistic of the PCA model when the narrow range 
SG level sensor is drifting.  These illustrate the capability of data-driven models in 
detecting system anomalies.  

 
It is clear that the residuals reflect not only whether there is an abnormal component, 

but also the severity of the fault, which is very important in helping the operator or the 
automatic controller to select the correct strategy in order to avoid severe negative effect 
caused by faulty devices. 
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Figure 4.1. Residual pattern for the hysteresis change of one  
of the turbine control valves (TCVs). 
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Figure 4.2. PCA model residuals indicating a drift in the 
SG narrow range level sensor.  
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transient part of the data is sampled one point per second and used in transient 
fault analysis, and the data during stationary phase are used in static fault 
study. 

 
3. Steam flow rate sensor drifting from 1% to 6% of the full range.  Sensor 

offset covers 1.5% to 5.5%.  The first part of data was collected when the 
nominal power decreases from 100% to 96%.  The second part of data was 
generated during the nominal power increases from 80% to 84%.  The 
transient part of the data is sampled one point per second and used in transient 
fault diagnosis, and the data during stationary phase are used in static fault 
study. 

 
4. Steam pressure sensor drifting from 1% to 6% of full range.  Sensor offset 

covers 1.5% to 5.5% of the full range.  The first part of the data is collected 
when the nominal power decreases from 100% to 96%.  The second part of 
the data is generated during the nominal power increases from 80% up to 84%.  
The transient part of the data is sampled one point per second and used for 
transient fault analysis, and the data during stationary phase are used for static 
fault study. 

 
Actuator faults related to the SG system include the following. 
1. Feed water control valve degradation.  The time constant changes from 2 

seconds to 4 seconds, valve dead band increases up to 3% of its full position.  
The first part of data is collected when the nominal power decreases from 100% 
to 96%.  The second part of data is generated during nominal power increases 
from 80% to 84%.  Note that when the FCV dead band is over 3%, PWR safety 
protection system will be triggered and causes the plant to trip. 

 
2. Turbine control valve (TCV) degradation.  The time constant changes from 3 

seconds to 6 seconds, valve dead band increases from 3% up to 6% of the full 
position.  The first part of data is collected when the nominal power decreases 
from 100% to 96%.  The second part of data is generated during nominal power 
increases from 80% to 84%.  The transient part of data are processed and used in 
transient fault analysis, and the data during stationary phase are used in static fault 
study. 

 
3. Feed water control valve stuck at a fixed position during its opening or closing 

process.  In this study, the case of FCV stuck at 70% and 72% are observed and 
summarized.  
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 Although controller faults are not included in the study of fault isolation, they can 
be detected and isolated easily with our FDI modules.  The reason for not including 
these faults is that the NCSU code does not provide controller signal output as a 
parameter that may be modified.  However, since controller signals are generally 
available in power and process plants, FDI algorithm would be able to diagnose 
controller error. 

4.4. Isolation of Faulty Devices 

Fault isolation is one of the most important steps in FDI as we move towards an 
advanced nuclear power plant automatic control algorithm.  Several techniques are 
developed and compared in order to find the most suitable method(s) to solve the 
problems pertinent to the steam generator system.  The performance of rule-based expert 
systems, PCA, and the nearest-neighbor pattern classification approach are compared and 
evaluated according to their performance under different plant conditions, for both steady 
state and transient processes. 

 
4.3.1 Rule based expert system  

As a commonly utilized diagnostic technique in nuclear power plants, rule based 
expert system uses knowledge and experience.  The warning levels usually come from 
the observation of plant performance.  The decision about a degraded device or process 
anomaly is made by comparing the patterns of residual signatures of the current test case 
with those of known fault cases.  The latter is established either from actual process 
measurements or from a combination of simulation and plant data. 

 
The residuals from all system modules, such as for example NR level GMDH 

module, are checked with corresponding threshold values.  This value is set as 1% 
(percent prediction error) in this research, based on the noise level and modeling accuracy.  
When the residuals exceed this threshold value, it is declared that the parity relationship 
described by this module is violated, or the rule established in this module is broken.  A 
group of binary code (0 for no violation, 1 for violation of a rule) can be established for 
one specific type of fault.  If necessary, another number –1 may be included for 
description of residuals direction in order to increase the analytical capability.  However, 
it is not used here because of the cost of losing robustness.  For example, it would 
generate opposite residual patterns for valve opening and closing strokes if a TCV is 
under degradation.  Thus, we need to consider them as two different faults if –1 is used 
in describing the change in residual directions.  

 
 Table 4.1 gives a summary of residual patterns for different types of faults under 
stationary conditions.   Table 4.2 gives a summary of residual patterns for different 
types of faults under transient conditions.  There are totally about 40 data points 
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collected for each type of static component anomaly, and about 100 data points for each 
type of transient fault from the corresponding transient process.  



 53

Table 4.1. GMDH model residual patterns for PWR SG system under stationary conditions 
 

Fault types Residual patterns and base rules Figures Threshold (%) 
NR 

sensor( drifting 
and bias) 

Residual 1> threshold; Residual 5> threshold; Residual 6> 
threshold; Residual 7> threshold; Residual 8> threshold 

6.3 1 

Feed water 
flow rate 

sensor(drifting 
and offset) 

Residual 1> threshold; Residual 2> threshold; Residual 3> 
threshold;  

6.4 1 

Steam flow 
rate sensor ( bias 

and drifting) 

Residual 1> threshold; Residual 2> threshold; Residual 3> 
threshold; Residual 4> threshold; Residual 5> threshold; 
Residual 6> threshold; Residual 7> threshold; Residual 8> 
threshold; Residual 9> threshold;  

6.5 1 

Steam Pressure 
sensor (bias and 

drifting) 

Residual 9> threshold;  6.6 1 

TCV degradation 
(hysteresis 

change) 

Residual 3> threshold; Residual 5> threshold; Residual 6> 
threshold; Residual 7> threshold; Residual 8> threshold; 
Residual 5 > (Residual 6 = Residual 7 = Residual 8) 

6.7 1 

2 TCV 
degradation 
( hysteresis 

change) 

Residual 3> threshold; Residual 5> threshold; Residual 6> 
threshold; Residual 7> threshold; Residual 8> threshold; 
Residual 5 = Residual 6 > 0; Residual 7 = Residual 8 < 0; 

6.8 1 

FCV degradation 
(hysteresis 

change) 

Complicated, discussed specially.  6.9 1 
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Note about the residuals: 
  Residual 1: NR level static GMDH module residual 
  Residual 2: Feed water flow rate static GMDH module residual 
  Residual 3: FCV static GMDH position module residual 
  Residual 4: Steam flow rate static GMDH module residual 
  Residual 5: TCV1 static GMDH module residual 
  Residual 6: TCV2 static GMDH module residual 
  Residual 7: TCV3 static GMDH module residual 
  Residual 8: TCV4 static GMDH module residual 
  Residual 9: Steam pressure static GMDH module residual 
 
Discussion: When the feed control valve (FCV) hysteresis changes, the response of the 
system is very complicated.  If there is only a time constant change, the system will not 
produce significant responses; therefore, we are not able to detect FCV degradation under 
this case, because our FDI is based on the assumption that incipient faults will cause 
abnormal changes in system.  If the dead band exceeds 3% of full range, the safety 
protection system would cause a plant trip.  When the dead band is within 3% of its full 
range, the residuals from NR level, feed water flow, FCV position, and 4 TCV position 
modules would exceed the threshold.
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Table 4.2. GMDH model residual patterns for PWR SG system under transient conditions 
 

Fault types Residual patterns and base rules Figures Threshold (%) 
NR 

sensor( drifting 
and bias) 

Residual 1> threshold; Residual 2> threshold; Residual 3> 
threshold;  

6.10 1 

Feed water 
flow rate 

sensor(drifting 
and offset) 

Residual 2> threshold; Residual 3> threshold;  6.11 1 

Steam flow 
rate sensor ( bias 

and drifting) 

Residual 2> threshold; Residual 3> threshold; Residual 4> 
threshold; Residual 5> threshold; Residual 6> threshold; 
Residual 7> threshold; Residual 8> threshold; Residual 9> 
threshold;  

6.12 1 

Steam Pressure 
sensor ( bias and 

drifting) 

Residual 9> threshold;  6.13 1 

TCV degradation  
( hysteresis 

change) 

Residual 1> threshold; Residual 3> threshold; Residual 5> 
threshold; Residual 6> threshold; Residual 7> threshold; 
Residual 8> threshold; Residual 5 > (Residual 6 = Residual 7 = 
Residual 8) 

6.14 1 
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Note about the residuals: 
  Residual 1: NR level transient GMDH module residual 
  Residual 2: Feed water flow rate transient GMDH module residual 
  Residual 3: FCV position transient GMDH module residual 
  Residual 4: Steam flow rate transient GMDH module residual 
  Residual 5: TCV1 transient GMDH module residual 
  Residual 6: TCV2 transient GMDH module residual 
  Residual 7: TCV3 transient GMDH module residual 
  Residual 8: TCV4 transient GMDH module residual 
  Residual 9: Steam pressure transient GMDH module residual. 
 

During a plant transient with a device fault, the residuals from the GMDH modules 
increase with time.  The residuals may not exceed the threshold at the beginning of the 
transient process.  From the residual patterns for stationary and transient conditions, we 
observe that the rule-based expert system is suitable for the fault component isolation 
under both environments.  A set of If_Then rules may be easily established.  
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Figure 4.3. GMDH model residuals when NR level transmitter is under degradation. 

 
 

Figure 4.3 shows the residual pattern for the case when there is a drift or bias fault in 
the narrow range SG level sensor.  About 40 different fault operating conditions under 
different severity of NR fault are illustrated.  It is noticed that when the sensor fault is 
not severe, the magnitude of residuals is small (blue part in the plot).  When the sensor 
fault is severe, the magnitude of residuals becomes large (red color in the plot).  Similar 
conditions exist for other residual pattern plots shown in Figures 4.4 - 4.14.  These 
indicate that the residual plots also reflect the severity of faulty devices.  
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Figure 4.4. GMDH model residuals when feed water flow sensor is under degradation. 
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Figure 4.5. GMDH model residuals when steam flow sensor is under degradation. 
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Figure 4.6. GMDH model residuals when steam pressure sensor is under degradation. 

 
 
 
 
 

1 2 3 4 5 6 7 8 9
-0.01

0

0.01

0.02

0.03

0.04

0.05

0.06
Steam pressure sensor fault residual pattern (drifting and bias)

Model

R
es

id
ua

l



 61

 
 
 

 
Figure 4.7. GMDH model residuals when turbine control valve (TCV1) 

is under degradation 
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Figure 4.8. GMDH model residuals when TCV1 and TCV2 are under degradation 
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Figure 4.9. GMDH model residuals when feed control valve (FCV1) 

is under degradation. 
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Figure 4.10. GMDH transient model residuals when NR level sensor is under degradation 
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Figure 4.11. GMDH transient model residuals when Feed flow rate sensor is under degradation. 
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Figure 4.12. GMDH transient model residuals when steam flow rate sensor is under degradation. 
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Figure 4.13. GMDH transient model residuals when steam pressure sensor is under degradation. 
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Figure 4.14. GMDH transient model residuals when TCV1 is under degradation. 
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4.3.2 PCA algorithm for fault isolation 

PCA is powerful in reducing the dimensionality of redundant data.  This may 
become very useful if the fixed directions exist for different types of system fault 
conditions.  As mentioned in Section 3, PCA works well in modeling PWR SG system 
and detecting abnormal changes in the system. However, its performance is not highly 
satisfactory when using the residuals from the PCA models to isolate faulty devices.  
The residual patterns have similar behavior for the cases of abnormal NR level and feed 
water flow transmitters.  This is due to 1) PCA modeling considers only the linear 
relationship among the variables; 2) PCA includes all the system variables that are listed 
in table 3.1 as inputs.  Therefore NR level and feed flow transmitter faults may generate 
the same residual patterns due to the interaction between the level controller and the feed 
control valve actuation.  Furthermore, the level set point information is not explicitly 
included in decision making.  

 
   Therefore the residuals from the PCA model are not used directly for fault isolation.  
The PCA tool is used for processing the residuals generated by the GMDH modules.  
The PCA analysis is especially useful for transient case, because the residuals from 
GMDH transient models change with time, but the direction in which they propagate 
remains unchanged.  The schematic of combining the GMDH module with the PCA is 
shown in Figure 4.15. 
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Figure 4.15. Schematic representation for combining GMDH and PCA methods. 

 

Tables 4.3 and 6.4 list the results of using PCA to perform directional analysis on 
GMDH residuals under stationary and transient dynamics.  

GMDH Models 

Training Data 

Residual Patterns 

Fault Data Base

PCA of Residual 

New Data Fault Directions Fault Type/No Fault 
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Table 4.3 PCA residual analysis for PWR SG system under steady state conditions 
 

Fault type Detected fault direction Figures Percentage of 
residual variance 
expressed by the 

first PC 
NR level 

sensor(drifting 
and bias) 

Fault direction 1 6.16 93.98% 

Feed water 
flow rate 

sensor(bias and 
drifting) 

Fault direction 2 6.17 88.63% 

Steam flow 
rate sensor (bias 

and drifting) 

Fault direction 3 6.18 82.91% 

Steam Pressure 
sensor (bias and 

drifting) 

Fault direction 4 6.19 83.68% 

TCV degradation 
( hysteresis 

change) 

Fault direction 5 6.20 92.16% 

2 TCV 
degradation 
( hysteresis 

change) 

Fault direction 6 6.21 64.18% 

 

Fault direction 1: NR level sensor degradation  
Fault direction 2: Feed flow rate sensor degradation 
Fault direction 3: Steam flow rate sensor degradation 
Fault direction 4: Steam pressure sensor degradation 
Fault direction 5: TCV1 degradation 
Fault direction 6: TCV1 and TCV2 degradation. 
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Table 4.4. PCA residual analysis for PWR SG system under transient conditions 
 

Fault type Detected fault direction Figures Percentage of residual 
variance expressed by 

the first PC 
NR 

sensor(drifting 
and bias) 

Fault direction 1 6.22 85.96% 

Feed water 
flow rate 

sensor(bias and 
drifting) 

Fault direction 2 6.23 72.71% 

Steam flow 
rate sensor (bias 

and drifting) 

Fault direction 3 6.24 65.02% 

Steam Pressure 
sensor (bias and 

drifting) 

Fault direction 4 6.25 71.58% 

TCV degradation 
(hysteresis 

change) 

Fault direction 5 6.26 83.11% 

 

Fault direction 1: NR level sensor degradation  
Fault direction 2: Feed flow rate sensor degradation 
Fault direction 3: Steam flow rate sensor degradation 
Fault direction 4: Steam pressure sensor degradation 
Fault direction 5: TCV1 degradation. 
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Figure 4.16. Static fault direction indicated by PCA residual model, when NR level sensor is 

under degradation. 
 
 

Figure 4.16 shows the plots of the residual directions of the measurements for the 
case when there is a drift or bias fault in the narrow range SG level sensor.  The NR 
directional signature has a maximum value (about 0.9).  The directional signatures for 
the steam flow and feed flow are not insignificant, primarily because their settings change 
because of error in the NR sensor and the resulting feedback.  Each of the fault direction 
plots illustrates about twenty steady-state operating conditions. 
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Figure 4.17. Static fault direction indicated by PCA residual model When the feed water flow 
sensor is under degradation. 

 
 

Figure 4.17 shows the plots of the residual directions of the measurements for the 
case when there is a drift or bias fault in the feed flow sensor.  The feed flow sensor 
directional signature has a maximum value compared to the others.  The directional 
signatures for the NR and steam flow are not insignificant, primarily due to the feedback 
from feed flow controller.  Each of the fault direction plots illustrates about forty 
steady-state operating conditions. 
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Figure 4.18. Static fault direction indicated by PCA residual model when the steam flow sensor is 

under degradation. 
 

Figure 4.18 shows the plots of the residual directions of the measurements for the 
case when there is a drift or bias fault in the steam flow sensor.  The steam flow sensor 
directional signature has a maximum value.  The directional signatures for the NR and 
steam flow are not insignificant.  It is very important to notice that when the fault is not 
severe (blue color in the plot) the confidence levels for all fault directions are less 
significant.  Each of the fault directional plots illustrates about forty steady-state 
operating conditions. 

1 2 3 4 5 6
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

fault direction

co
nf

id
en

ce

 Steam flow sensor fault



 76

 

 
 

Figure 4.19. Static fault direction indicated by PCA residual analysis when the steam pressure 
sensor is under degradation. 

 
Each of the fault direction plots illustrates about forty steady-state operating 

conditions in Figure 4.19.  Similar condition hold true for confidence plots shown in 
Figures 4.20 and 4.21 for different type of fault cases. 
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Figure 4.20. Static fault direction indicated by PCA residual analysis when one of TCVs is under 

degradation. 
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Figure 4.21. Static fault direction indicated by PCA residual analysis when two of the TCVs are 

under degradation. 
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Figure 4.22. Fault direction indicated by PCA residual analysis when the NR level sensor is under 

degradation during transient process. 
 
 
 

Each of the fault direction plots illustrates about fifty data points from the transient 
process shown in Figure 4.22 – 4.26 under different type of fault.  At the beginning of 
fault transient process, the confidence levels for all the directions are low because the 
fault has not caused any significant changes in the system.  
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Figure 4.23. Fault direction indicated by PCA residual analysis 
when the feed water flow sensor is under degradation 

during transient process. 
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Figure 4.24. Fault direction indicated by PCA residual analysis 

when the steam flow sensor is under degradation 
during transient process. 

 
Figure 4.25. Fault direction indicated by PCA residual analysis 

when the steam pressure sensor is under degradation 
 during transient process. 
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Figure 4.26. Fault direction indicated by PCA residual analysis when one of the TCVs is under 
degradation during transient process. 
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4.3.3. Nearest-neighbor pattern recognition for SG fault isolation 

The nearest-neighbor classifier relies on the metric or distance between patterns.  
The test data are grouped into the class that is closest in terms of a distance measure. A 
mean distance between the test point and data group corresponding to a specific fault is 
used as a decision criterion.  The mean distance is used in order to decrease the effect of 
outliers in the test data.   

 
The following steps describe the procedure for implementing this method.  
1. If there are n groups of fault data known as X1, X2, ... Xn, then calculate the 

mean distance among the data in the group Xi={x1,x2...xm}, 1<i<n.  Totally m  
average distances are generated for group Xi.  Every point in Xi will have m-1 

Euclidean distances to other points, T
kjkjkjkj xxxxxxxxd ))((),( −−=−= .  

Therefore the average distance between x1 and other data points is 

1

),(
1 2

1

−
=

∑
=

m

xxd
dave

m

k
k

.  Maximum and minimum value of data set 

davemdavedave L,2,1 will be found and denoted as dmaxi and dmini .  

 

2. For a test data point, calculate the average distance between this point and the 
points in group Xi, denoted as di.  There are n average distances between this 
point to the n groups, dndd L,2,1 . 

 
 

3. Scale the distance with minmax, dd , using formula:  

  )
minmax

min
(1_

idid
iddi

inddi
−

−
−=  

 

4. Classify the test data to the group that has the smallest distance to this point. 

Table 4.5 summarizes the result of applying the nearest-neighbor pattern classification 
technique to the SG data. 
  
 Figures 4.27 to 4.33 illustrate the results when the nearest neighbor is used in 
residual space classification.  The test data are classified into the fault cluster whose 
average distance to test data is nearer zero than other fault clusters.  For example, the 
fault is classified as TCV degradation in figure 6.28 because the test data have the 
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smallest average distance to the TCV fault cluster. 
 
 Note that the distance to the steam flow sensor fault is always the cluster that is near 
to the true fault data cluster, this is because that all system models have included steam 
flow as input term.  Thus, an improvement should be made in selecting system model 
input terms if the nearest neighbor is selected as part of FDI algorithm, that is, two 
models with different input terms should be established for a predicted variable for the 
purpose of cross checking.  
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Table 4.5. Nearest neighbor algorithm for PWR SG system under stationary 
conditions 

 

Fault type Training data Figure 

Feed water 

flow rate sensor(offset and 

drifting), 96% nominal 

power level 

Data groups describing all types of 

faulty device under 96% power 

level  

6.27 

TCV degradation (hysteresis 

change), 96% nominal power 

level 

Same as above 6.28 

NR sensor (drifting and 

bias) , 96% nominal power 

level 

Same as above 6.29 

NR sensor (drifting and 

bias), 84% nominal power 

level 

Same as above 6.30 

Steam flow sensor (drifting 

and bias), 96% nominal 

power level 

Same as above 6.31 

Steam pressure sensor 

(drifting and bias), 96% 

nominal power level 

Same as above 6.32 

TCV1 and TCV2 

degradation (hysteresis 

change), 96% nominal power 

level 

Same as above 6.33 
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Figure 4.27. The fault direction indicated by the nearest neighbor method when the Feed flow 
sensor is abnormal.  

 
 

 
Figure 4.28. Fault direction indicated by the nearest neighbor method when one of TCVs is under 

degradation. 
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Figure 4.29. Fault direction indicated by the nearest neighbor method when the NR sensor is 

under degradation. 
 

 
 

Figure 4.30. Fault direction indicated by the nearest neighbor method when the NR sensor is 
abnormal, system is under 84% of nominal power level.  
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Figure 4.31. Fault direction indicated by the nearest neighbor method when the steam flow sensor 

is abnormal, system is under 96% nominal power level.  
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Figure 4.32. Fault direction indicated by the nearest neighbor method when the steam pressure 

sensor is abnormal, system is under 96% nominal power level.  
 
 
 

Figure 4.33. Fault direction indicated by the nearest neighbor method when two of the TCVs are 
abnormal, system is under 96% nominal power level.  
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4.5. Evaluation of Fault Isolation Methods 

Three fault classification techniques are tested and compared in this chapter.  In 
general, the rule-based method is robust in detecting and isolating the fault device under 
different operation conditions.  It uses the knowledge base and operator experience 
about the behavior of residual patterns.  It is obvious that the residual pattern vectors not 
only reflect the direction of system fault component, but also the severity of anomaly.  
But the fault is usually difficult to be isolated when the magnitude of the residuals is in 
the neighborhood of 1%, which is the threshold value.   

 
PCA provides another convenient method in dealing with directional residuals from 

GMDH modules.  The important assumption of PCA application is that the model 
residuals can be projected onto the first direction without missing the direction.  In other 
words, the first PC provides the information about the faulty device more than the other 
PCs.  We should be cautious that this assumption is not always satisfied, especially at 
the beginning of a fault transient.  This algorithm is not highly sensitive to small 
anomalies in the system.  In conclusion, PCA algorithm is an effective way to help in 
reaching the FDI objective, and deserves further study.  

 
The third pattern classification technique uses the nearest neighbor criterion.  The 

simple principle makes this method easy for implementation.  In practice, this method is 
more suitable for data clusters that have multi-dimensional Gaussian distribution.  One 
shortcoming of this method is that it is limited by the training database. 

 
The parallel approaches, implemented in this chapter for fault detection and isolation 

of SG system devices, are effective in increasing the overall confidence level of making 
decision about the system status.  Such a procedure is especially useful when the system 
dynamics is made complex because of changing system characteristics, nonlinearities, 
and temporal behavior.  The demonstrated independent research in this thesis is step 
towards achieving this goal.  The extension of FDI method to other subsystems is also 
very important and will be discussed in next chapter.  In addition, a graphic user 
interface is also developed to demonstrate the performance of FDI.  
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5. PRINCIPAL COMPONENT ANALYSIS (PCA) BASED 
APPROACH FOR MULTIPLE FAULTS 

 
(neriFinalReport02-06) 

 
5.1. PCA Algorithms 
 

From the point of view of data, the Principal Component Analysis (PCA) is a 
dimensional reduction method.  The original data can be represented by a lower 
dimensional space without significant loss of the variability.  From the modeling point of 
view, PCA transforms correlated variables into uncorrelated ones and determines the 
linear combinations with large and low variability (Flury, 1988). 

 
Before the original data are transformed into a lower dimensional space, they are 

mean centered because only the variability of the data is of interest. The data are 
standardized with unit variance so that equal weights are given to all the variables as far 
as their variability is concerned.  A complete description of the PCA is given in the 
Phase-2 report. 

  

5.2. PCA for Fault Detection 
 

During normal operation, the sample covariance of the measured data is governed 
by the physics in the process.  Its structure will change if a fault occurs in the process.  If 
a PCA model is used to describe the covariance structure of the measured data for the 
fault free condition, a fault can be detected when the model cannot explain the new 
observed data. Two cases may make the PCA model fail to explain the new data.  The 
first case is that the new observation deviates from the mean of the normal operation 
defined by the effective region of the PCA model in the score space.  The other case is 
that the residual of the model has changed significantly.  The model residual represents 
the noise and the redundant information of a system.  If a fault occurs, the characteristics 
of the noise and the redundancy are expected to change.  

 

5.2.1. 2T  Statistics 
 

If the score of a new observation is significantly outside the region defined by the 
scores of the fault free data, a fault may have occurred. If the scores of the fault free data 
satisfy multivariate normal distribution, the decision ellipse can be given by: 

 
 22' αTTT <Σ−  (5.1) 
where 

 
αα ,,

2 )1(
pnpF

pn
np

T −−
−

=  (5.2) 

p =  number of  variables 

n = number of observations 



 92

α  = significance level. 

 

The disadvantage of T2 statistics is that it may be oversensitive to the small elements of 

aΣ and result in high false alarm rate. 
 

5.2.2. Q statistics 
 

Q statistics can be used to test whether the principal component model can still 
explain a new observation.  The random variable used for this testing is the sum squared 
error R of the original PCA model defined by the following equation: 

 
 rrR '=  (5.3) 
where  

 xPPIr )'( −=  
 
 

If the sum squared error measuring the total sum of the variation in the residual 
space exceeds the Q threshold, it indicates that the original PCA model cannot explain 
the new data.  The threshold of Q statistics αQ  is defined as follows (Jackson and 
Mudholkar, 1979) 
 dczbaQ )( +=α  (5.4) 
where 

z= the critical value for standard normal distribution at a given significance level 
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5.3. PCA for Fault Identification 
 

The task of fault identification is to identify what are the most affected variables 
once a fault happens. These variables are usually most relevant to fault diagnosis. Fault 
identification is useful because it can help operators focus their attention on a reduced 
number of variables.  The out-of-status score can be approximated by: 

 

k
Tt

i

i
2

2)( α

σ
>       i=1,...r 

=r the number of scores considered to be responsible for the out-of-control status. 

=k the number of principal components. 

The contribution of one original variable to one of the out-of-control scores can 

be expressed as follows (Russell and Chiang, 2000): 

 

2,
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∆
=  

where  

jiC , = the contribution of  variable jx to the out-of-control scores it . 

The total contribution of the thj  variable jx  to the out-of-control status can be given by: 

 ∑
=

=
r

i
jiC

1
,jC   

iC = the contribution of  variable jx to the out-of-control status. 

The fault identification measure can also be defined based on the normalized 

error jR (Russell and Chiang, 2000), which is given by:  
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5.4. PCA Fault Isolation Versus Parity Space Approach 
 

Gertler et al (1999) reported that there is inherent consistency between PCA 
approach and parity space approach when used for fault isolation.  A linear static system 
can be described as follows: 









∆
∆

+=
y
u

BtAuty )()(  

where 

)(ty = the observed outputs 

)(tu = the controlled inputs or the measured inputs 

u∆ = the disturbances or the unknown faults related to )(tu  

y∆ = the disturbances or unknown faults related to )(ty  

A and B= known system matrices. 

If we combine all the measured variables )(tu  and )(ty  as a column vector 
denoted as )(tx , a set of residuals can then be defined as: 

 
 xBtxIAto ∆=−= )(],[)(  (5.6) 
 

The residual vector )(to  can be used as a parity vector for fault isolation since it 
is only influenced by the measurement error.  When PCA is performed, the residual 
vector is given by 
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where 

P  = eigenvectors that span the principal component space 

Q  = eigenvectors that span the residual space 

'QQD =  

 In the above derivation, we have used the property of orthonormal matrices: 

     1'' =+QQPP  

 In addition, we have assumed that the variances of the scores on the eigenvectors 
corresponding to trivial components are approximately zero: 
 
    0)'var()var( ≈= xQti  

 Correspondingly, if the original data are mean centered, then 

     0' =xQ  
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 In other words, the linear relationship between the variables can be represented by the 
eigenvectors corresponding to the trivial components. 
 
  To achieve fault isolation using PCA, structured residuals r(t) can be derived by a 
transformation  as follows: 
 
 )()()( txVDtVotr ∆==   
where 

V = a rotation matrix to achieve desired residual structure. 

If the residual structure is obtained this way, the PCA based FDI approach will be in full 
agreement with the parity space approach. 

 

5.5. PCA Fault Isolation Based on Fault Direction 
 

Yoon and MacGregor (2001) reported that the fault directions both in the model 
space and in the residual space should be used in order to isolate a complex fault. 

 
 If a fault occurs in a control loop, the fault effects may propagate within the 
control loop after a new steady state is reached.  Therefore, the developed PCA model 
from fault free conditions cannot be used to characterize the new relationship. This has 
twofold implications. The first one is that the linear redundant relationships between the 
variables have changed. The second one is that the system status has changed. The former   
can be represented by the residual change in the residual space and the latter can be 
represented by the score change in the model space.  
 

Combining the system status change and the model structure change, a fault 
vector can be characterized by the superposition of two fault vectors defined in the model 
space and in the residual space as follows: 

 
 vfuff ˆˆ 21 +=

r
 (5.8) 

where  

uf ˆ1 =  the fault vector defined in the principal component space;  

vf ˆ2 =  the fault vector defined in the residual space. 

The developed PCA model for fault free conditions can be used to decompose a 
measurement vector x  into two spaces, one component ux ˆ1  in the model space and the 
other one vx ˆ2  in the residual space, that is 

 
 vxuxx ˆˆ 21 +=  (5.9) 
 

Therefore, the fault direction in the residual space can be defined as: 
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where 
 

postpost xPPIx )'(2 −=  
initialinitial xPPIx )'(2 −=  

P =the loading matrix of the developed PCA model for fault free conditions. 
postx =the measurement obtained after a new steady state has reached since a fault  
initialx =the measurement before a fault. 

 
Since 02 ≈initialx , then  
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 The direction defined in the residual space characterizes the change of the model 
structure after a fault. However, the fault direction defined in the residual space may not 
be sufficient for fault isolation. The system status change before and after a fault also 
provides significant information to characterize a fault.  The direction starting from the 
initial plant condition before a fault and pointing to the condition after a fault in the 
principal component space can be used to define the fault direction in the model space: 
 

 
||||

ˆ
11

11
initialpost

initialpost

xx
xx

u
−
−

=  (5.12) 

where 
 

postpost xPPx '1 =  
initialinitial xPPx '1 =  

 

After the fault signatures have been defined by fault directions, fault isolation can 
be achieved based on the angle of the fault vector both in the model space and in the 
residual space between a detected fault and some reference faults.  A fault is isolated as 
one defined in a reference fault dictionary whose fault direction is most collinear with 
that of the detected fault both in the model space and in the residual space.  

 

5.6. Determination of the Number of Constraint Equations of a System 
 

Since PCA is in full agreement with the parity space approach when used for fault 
detection and isolation, it is crucial for a successful FDI system to find out all the 
constraints inherent in the process system.  In the context of PCA based FDI, the 
constraint equations are implicitly represented by the eigenvectors spanning the residual 
space.  Therefore, the correct choice of the number of principal components is important 
for PCA based FDI.  
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The most commonly used criteria are cumulative percent variance, Scree plot, 
average eigenvalue, and cross validation.  Cumulative percent variance method selects 
the number of principal components by setting a subjective threshold of cumulative 
percent variance so that the model fitness and the parsimony in using principal 
components are balanced.  Scree plot method is based on the plot of the fraction of 
variance explained by each principal component.  The plot orders the principal 
components from the one that gives the largest amount of explanation to the one that 
gives the least amount of explanation. This method considers the beginning point of the 
Scree as the most reasonable number of principal components.  Average eigenvalue 
method assumes that all the principal components whose corresponding eigenvalues are 
less than the average value should be discarded.  Cross validation is recommended when 
used for model prediction (Wold, 1978).  

 

5.7. Recommended PCA Based FDI Procedure 
 

The procedure to implement a PCA based FDI is proposed as follows: 

(1) Become familiar with the system. 
(2) Get information on the operation history of the system and collect the operation 

experiences of similar plants. 
(3) Select faults of interest from engineering point of view. The reliability data of the 

components, the environment of the components, the consequences of the component 
failure etc. should be taken into account.  
As far as dual faults are concerned, the selection is mainly safety oriented.  

(4) Study the fault responses of the selected faults.  
(5) Collect data and evaluate its quality for fault free conditions. 
(6) Build a PCA model able to characterize the system dynamics and the static 

relationships among the measured variables. 
(7) Quantitatively define the fault directions for all the faults and save them in a fault 

dictionary. In effect, only one experiment or one simulation needs to be performed in 
order to determine the fault direction for each fault.  

(8) Implement PCA fault detection using both Q statistics and 2T  statistics. 
(9) Implement PCA fault isolation based on fault directions defined both in the model 

space and in the residual space. 
 

5.8. Applications to Nuclear Plant SG System 
 

The Principle Component Analysis based FDI algorithm has been implemented 
for PWR steam generator system.  

 

5.8.1. Development of PCA models 
 

A good model to characterize the relationships between the measured variables 
plays an important role in PCA based FDI algorithm. 
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Table 5.1 lists the fifteen measured variables used to develop the PCA model for 
the SG system.  Before the simulated data are used to build a model, some noises in 
Gaussian distribution are added to the data based on the measurement errors of the 
corresponding sensors. 

 
Figure 5.1 shows the fractions of the variance contained in the data explained by 

the 15 eigenvectors.  It can be seen that the first three principal components can almost 
explain all the linear information, so the number of principal components may be chosen 
to be three.  However, since there are nonlinear relationships among the variables, more 
principal components are necessary.  Through cross validation, it is found eight principal 
components are the most parsimonious model that can give good prediction.  It should be 
noted the choice of too many principal components would result in an inappropriately 
complicated model.  A complicated model is able to reduce the training error, but it will 
lose the capability of generalization because some of the degrees of freedoms are only 
used for modeling the noise. 

 
Figure 5.2 shows the predicted SG narrow range level and the actual values. It can 

be seen that the model can predict the trend of the actual data. The choice of more 
principal components may increase the accuracy of predicting the training data, but it 
may result in overfitting. 

 
The nine eigenvectors to define the model space are as follow: 
   -0.2706   -0.0013   -0.0970   -0.0946   -0.0818   -0.2759    0.1669    0.3104 

   -0.2673    0.0053   -0.2591    0.3724   -0.3567    0.6139   -0.2662    0.3839 

   -0.2701   -0.0006   -0.1373   -0.0628   -0.0795   -0.1317    0.0112   -0.0808 

    0.2499   -0.0442   -0.6176    0.1526    0.0334   -0.1397    0.0593   -0.0636 

   -0.2666   -0.0229   -0.2695   -0.4125    0.7342    0.3625   -0.0562    0.0975 

   -0.2709    0.0074   -0.0580    0.0030   -0.1170    0.1376    0.2739   -0.3698 

   -0.2709    0.0064   -0.0576    0.0014   -0.1221    0.1314    0.3564   -0.3026 

    0.0268    0.9976   -0.0610   -0.0125    0.0149   -0.0075   -0.0000    0.0017 

   -0.2693    0.0166    0.1404    0.7813    0.5015   -0.2066    0.0428   -0.0255 

   -0.2709    0.0025   -0.0661   -0.0614   -0.0998   -0.2263   -0.5195   -0.2465 

   -0.2706   -0.0006   -0.0990   -0.0795   -0.0403   -0.2202   -0.5298   -0.2459 

   -0.2706   -0.0014   -0.0968   -0.0956   -0.0829   -0.2842    0.1756    0.3432 

   -0.2706   -0.0014   -0.0968   -0.0956   -0.0829   -0.2848    0.1756    0.3427 

   -0.2709    0.0074   -0.0580    0.0030   -0.1171    0.1380    0.2736   -0.3691 

    0.2497   -0.0441   -0.6198    0.1270    0.0154   -0.1386    0.0584   -0.1204 

   The seven eigenvectors to define the residual space are as follow: 
    0.0142    0.1209    0.0868   -0.5418    0.0572    0.6171   -0.0379 

    0.0165   -0.0024    0.0097   -0.0023   -0.0003    0.0020   -0.0004 

   -0.0437   -0.9318    0.0606    0.0029   -0.0031   -0.0036   -0.0002 
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   -0.7060    0.0635   -0.0159    0.0004    0.0008    0.0001   -0.0002 

    0.0059    0.0185   -0.0457   -0.0030    0.0006    0.0031   -0.0001 

   -0.0116    0.1161    0.0205    0.0127   -0.3934    0.0088   -0.7140 

   -0.0099    0.1070   -0.0597   -0.0433   -0.4195    0.0017    0.6925 

   -0.0001    0.0011   -0.0002   -0.0000   -0.0004    0.0000    0.0006 

    0.0196   -0.0074   -0.0060   -0.0004    0.0001    0.0006    0.0000 

   -0.0077    0.1015   -0.7152   -0.0456    0.0102    0.0513   -0.0007 

   -0.0051    0.1931    0.6822    0.0506   -0.0591   -0.0618    0.0824 

    0.0165    0.1168   -0.0467    0.7910   -0.0176    0.1729    0.0018 

    0.0160    0.1173   -0.0453   -0.2680    0.0117   -0.7629   -0.0445 

   -0.0112    0.1127    0.0315    0.0470    0.8136   -0.0286    0.0212 

    0.7056    0.0058   -0.0143   -0.0006   -0.0002    0.0004    0.0004 
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Table 5.1. Measured variables used to develop PCA model 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

Figure 5.1.  The fractions of the variance explained by different PC components 

 

Variable 
number 

Variable Description 

1 Thermal power 
2 Cold leg 1 temperature 
3 Hot leg 1 temperature 
4 SG1 pressure 
5 Feed water temperature 
6 Feed water flow rate to SG1 

7 SG1 steam flow rate 
8 FCV1 position 

9 FCV1 controller output 

10 SG1 WR indicated level 

11 SG 1 NR indicated level 

12 SG WR reference 

13 SG NR reference 

14 TCV1 flow rate 

15 SG1 temperature 
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Figure 5.2. Comparison between the predicted SG NR level and the actual values. 
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From the eigenvectors in the residual space, the following approximate linear 
relationships among the measured variables can be derived: 

 

-0.7140*steam flow+0.6925*feed flow=0; 

 

0.6171*power+0.1729*WR reference level -0.7629*NR reference level=0; 

 

-0.3934*steam flow-0.4195*feed flow+0.836*TCV flow=0.0; 

 

-0.5418*power+0.7910*WR reference level-0.2680*NR reference 

level+0.047*TCV flow=0.0; 

 

0.0868*power+0.0606*hot leg temperature-0.0597*Feed Flow rate-0.7152*WR 

level+0.6822*NR level=0.0; 

 

  0.1209*power-0.9318*hot leg temperature-0.0635*SG pressure+0.1161*Steam 

Flow+0.1070*Feed water flow+0.1015*WR level+0.1931*NR level+0.1168*WR 

reference level+0.1173*NR reference level+0.1127*TCV flow=0.0; 

 

-0.7060*SG pressure + 0.7065*SG temperature=0.0; 

 

These equations may be used to reveal the linear relationship among the variables.  
The corresponding physical relations can be written as follow: 

 

Steam flow rate = feed water flow rate; 

 

SG wide range reference level =f(SG narrow range reference level, power); 

 

Steam flow rate + feed water flow rate = TCV flow rate; 

 

SG reference level = f (power, TCV flow rate);  
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SG narrow range level =f(SG wide range level, power, hot leg temperature, feed 

water flow rate); 

 

Hot leg temperature  = f (power, SG pressure, SG NR level, SG flow rate);  

 

SG temperature =f (SG pressure); 

 

As can be seen, all the above equations have clear physical meanings.  However, 
PCA model cannot capture the nonlinear relationship among variables.  For example, the 
PCA model cannot reveal the relationship between FCV valve position and FCV flow 
rate.  Another point that should be emphasized in using PCA for FDI is that the 
measurements must be carefully selected before a PCA model is to be built.  If the 
available measurements do not allow finding out some relations among variables that are 
the basis to isolate some faults, these faults will hence not be able to be isolated. 

 
5.8.2. Fault detection 
 

The PCA models built in section 5.7 are used for fault detection.  

Figures 5.2 and 5.3 show the T-Square and Q-statistics for the fault free data, 
respectively. The red lines in the two figures are the T square or the Q statistical limits 
corresponding to 99% confidence level. If the corresponding statistics exceeds the limit, 
the confidence to state that the fault free model cannot explain the data is at a level 
greater than 99 %. The two figures illustrate that all the fault free data are well below the 
limit lines. The probability of false alarms due to process disturbance is low. 

 
Figures 5.4 and 5.5 show the T-square and Q-statistics based fault detection for 

feed water flow meter and steam flow meter drift faults.  If the confidence level is chosen 
to be 99%, the false alarm rate and missing detection rate is shown as follow: 

 
Detecting Fault: Normal Operation 
 PCA detection 
 False alarm rates by T2+Q testing  = 0.04 
 False alarm rate by T2 testing  = 0.03 
 False alarm rate by Q testing  = 0.01 
Detecting Fault: Feed Water Flow Meter Drift Fault 
 PCA detection 
 Missing detection rate by T2+Q testing  = 0.000000 
 Missing detection rate by T2 testing  = 0.012547 
 Missing detection rate by Q testing  = 0.095358 
Detecting Fault: Steam Flow Meter Drift fault 
 PCA detection 
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 Missing detection rate by T2+Q testing  = 0.000000 
 Missing detection rate by T2 testing  = 0.011292 
 Missing detection rate by Q testing  = 0.100376 
Detecting Fault: Steam Flow Meter Feed Flow Meter Drift Faults 
PCA detection 
 Missing detection rate by T2+Q testing  = 0.000000 
 Missing detection rate by T2 testing  = 0.010038 
 Missing detection rate by Q testing  = 0.115433 
Detecting Fault: Feed Flow Meter Drift Fault and SG Level Sensor Drift Fault 
 PCA detection 
 Missing detection rate by T2+Q testing  = 0.000000 
 Missing detection rate by T2 testing  = 0.013802 
 Missing detection rate by Q testing  = 0.077792 
Detecting Fault: Steam Flow Meter Drift Fault and SG Level Sensor Drift Fault 
 PCA detection 
 Missing detection rate by T2+Q testing  = 0.000000 
 Missing detection rate by T2 testing  = 0.006274 
 Missing detection rate by Q testing  = 0.042660 
Detecting Fault: SG Pressure Sensor Drift Fault 
 PCA detection 
 Missing detection rate by T2+Q testing  = 0.000000 
 Missing detection rate by T2 testing  = 0.002789 
 Missing detection rate by Q testing  = 0.068042 
Detecting Fault: Feed Water Flow Meter Drift fault & SG Pressure Sensor Drift Fault 
 PCA detection 
 Missing detection rate by T2+Q testing  = 0.000000 
 Missing detection rate by T2 testing  = 0.001255 
 Missing detection rate by Q testing  = 0.097867 
Detecting Fault: SG Level Sensor Drift Fault & SG Pressure Sensor Drift Fault 
 PCA detection 
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Figure 5.2.  T square statistics  for the normal data 
 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5.3.  Q statistics for the normal data.
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Figure 5.4. T square statistics to detect steam flow meter and feed water flow meter drift 
faults 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5.1. Q statistics for steam flow meter drift fault and steam flow meter drift fault. 
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Missing detection rate by T2+Q testing  = 0.000000 
Missing detection rate by T2 testing  = 0.006274 
Missing detection rate by Q testing  = 0.096612 
Detecting Fault: SG Level Sensor Drift Fault. 
 

It is seen that the missing detection rate is small for all the selected faults. It 
should be kept in mind that both 2T  and Q statistics must be used for fault detection. 
Either statistics being violated will signify that a fault has happened. The violation of 2T  
statistics represents that the system operates at an abnormal state beyond the model space. 
The violation of Q statistics represents that some of the constraint equations defined in 
the residual space are violated and the system is abnormal. 

 
PCA can only deal with steady state condition or a slow dynamic process.  The 

algorithm to perform PCA based fault detection is only applicable to steady state 
conditions.  When the false alarm rate and the missing detection rate are carefully 
examined, the false alarm rate and the missing detection rates are not equal to the 
expected value of one percent. The reason is that the probabilistic distribution underlying 
the data used to build the model is not normal. Therefore, it is reasonable that the false 
alarm rate and the missing detection rate are not equal to the specified significance level. 
The significance level should be determined using experiences obtained from testing the 
FDI design on the process system. 

 
It should also be noted that the confidence level would affect the false alarm rate 

and the missing detection rate. A higher confidence level tends to result in a smaller false 
alarm rate but a higher missing detection rate. In a real application, the confidence level 
needs to be adjusted according to the operation requirements. 

 

5.8.3. Fault identification 
 

Figures 5.6 and 5.7 show the contribution plots of the abnormal scores and the 
abnormal residuals for the feed water flow meter drift fault, respectively. The 
contribution plots show that the most affected variables for the feed water flow meter 
drift fault as follows: 
• reactor power; 
• feed water temperature; 
• feed water flow rate; 
• steam flow rate; 
• SG NR level; 
• SG temperature. 
 

All the identified variables are in agreement with the analysis of the fault 
responses.  The feed water flow rate has been successfully identified as an important 
variables of concern. 
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The fault identification does not give immediate results to isolate faults.  It only 
provides information about what variables significantly contribute to the residuals.  This 
is true especially in the case that a feed back controller is involved since all the 
measurements within the control loop may be affected by a fault in the closed loop. 

 

5.8.4. Fault isolation 
 

The objective of fault isolation is to determine whether the fault is known in the 
fault dictionary and to determine which fault is the most likely one after the fault has 
been detected.  

The fault direction jointly defined in the model space and in the residual space has 
been used as fault signature for fault isolation. By the way, fault signature is defined by 
fault direction instead of distance. The distance-based residual classification algorithm 
should not be used for fault isolation. Such pattern classification can be used only under 
the following conditions: 

 
• The fault directions of the concerned faults differ from each other significantly. 
• The magnitudes of the faults are predefined within a certain range.  
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Figure 5.6. Contribution plot in the model space for feed water flow meter fault 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5.7. Contribution plot in the residual space for feed water flow meter fault 
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Figure 5.8 shows the fault direction in the model space and in the residual space 
for SG NR level sensor fault without using SG wide range level sensor.  The fault 
direction is represented by the cosine angle of the fault directions between SG NR level 
sensor fault and all the 13 reference faults.  These reference faults are numbered as 
follows: 

 
• Feed water flow meter offset fault; 
• Steam flow meter offset fault; 
• Feed water flow meter offset fault and steam flow meter offset fault; 
• Feed water flow meter offset fault and SG level sensor offset fault; 
• Steam flow meter offset fault and SG level sensor offset fault; 
• SG pressure sensor offset fault; 
• Feed water flow meter offset fault and SG pressure sensor offset fault; 
• Feed water flow meter offset fault and FCV offset sensor offset fault; 
• Steam flow me ter offset fault and FCV position offset fault; 
• FCV valve position offset fault; 
• SG pressure sensor offset fault and SG level sensor offset fault; 
• SG level sensor offset fault; 
• Steam flow meter offset fault and SG pressure sensor offset fault. 
•  

Based on the fault direction in the residual space (green bar in the figure), SG NR 
level sensor fault can be strongly isolated from feed water flow meter offset fault. Based 
on the fault direction in the model space (purple bar in the figure), SG NR level sensor 
fault can be strongly isolated from steam flow meter fault, SG pressure sensor fault and 
FCV position fault. It proves that the joint fault direction both in the model space and in 
the residual space is sensitive enough to characterize SG NR level sensor fault. 

 
Figure 5.8 shows the fault direction in the model space and in the residual space 

for feed water flow meter sensor fault and SG NR level sensor fault without using SG 
wide range level sensor. As can be seen, the feed water flow meter fault cannot be 
distinguished from feed water flow meter sensor fault plus SG level sensor fault. This is 
because the symptoms of a feed water flow meter positive offset fault envelope all those 
of SG NR level sensor positive offset fault. Therefore, no additional information can be 
used to uniquely isolate SG NR level sensor fault. 

 
In order to isolate all the selected thirteen faults including dual faults, SG wide 

range level signal must be used.  Figure 5.9 shows the fault direction both in the model 
space and in the residual space for the feed flow meter fault after the SG wide range level 
sensor has been used.  As can be seen, feed water flow meter fault can then be isolated 
from feed water flow meter sensor fault plus SG level sensor fault. 

 
Furthermore, an important criterion to judge if the designed FDI scheme is 

successful or not is to test the stability of the fault signatures in different fault magnitudes 
and under different initial operation conditions.  For this reason, a set of data in fault 
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magnitude of three percent under the initial power level at 80% full power, which are 
unknown to the fault dictionary, are generated to test the reliability of the designed FDI 
system. 

 
Figures 5.10-5.21 show the fault direction both in the model space and in the 

residual space for the defined 13 faults respectively in magnitude of three percent under 
the initial power level at 80% full power. As can be seen, in most cases, the fault 
direction in either model space or residual space is not enough to isolate dual faults. For 
example, the fault direction in the model space (purple bar in the figure) for steam flow 
meter offset fault is similar to that for steam flow meter offset fault plus SG NR level 
sensor fault (See Figure 5.10).  Nonetheless, the fault direction in the residual space 
(green bar in the figure) for steam flow meter offset fault is quite different from steam 
flow meter offset fault plus SG NR level sensor fault. An opposite example is that the 
fault direction in the model space helps to isolate a fault. The fault direction in the 
residual space for steam flow meter offset is similar to that for steam flow meter offset 
fault plus FCV position fault (See also Figure 5.10).  Nevertheless, the fault direction in 
the model space for steam flow meter offset fault is quite different from steam flow meter 
offset fault plus FCV valve position offset fault. Therefore, when the joint fault direction 
is used, there is more possibility to isolate faults. 

 
The cosine of the angle between the fault direction of an unknown fault and that 

of the reference faults can also be used as confidence level when a decision is to be made. 
Figure 5.21 shows there is no significant margin to isolate a FCV position fault from a 
steam flow meter offset fault plus FCV position fault.  Figure 5.10 shows that no 
significant margin exists to isolate a SG pressure sensor fault from a SG pressure sensor 
fault plus a steam flow meter offset fault.  Therefore, when decisions are made, the 
confidence level to isolate these two faults should be taken into account.  

 

5.8.5. Discussion 
 

This chapter has presented the PCA approach to fault detection and isolation and 
its application to PWR steam generator system.  The PCA approach is shown to be in 
agreement with parity space approach.  The linear relationship among measured variables 
implying analytical redundancy can be consistently represented by the eigenvectors 
corresponding to the trivial components.  The fault directions jointly defined both in the 
model space and in the residual space is a sensitive fault signature for fault isolation. 

 
PCA approach needs the least information about a system when applied to FDI. It 

is simple to achieve on-line implementation. It provides an ideal tool to supervise plant 
status without too much investment.  However, PCA approach has many inherent 
weaknesses. From modeling point of view, linear PCA is only applicable to a linear static 
system.  It is difficult to develop a nonlinear PCA model for a dynamic system accurate 
enough to reveal the analytical redundancy inherent in a physical system.  With regard to 
fault isolation, the fault characteristics must be defined from fault data for the enumerated 
faults. This exerts heavy burden on engineering application.  In addition, the fault 
isolation is a process of classification, so the decision has poor interpretability. 
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Because PCA approach has duality with parity space approach, it is very 
important to validate the constraint equations extracted from PCA modeling.  If process 
variables are not appropriately chosen, some constraint equations necessary for fault 
isolation may not be obtained.  If the number of principal components is chosen 
incorrectly, the residual direction cannot be used to characterize a fault.  
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Figure 5.8. Fault direction for SG NR level sensor fault without using SG WR level 
signal. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5.9. Fault direction for feed water flow meter offset fault and SG NR level sensor 
offset fault without using SG WR level signal 
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Figure 5.10. Fault direction for feed water flow meter offset fault 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5.11. Fault direction for steam flow meter offset fault 
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Figure 5.12. Fault direction for feed water flow meter offset fault and steam flow meter 
offset fault 

 
 
 
 
 
 
 
 
 

 

 

 

 

 
 

 

Figure 5.13. Fault direction for feed water flow meter offset fault and SG NR level sensor 
offset fault 
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Figure 5.14. Fault direction for steam flow meter offset fault and SG NR level sensor 
offset fault 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5.15. Fault direction for SG pressure sensor offset fault. 
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Figure 5.16. Fault direction for feed water flow meter offset fault and SG pressure sensor 
offset fault. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5.17. Fault direction for feed water flow meter offset fault and FCV position offset 
fault. 
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Figure 5.18. Fault direction for steam flow meter offset fault and FCV position offset 
fault. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5.19. Fault direction for FCV position offset fault. 
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Figure 5.20. Fault direction for SG level sensor offset fault and SG pressure sensor offset 
fault. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5.21. Fault direction for SG level sensor offset fault. 

 

1 2 3 4 5 6 7 8 9 10 11 12 13 -0.8 

-0.6 

-0.4 

-0.2 

0 

0.2 

0.4 

0.6 

0.8 

1 
Fault direction in the model space and the residual space 

Fault Number 

S
G

 L
ev

el
 s

en
so

r 
of

fs
et

 a
nd

 S
G

 
P

re
ss

ur
e 

se
ns

or
 fa

ul
t 

 

1 2 3 4 5 6 7 8 9 10 11 12 13 -0.5 

0 

0.5 

1 
Fault direction in the model space and the residual space 

Fault Number 

S
G

 L
ev

el
 s

en
so

r 
fa

ul
t  



 120

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5.22. Fault direction for steam flow meter offset fault and SG pressure sensor 
offset fault. 
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6. ADAPTIVE NETWORK FUZZY INFERENCE SYSTEM (ANFIS) 
FOR FAULT DETECTION AND ISOLATION (FDI) 

 
(neriFinalReport02-07) 

 
A PCA model cannot take advantage of the available system knowledge.   For this 

reason, sometimes it is very difficult to build an appropriate model with low model 
uncertainty.  Some of these difficulties are as follows: 

 
• When a large number of variables are involved, it is hard to make sure that all the 

measurements are well excited in order to obtain a model with reliable generalization 
capability. 

• When noisy data are involved, their effects on how the constraint equations can be 
extracted from the noisy data are unknown to the analyst.  

• When nonlinear behavior is involved, it is hard to have a tradeoff between choosing 
more principal components to have a better approximation and preclude the 
disturbance of noises. 

 
In order to overcome these problems and keep the features of historical data based 

FDI approach, Adaptive-Network-based Fuzzy Inference System (ANFIS) is 
implemented to generate models for FDI.  This method can take advantage of the 
available system knowledge and try to capture the most relevant relationships among 
measured variables to characterize a fault. 

 

6.1. ANFIS Architecture 
 

ANFIS is a fuzzy inference system implemented in the framework of artificial 
neural networks (Jang, 1990).  It is able to combine the reasoning capability of fuzzy 
logic and the learning capability of neural network.  It is efficient in building a model 
with only a few inputs and one output.  A fuzzy inference system implements inference 
procedure using fuzzy rules.  A fuzzy rule can be expressed linguistically as follows: 

 

 If x is A then y is B (6.1) 
 

A fuzzy rule is analytically an implication relation R between its antecedent and 
its consequent, which can be expressed as 

 
 ∫=

),(
),/(),(),(

yx
yxyxyxR µ  (6.2) 

where 

),( yxµ = the membership function of the antecedent and the consequent pair. 

The implication relationship R(x,y) can be alternatively explained as the 
membership function of a fuzzy set defined in a two dimensional universe of discourse 
(x,y).  It can be computed using implication operator φ as follows: 
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 ))(),((),( yxyxR BA µµφ=  (6.3) 

The most commonly used implication operators are the Larsen product and 
Mamdani min operators.  If there are several input variables, it is necessary to have 
several antecedents connected with fuzzy operators. In general, a fuzzy inference system 
uses a set of fuzzy rules connected with connectives forming fuzzy algorithms. 

 
Fuzzy inference of Generalized Modus Ponens (GMP) is stated as the following 

problem: 
 
    If x is A then y is B 

 '' ByAx =⇒=  (6.4) 
 

In the above problem statement, the known part is R(x,y) and A', the unknown part is B' 
associated with A'. This inference procedure is a fuzzy composition given by: 
 
 ),('' yxRAB o=  (6.5) 
 
The most commonly used fuzzy composition operators are Max-Min if Mamdani Min 
implication relationship is used and Max-Product if Larsen Product implication 
relationship is used. 
 

A fuzzy inference system has the following four components (Jang, 1994): 

• A rule base containing if-then rules. 
• A database defining the membership functions used by the fuzzy rules. 
• A decision-making unit performing inference operations on the rules. 
• A unit to fuzzify the inputs and a unit to defuzzify the fuzzy outputs. 
 

Five steps need to be taken in a fuzzy inference system as follows:  

• Fuzzify the inputs. 
• Apply fuzzy operator. 
• Apply implication Method. 
• Aggregate all the outputs. 
• Defuzzify the output. 
 

The first step is to fuzzify the crisp inputs. In this step, the membership values of 
all the input variables are computed by comparing their values and the membership 
functions.  The second step is to apply fuzzy operators to compute the degree of the 
fulfillment (DOF) of the whole antecedent for each fuzzy rule by combining the 
membership values of all the fuzzy inputs.  The result is the firing strength of its 
corresponding rule. In the third step, the membership of the consequent for each rule is 
computed based on the DOF of the antecedent for the corresponding rule by applying 
appropriate composition method.  The fourth step is to aggregate the membership of the 
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fuzzy outputs for all the rules.  The final step is to defuzzify the output using methods 
such as centroid, maximum criterion, etc.  

The simplest fuzzy inference model is of the Sugeno type.  It has the following 
form of fuzzy rules: 

 
    If x is A and y is B then  

 z = f(x) (6.6) 
where  

A and B are fuzzy sets. 
 z = f(x) is a crisp function. 
 
In this model, the consequent of a fuzzy rule is simply a crisp function rather than 

a fuzzy set.  It can significantly simplify fuzzy reasoning.  In general, aggregation and 
defuzzification will involve matrix operation in high dimensional space. However, for a 
Sugeno fuzzy model, only a simple arithmetic function is involved in computing the 
output of each rule.  The aggregation and defuzzification can be combined into a 
weighted sum (Hines and Wrest, 1997). 

 
A Sugeno fuzzy model evolves into its first order form if the function f(x) defined 

in the fuzzy rules is of first order.  Given that there are two inputs and one output, two 
fuzzy rules can be represented by 

 
 Rule 1: If x is A1 and y is B1 then z = ax+by+c 

 Rule 2: If x is A2 and y is B2 then z = px+qy+r 

 

The output f can then be obtained as the sum of the two crisp output f1 and f2 resulting 
from the two rules weighted by the firing strength ratio w1 and w2.  That is, 
 
 2211 fwfwf +=  (6.7) 
 

When the fuzzy inference system is implemented using an adaptive network, the 
network system consists of layers of nodes capable of adapting parameters to map the 
desired input-output relation using fuzzy inference mechanism. For each node, there are 
several inputs and one output. The processing inside each node is nothing but performing 
some function computation. There are no weights designated to the connection between 
two nodes, but there is directional indication. 

 
A classical ANFIS architecture is shown in Figure 6.1.  There are two inputs (x 

and y) and one output (f) in the four network layers.  The nodes in the first layer take 
crisp inputs and compute the degree of fulfillment of fuzzy sets (A1, A2, B1, B2).  These 
fuzzy sets are parameterized fuzzy set. Their membership functions can be adjusted 
easily by changing a set of parameters. The two nodes in the second layer correspond to 
two fuzzy rules.  All the nodes in this layer take two inputs to give an output, w1 or w2, 
representing the firing strength of each rule based on the product of the two membership 
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values being involved.  The third layer is responsible for calculating the relative 
importance of each rule ( 1w and 2w ), the ratio of one rule's strength to the sum of the 
firing strengths of all the rules. Each node in the fourth layer contains a node function to 
calculate the consequent multiplied by the ratio calculated in the third layer.  The output 
layer gives the final output by summing all its inputs. 
 
6.2. ANFIS Learning Rule  
 

The training process of a first order Sugeno type ANFIS system is to tune the 
parameterized functions involved in the system such that the desired input-output 
mapping is achieved. Hybrid learning algorithm is used for training, which combines the 
gradient descent method and the least square method (Hines and Wrest, 1997). In this 
training algorithm, all the tuned parameters are classified into two sets. One set of the 
parameters describes the linear relationship between the inputs and the outputs, which 
contains the parameters in the crisp function to describe the consequent of each rule. The 
other set of parameters describes the non-linearity between the inputs and the output, 
which involves those parameters defining membership functions. In the forward pass, the 
parameters describing the linear relationships are upgraded by sequential least square 
training. After the error is computed, the gradient descent training is used, which makes 
the error propagated from the output layer to the input layer. In this backward pass, the 
parameters describing the nonlinear relationship are upgraded. The training process does 
not end until the desired error goal is reached or the designated maximum number of 
epochs is exceeded. 

 
For the ANFIS structure with two inputs and one output, the learning algorithm is 

shown in a later section.  The system output may be expressed as follows: 
 

)()2,2()()1,1( 22221111 ryqxpBAwryqxpBAwf ++∗+++∗=   

The parameter space S  can be partitioned into two subspaces 1S  and 2S given by: 

21 SSS +=  

where 

)2,2,1,1(1 BABAS ⊃  

),,,,,( 2221112 rqprqpS ⊃  

During the forward pass with the fixed set 1S , if off-line learning algorithm is used, the 
parameters in the subspace 2S can be determined by least squares estimate as follows: 
 

YXXXS ')'( 1
2

−=  

where 

X  = input data set. 
Y = target output. 
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If an on-line learning algorithm is used, the following sequential learning 

algorithm can be used (Jang, 1994). 
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where 

Q  =covariance matrix. 

iX =a column vector of the input variables at the ith time. 

iY = the target output at the ith time. 
λ =the forgetting factor between 0 and 1. 
 

During the backward pass with the fixed set 2S , the parameters in the subspace 1S can be 
determined by gradient descent method.  For the output layer, the error rate is defined by 
 

)(2 5
5 OT

O
E

−−=
∂
∂

 

where 

)()2,2()()1,1( 22221111
5 ryqxpBAwryqxpBAwO ++∗+++∗=   

=T target output. 

For the two nodes in the fourth layer, the error rate is defined by 
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where 
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5 OOO +=  = the system output.  

k
iO = the output of the i-th node of the k-th layer. 

For the two nodes in the third layer, the error rate is defined by 
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For the two nodes in the second layer, the error rate is defined by 
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For the j-th node in the first layer, the error rate is defined by 
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The derivative of the output error with respect to the parameters used to define the 

membership functions can be determined by: 

∑
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where 

jS ,1 = the j-th parameter in the space of 1S . 

M = the number of fuzzy sets used to fuzzy rules.  

 If Gaussian membership function is used as given by 

))(exp()( 21

j

j
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for the j-th fuzzy set used in the first layer, 
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The update of the parameters in the space of 1S  is determined by 

j
j S

E
S

,1
,1 ∂

∂
−=∆ η  

where 

η = the learning rate.  

 If online learning is implemented, the update of the parameters is performed after 
each input-output pair is presented.  The hybrid learning algorithm is much faster than 
gradient descent method only and gradient descent and one pass of least squares method 
(Jang, 1993).  If some membership functions or some rule functions are determined 
from expert knowledge, the learning algorithms can be easily adapted to develop some 
hybrid models. 
 

6.3. Structured Residual Design Approach to FDI 
 

If structured residual design approach is used for fault isolation, the residual 
vector is represented by bit numbers for a set of models.  The bit number 1 indicates that 
the model has a significant residual while the bit number 0 indicates the model has 
insignificant residual. 

 
Table 6.1 shows the residual structure of four models for four faults. The residual 

pattern for fault 1 is [1,1,0,0], the residual pattern for fault 2 is [1,0,0,0], the residual 
pattern for fault 3 is [0,0,1,1], and the residual pattern for fault 4 is [0,0,1,0].  If the bit 
number of model 3 for fault 2 degenerates, fault 2 will be misdiagnosed as fault 1.  If the 
bit number of model 4 for fault 3 degenerates, fault 4 will be misdiagnosed as fault 1. 
Therefore, the residual structure can only result in weak isolation between faults. 

 
In order to achieve strong fault isolation, which means a fault will not be 

misdiagnosed as another fault even if one bit number has degenerated, it is necessary to 
transform the residual vectors into a structured form shown Table 6.2. 

 
For a linear system, the structured residual can be achieved by a linear 

transformation on the original residuals.  However, for a nonlinear system, it is quite 
difficult to derive new dependent equations by algebraic combinations of the previous 
equations in order to obtain the desired residual structure (Garcia, et al, 2000). 
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6.4. Applications to FDI of Nuclear Steam Generator System  
 

Once the possible faults are enumerated based on engineering judgments 
structured residual design approach with ANFIS models can be implemented for the fault 
diagnosis for nuclear SG system. The study shows different residual structures are 
required to deal with single faults and dual faults. 
 
6.4.1. Residual structure design for single faults  
 

If there are only single faults in the designed FDI system, it is possible to achieve 
strong fault isolation if the model structures are carefully chosen.  The most obvious way 
to obtain residuals is based on the natural redundancy in a process. From the engineering 
analysis of PWR SG system, the model structures derived from the physical analysis are 
as follows: 

 
FCV flow rate (t) = f (FCV valve position (t), SG pressure (t)) 

FCV valve position (t+1) = f (controller output (t), FCV valve position (t)) 

SG pressure (t) = f(SG temperature(t)) 

Steam flow rate(t+1) = f(feed water temperature(t), SG pressure(t), hot leg 

temperature(t), cold leg temperature(t)) 

SG level (t+1) = f(SG level(t),Feed water flow rate(t), steam flow rate(t),SG pressure(t)) 

Table 6.1. Structured residual design for weak fault isolation  

  

Table 6.2. Structured residual design for strong fault isolation  
 

 
 
 

 

Model Fault 1 Fault 2 Fault 3 Fault 4 
Model 1 1 1 0 0 
Model 2 1 0 0 0 
Model 3 0 0 1 1 
Model 4 0 0 1 0 

Model Fault 1 Fault 2 Fault 3 Fault 4 
Model 1 1 1 0 1 
Model 2 1 0 0 0 
Model 3 0 0 1 1 
Model 4 0 1 1 0 
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Table 6.3 shows the residual patterns for the 13 faults with the above model 
structure. In the table, the bit number 0 indicates that the model to predict the specific 
variable will not generate significant residual while the sign 1 indicates that the residual 
is significant. The threshold to distinguish the significance is determined by the model 
accuracy and the level of plant disturbance. As can be seen from the table, the residual 
patterns can be directly used to achieve strong fault isolation for the three single faults 
(feed water flow meter offset, steam flow meter offset and FCV position offset). 
However, the SG level sensor fault cannot even be detected. In this case, the residuals 
refer to the values after the new steady state has been reached. Due to the compensation 
effects of the SG level controller, the relationship among the feed water flow rate, the 
steam flow rate, the SG pressure, the FCV position and the SG level are always attempted 
not to change. Therefore, it is usually very difficult to detect a minor fault of the steam 
generator water level sensor fault based on a steady state model. 

 
Table 6.3 also shows that some residuals become unstable due to fault 

competition with different fault magnitudes when dual faults are involved. The unstable 
residuals of the SG level model, denoted by the sign "?" in Table , correspond to the 
following combination of faults: 
• Steam flow meter offset plus feed flow meter offset. 
• SG pressure sensor offset plus SG level sensor offset. 
• FCV valve position offset plus feed water flow meter offset. 
 

Although the residual structure can be used directly to isolate the three single 
faults, it is not sufficient to isolate dual faults. These dual faults are as follows: 
• Feed flow meter offset plus SG level sensor offset cannot be separated from feed flow 

meter offset.  
• Steam flow meter offset plus SG level sensor offset cannot be separated from steam 

flow meter offset.  
• SG pressure sensor fault plus Feed flow meter offset cannot be separated from steam 

SG pressure sensor fault.  
• SG pressure sensor fault plus SG level sensor offset and SG pressure sensor fault plus 

SG steam flow meter offset. 
 

In conclusion, although a set of models derived from physical analysis may result 
in different residual patterns for fault isolation, they are usually not effective to deal with 
dual faults. When used for dual fault isolation, some dual faults may result in the same 
residual pattern as their element faults. In addition, the residuals of some models may 
become unstable for dual faults with different fault magnitudes. 
 

 

 

 

 



 130

6.4.2. Dedicated residual design for dual faults 
 

Because a dual fault usually cannot be strongly isolated from its element faults, 
dedicated residual structure is designed to isolate dual faults.  Dedicated residual 
structure has the following two properties: 

• Each residual is only sensitive to one fault and insensitive to all the other faults. 
• Different faults will result in different types of residual patterns. 

 
If all possible faults are known, dedicated residual structure can be obtained through 
appropriately selecting the model structures to generate residuals.  The alternative models 
can be derived based on: 

• Natural redundancy 
For instance, for a saturated system, the temperature and the pressure has one to 

one correspondence. Any model involving either variable can be substituted by the other 
variable. 

• Derived redundancy 
For instance, if the flow rate is determined by the system pressure and the valve 

position for a system, any model involving the flow rate can be substituted by the system 
pressure and the valve position. 

• Measurement redundancy 
The measurement redundancy is the most primitive one.  For the SG system, the 

SG narrow range level measurement involved in any model can be substituted by the SG 
wide range level measurements. 

 
In order to isolate the specified 13 faults for the nuclear SG system, the models 

with dedicated residual structure are defined as follows: 
 

FCV flow rate (t)=f (FCV valve position (t), SG temperature (t)) 
FCV valve position (t+1)=f (controller output (t), FCV valve position (t)) 
SG pressure (t)=f(SG temperature(t)) 
Steam flow rate(t+1)=f(feed water temperature(t), SG temperature(t), hot leg 
temperature(t), cold leg temperature(t)) 
SG NR level (t)=f(SG WR level(t),Feed water temperature(t)). 
 

In order to isolate dual faults involving the controlled variable from their element 
faults in a closed control loop, the measurement redundancy has to be used. For the 
nuclear SG level system, SG WR level sensor has to be used to isolate the SG NR level 
sensor fault from SG NR level sensor fault plus another fault in the control loop. 

 
6.4.3. ANFIS modeling for SG system 
 

The ANFIS has been used to construct the five models for the system during 
normal operation.  Before the ANFIS models are constructed, the input variables need to 
be appropriately scaled. The purpose to scale the inputs is to give equal importance to all 
the inputs in case that the input variables are in different units.  
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FCV valve flow rate model is shown as an example to train ANFIS. The network 
uses two bell-shape membership functions for either input.  Two rules have been selected 
to map the input and output relationship. 

 
Figure 6.2 shows the membership functions for the ANFIS model to predict the 

FCV valve flow rate before and after training. It can be seen that the ANFIS training has 
changed the shape of the membership function for the first input (FCV valve position) 
significantly. In general, this change reflects the degree of nonlinearly contained in the 
mapping between the input and the output. After three epochs, the ANFIS model has 
been trained to reach a training error less than 0.5 %.  
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Table 6.3. Consistency checking using natural redundant relations 

          Functional    
Model 

Faults 

FCV 
flow 
rate 

Steam flow 
rate  

SG pressure FCV valve 
position 

SG 
level 

Feed flow meter offset 1 0 0 0 1 

Steam flow meter 
offset 

0 1 0 0 1 

Steam flow meter and 
feed flow meter offset 

1 0 0 0 ? 

SG NR level sensor 
offset 

0 0 0 0 0 

Feed flow meter offset 
and SG level 
sensor offset 

1 1 0 0 1 

Steam flow meter 
offset and SG level 
sensor offset 

0 1 0 0 1 

SG pressure 
sensor offset 

1 1 1 0 1 

Feed flow meter offset 
and SG pressure 

sensor offset 

1 1 1 0 1 

Steam flow meter 
offset and SG pressure 

sensor offset 

1 1 1 0 1 

SG level sensor offset 
and SG pressure 

sensor offset 

1 1 1 0 ? 

Feed water flow meter 
offset and FCV 
position offset 

 

1 0 0 1 ? 

Steam flow meter 
offset and FCV 
position offset 

0 1 0 1 1 

FCV position offset 0 0 0 1 1 
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6.4.4. Model testing and validation 
 

The residuals generated by some models can be immediately used for fault 
detection.  If the sum square residuals of all the models are greater than a specified 
threshold, a fault is assumed to have happened. 

 
In order to reduce the false alarm rates for fault detection, these models must be 

able to correctly characterize the system behavior under all the fault free conditions. 
However, if the models are fully static, any changes in the plant status or even plant 
disturbance will cause false alarms because the dynamic behavior of the system is 
unknown to the system.  For this reason, most FDI systems need to use dynamic models. 
The dynamic models are able to simulate the normal transients such as a normal power 
transient. 

 
In order to test the performance in characterizing the dynamic behavior, a power 

transient from 100% power to 90% power is simulated using the ANFIS models built in 
the last section.  Figures 6.3-6.6 show the comparison between the estimation from the 
ANFIS models and the actual values obtained by the SimPWR simulation code for the 
following variables: 
• SG narrow range level 
• Steam flow rate 
• FCV flow rate 
• FCV valve position. 
 

 From these figures, it can be seen that the ANFIS models can correctly simulate 
the transient process with low errors. It is also very interesting to examine the sources of 
the error. One source can be attributed to the modeling error itself. When the models are 
trained, the training error cannot be absolute zero. The reasons might be: 
• There are noises contained in the data. 
• Some other contributors to the output are not included in the designed models. 
• The training error is specified not to be very low in order to avoid over-training. 
 
Another source is that some individual variables may be outside their training range, 
which will cause uncertainty in prediction.  When a large complex system with strong 
interaction is involved, it is usually very challenging to build perfect data driven models. 
For instance, it would be very difficult to build a data driven model for a fast transient 
due to the fast interaction among systems. For fast transients, it will involve much more 
complicated model structure and it is harder to collect data to sufficiently excite all the 
related subsystems. 
 

However, from FDI point of view, slight error of these models will not impose a 
serious problem. First, different thresholds can be set to the residuals for different models 
depending on the accuracy of the models.  Secondly, fast transient is not of major interest 
for an incipient fault detection and isolation system. A fast power transient is usually 
under cautious supervision of operators, so operators can easily switch off the FDI system 
if the expected transient is any faster than the designed level.  
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In general, it is expected that these ANFIS models will give correct estimation if 
the relationship between the input variables and the output variable is not violated. 
However, if a fault happens, some input variables may be outside their training range. In 
this situation, the model may perform unreliable extrapolation. Hence, even if the 
relationship among the variables is not violated, the residual of the model may still 
exceed the specified threshold. In order to avoid this problem, it is necessary to evaluate 
whether the models are excited in all fault cases. 

 
Here is an example to show the importance of model testing for SG NR level 

model. If the data are collected only from 20 % to 100% power ranges, the model will 
generate unstable residual patterns for different fault magnitudes.  Figure 6.7 shows that 
when the SG steam flow meter and the SG pressure sensor have less than 2% offset 
faults, the residual is less than 0.5%. However, when the fault magnitude is 3%, the 
residuals become unstable. To investigate the causes, the training range of the inputs is 
examined. The minimum values of the feed water temperature and the SG WR SG level 
are 313.94 F and 76.269% respectively. The maximum values of the feed water 
temperature and the SG WR SG level are 438.4 F and 85.599% respectively. However, 
for the SG steam flow meter and SG pressure sensor offset faults with 3% fault 
magnitude, the minimum values of the feed water temperature and the SG WR SG level 
are 440.42 F and 83.0% respectively and the maximal values are 440.5 F and 86.167% 
respectively. Apparently, the fault data have exceeded the training range, so the ANFIS 
model is not able to correctly compute the residual of the SG narrow range level. 

 
After more data is collected to cover the range the faults may result in, the 

residuals exhibit consistent behavior.   Figure 6.8 shows that the residuals of SG NR level 
models are within 1% for the dual faults (the SG steam flow meter and the SG pressure 
sensor offset fault) when the SG NR level sensors are healthy.  

 

6.4.5. FDI results   
 

Table 6.4 shows the dedicated residual structure based on the variables within the 
control loop used to isolate the defined 13 single and dual faults. As can be seen, each 
ANFIS model is dedicated to isolate one fault. For dual faults, the corresponding two 
models dedicated to the two element faults will generate significant residuals, which 
provides the full possibility to isolate them. 

 
Figures 6.9-6.15 are plotted to show the residual structures for different fault 

magnitudes.  In these plots, the 13 fault classes correspond to the following faults: 
 

• Fault class 1= Feed water flow meter offset fault 
• Fault class 2= Steam flow meter offset fault 
• Fault class 3= Feed water flow meter offset fault and steam flow meter offset fault 
• Fault class 4= SG level sensor offset fault 
• Fault class 5= Feed water flow meter offset fault and SG level sensor offset fault 
• Fault class 6= Steam flow meter offset fault and SG level sensor offset fault 
• Fault class 7= SG pressure sensor offset fault 
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• Fault class 8= Feed water flow meter offset fault and SG pressure sensor offset fault 
• Fault class 9= Steam flow meter offset fault and SG pressure sensor offset fault 
• Fault class 10= SG pressure sensor offset fault and SG level sensor offset fault 
• Fault class 11= Feed water flow meter offset fault and FCV offset sensor offset fault 
• Fault class 12= Steam flow meter offset fault and FCV position offset fault 
• Fault class 13= FCV valve position offset fault. 

 
In each figure, the 13 faults have different residual patterns, so they can be 

isolated. If the residual patterns are compared for different fault magnitudes, their 
structures are stable.  Moreover, the residuals are approximately equal to the fault 
magnitudes of the sensor faults such as the feed water flow meter fault and the steam 
flow meter fault. Theoretically, the residuals should be exactly as same as the fault 
magnitudes.  However, due to the modeling errors of these data driven models, some 
slight differences still exist and these slight differences in FDI are acceptable.  The faults 
occurring at 80% initial power level other than 100% full power are also tested.  Figure 
6.15 clearly shows that the performance of the FDI system does not degrade.  The 
residual structures keep the same pattern as those faults at 100% power level. 

 

6.5. Discussion 
 

This chapter has presented ANFIS model based approach to fault detection and 
isolation and the application to PWR steam generator system.  ANFIS model based 
approach combined with structured residual design is shown to be efficient in fault 
detection and isolation if the possible faults are enumerable.  For single faults, strong 
isolation scheme can be achieved through appropriate choice of the model structures.  For 
dual faults, it is not possible to achieve strong isolation between the dual faults and one of 
the element faults.  Using natural redundancy and derived redundancy, dedicated residual 
structure can be achieved to isolate dual faults.  In order to detect and isolate a fault 
related to control variable, sometimes it is necessary to use the information about 
measurement redundancy itself. 

 
ANFIS model based approach combined with structured residual design does not 

need to define the fault signatures from fault data if the sensitivity of the developed 
ANFIS modes to the model inputs is known.  Therefore, it is in conformance with the 
principle of modern fault detection and isolation methods.  Since ANFIS is able to learn 
the relationship between variables from data, it has the power of on-line implementation. 

 
However, ANFIS model based approach still needs to enumerate the possible 

faults. It still exert heavy burden on engineering application. In addition, for a non-linear 
complicated system, structured residual design for fault isolation, especially when data 
driven modeling is used, is essentially a process of trial and error.  This exerts additional 
difficulties in engineering application. 
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Figure 0-1 Schematic for Sugeno-type ANFIS System 

 
Figure 6.1.  ANFIS structure. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

Figure 6.2. Membership for the two inputs to predict SG pressure using ANFIS. 
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Figure 6.3. Transient simulation of SG NR level using ANFIS model. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6.4. Transient simulation of steam flow rate using ANFIS model. 
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Figure 6.5. Transient simulation of FCV flow rate using ANFIS model. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 6.6. Transient simulation of FCV position using ANFIS model. 
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Figure 6.7. A not well-excited model generates unstable residual. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 

Figure 6.8. Stable residuals are obtained from well-excited model. 
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Table 6.4. Dedicated residual structure for SG system 

 
          Functional    

Model 
Faults 

Feed water 
flow rate 

Steam 
flow rate  

SG pressure FCV valve 
position 

SG level 

Feed flow meter offset 1 0 0 0 0 

Steam flow meter 
offset 

0 1 0 0 0 

Steam flow meter and 
feed flow meter offset 

1 1 0 0 0 

SG NR level sensor 
offset 

0 0 0 0 1 

Feed flow meter offset 
and SG level 
sensor offset 

1 0 0 0 1 

Steam flow meter 
offset and SG level 
sensor offset 

0 1 0 0 1 

SG pressure 
sensor offset 

0 0 1 0 0 

Feed flow meter offset 
and SG pressure sensor 

offset 

1 0 1 0 0 

Steam flow meter 
offset and SG pressure 

sensor offset 

0 1 1 0 0 

SG level sensor offset 
and SG pressure sensor 

offset 

0 0 1 0 1 

Feed water flow meter 
offset and FCV 
position offset 

 

1 0 0 1 0 

Steam flow meter 
offset and FCV 
position offset 

0 1 0 1 0 

FCV position offset 0 0 0 1 0 
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Figure 6.9. Structured residual pattern using ANFIS models  

(100% Power, 1% offset fault). 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.10. Structured residual pattern using ANFIS models 

(100% Power, 2% offset fault). 
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Figure 6.11. Structured residual pattern using ANFIS models 

(100% Power, 3% offset fault). 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.12. Structured residual pattern using ANFIS models. 

(100% Power, -1% offset fault) 
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Figure 6.13. Structured residual pattern using ANFIS models 

(100% Power, -2% offset fault). 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.14. Structured residual pattern using ANFIS models 

(100% Power, -3% offset fault). 
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Figure 6.15. Structured residual pattern using ANFIS models 

(80% Power, 1% offset fault). 
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7. DATA DRIVEN MODEL DIRECTIONAL GRAPH (DIGRAPH) 
APPROACH FOR FAULT DETECTION AND ISOLATION (FDI) 

 
(neriFinalReport02-08) 

 
7.1. Introduction 
 

In Section 6, the dedicated residual structure is achieved based on the assumption 
that the possible faults are enumerable.  With the faults known, the designers may 
achieve fault isolation through appropriate choice of the models. However, for a large 
complex system, it will be extremely challenging to enumerate all the possible faults.  To 
avoid the enumeration of possible faults and predefine their associated fault signatures 
has thus motivated the development of data driven model digraph approach. 

 
Data driven model digraph is proposed as a generic approach to fault diagnosis 

for fault diagnosis.  It is able to combine the reasoning capability of qualitative 
knowledge based method and the strength in resolution of quantitative knowledge based 
method.  To facilitate on-line implementation, adaptive neural fuzzy inference is used for 
modeling.  Fault detection is fulfilled by monitoring the residual of each model.  Fault 
isolation is achieved by cause effect analysis on the residuals generated from models. 
 
7.2. Cause Effect Reasoning Using Model Digraph 
 

Cause effect reasoning was originally introduced as a reasoning tool to account 
for the propagation of fault symptoms within a system (Davis, 1983). It has been 
extended to quantitative model based FDI when mathematical models are available 
(Montain and Gentil, 2000). 

 
A model digraph consists of individual nodes connected by quantitative models. 

The individual nodes represent plant parameters, state variables and measurement 
variables. The quantitative models represent the cause-effect relationship between the 
nodes. As compared with sign directed graphs using qualitative knowledge only to 
describe the relationship between variables, a quantitative model is formally introduced 
to express the cause effect relationships. The model digraph is not a simple network of 
structural models. It includes the dynamic information about process flow-path, signal 
flow-path, and control logic so that a fault can be localized based on the cause effect 
analysis for a process system. 

 
A complex physical system can be represented by the following set of differential 

equations: 
 ),,( iiiii UXGgX =&  (7.1) 

where 

N,.......2,1i =  

iX = system variables  
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ig = a function to estimate iX  
}|{ ijXG ji ≠=  

iG  = a set of variables being the inputs of ig .  These variables may be measured 
values or unmeasured values. 

iU  =process inputs. 
N  = number of models to characterize the system. 
 

The moving average form of the above differential equation can be used to arrive at the 
digraph models, that is: 
 
 ),( iiii UGfX =  (7.2) 
 
If the model digraph is developed based upon the original process flow and signal flow, 
the causal relationship between variables will be implicit in it. 
 

The cause effect relationship between the inputs and the outputs of a model has 
two connotations (Leyal, Gentil, and Stephan, 1994).  From physics point of view, the 
cause-effect relation represents the pathway of the signal propagation.  Any changes in 
the model inputs are always before any changes in the model outputs in the time domain. 
From computational point of view, the cause-effect relation means that any changes in 
the model inputs will sufficiently cause some changes in the model outputs and the model 
outputs will not change without any changes in the model inputs. 

 

Figure 7.1 shows a simple example of a model digraph. In the figure, four models 

4321 g,g,g,g  are shown to characterize the system.  The four variables X1, X2, X3, X4, 

X5, and X6 are process variables.   
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Figure 7.1. A simple example of a dynamic model digraph. 

 
Causal effect reasoning can be easily performed based on analyzing the residuals of the 
individual models.  The original residuals are calculated for each measured variable as 
follows: 

 
*

iii XXR −=  (7.3) 
where 

=iR the residual of  the variable iX  
=iX the measured value of the variable iX  

=*
iX the estimated value of  the variable iX  from the model if  defined 

previously. 
 

If iR  is significant, it can be determined that a fault has occurred to the system. However, 
there are still two possibilities that may explain the abnormal residual: 
a) A local fault affecting iX  
b) A consequence of a fault affecting the inputs of the model ig . 
 
To facilitate fault isolation, a set of reconstructed residuals are calculated as follows: 

 
j

ii
j

i XXR
~~

−=  (7.4) 
where 

=j
iR~ the residual of iX after the input jX of the model ig has been reconstructed 

  X6 
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=j
iX~ the estimated value of iX  after the input jX of the model ig has been 

reconstructed. 
 
Fault isolation can then be based on the following decision procedure: 

a) If i
j

i RR~ << , jX  has a local fault. 

b) If i
j

i RR~ ≈  for all jX  that will affect iX , iX  has a fault. 

c) If i
j

i RR ≈1
~

 and i
j

i RR ≈2~
 but i

jj
i RR <<21~

, then 
1j

X and 
2j

X  have faults. 

As an example, the above model digraph method is used for a typical feed back 
control loop as shown in Figure 7.2.  Four nodes connected by three models are used to 
represent the control loop.  Set point is an input node of the controller model. The other 
three nodes are the controller output, the control variable and the regulated variable.  The 
three models are the controller model, the actuator model and the plant model.  Since a 
controller always takes the measured value of the regulated variable as input, the 
controller model can always be used to isolate a controller fault.  For the same reason, the 
actuator model can be used to isolate an actuator fault. However, fault detection and 
isolation becomes a challenging task when a fault related to the regulated variable is 
involved. When a new steady state is reached after the fault, the regulated variable will be 
brought back to its original level.  Hence, the steady state information is not enough to 
detect such a fault.       
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 7.2. Dynamic model digraph representation of a feedback control loop. 
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The Model digraph method needs to use dynamic models. If a steady state model 

is used, the developed method can give correct FDI results after a new steady state has 
been reached. During the fault transient, the steady state models will result in serious 
false alarms.  However, the fault symptoms may become weak after the new steady state 
due to controller feedback.  In addition, dynamic models must be used to isolate a 
controller fault and some actuator faults such as control valves.  By the way, in order to 
achieve a faster fault detection and isolation for safety concern, dynamic models are also 
desired. 

 

7.3. Extended Model Digraph 
 
7.3.1. Multi-model digraph 
 

Multiple-model (or multi-observer) digraph is introduced to isolate process input 
faults.  If regular model digraph is used, the cause effect analysis on the model residuals 
cannot be performed since there are no additional models available to reconstruct these 
process inputs. 

 
Multi-model approach was proposed for fault isolation (Simani, 2000).  The basic 

idea is to make most use of the knowledge about the process redundancy inherent in a 
system. For example, in a saturate SG system, there is a one-to-one relation between the 
SG pressure and the SG temperature. Therefore, any model as a function of SG pressure 
can always be used to derive a new model as a function of SG temperature. The cause 
effect analysis on the residuals of these two models can then be performed to isolate the 
two faults. 

 
Figure 6-3 and figure 6-4 show two types of multiple models designed to isolate 

output faults and input faults, respectively. In the design scheme shown in figure 6-3, one 
output and all the inputs drive each model. An output measurement fault affects only the 
residual of the model driven by this output variable. Therefore, the output faults can then 
be isolated if there is not input fault. In the design scheme shown in figure 6-4, each 
model is driven by all but one input and all the outputs, which generates a residual 
sensitive to all but one input fault. Therefore, the input faults can then be isolated if there 
is not output fault. 
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                    Figure 0-1   Multiple models to isolate output faults 

 
 
 
 
 
 
 
 
 
 
 
                
 
 
 

Figure 0-2 Multiple models to isolate output faults 
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Figure 7.3 shows an example on how to combine multi-model approach and 
regular model digraph to obtain a multi-model digraph. If 1X  and 2X cannot be 
reconstructed from some other models, the multi-model digraph still enables to perform 
cause effect analysis on the model residuals. After the subsequent models have confirmed 
there are no faults related to variable 1Y  and 2Y , the following decision logic can be 
performed: 

 
a) If  021 ≈≈≈ RRR , there is no fault with respect to 1X , 2X  and 1Y  and 2Y  

b) If both 1R  and 2R are significant, there is a fault with respect to nX . 

c) If  01 ≈R  but 02 ≠R , there is a fault with respect to 2X . 

d) If  02 ≈R  but 01 ≠R , there is a fault with respect to 1X . 

 

 

7.3.2. Model digraph with hidden nodes 
 

Model digraph can also be extended to include unmeasured variables.  This is 
even necessary to detect and isolate a process faults.  Figure 7.4 shows an example.  In 
the figure, X1, X2, X3, and X4 correspond to four measured variables and H1 
corresponds to an unmeasured variable. In this case, the same reasoning logic can be used 
except that H1 cannot be used as an independent residual generator.  It is necessary to 
prepare an explicit model instead of a data driven model to estimate the value of a hidden 
node.  If a data driven model is to be used, some special learning algorithm must be 
developed.  
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Figure 7.3. An example of multiple-model digraph. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 7.4. Model Digraph with hidden nodes. 
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7.4. Model Digraph Approach with Fuzzy Inference Modeling 
 

Theoretically, an ANFIS model is able to approximate a system to any desired 
degree of accuracy.  However, in real situation, it is not always able to achieve this 
accuracy because a too complex model may be required.  Even if such a model can be 
obtained, the desired capability of generalization can still not be guaranteed. 

 
In order to achieve a perfect model, the input variables must always be cautiously 

selected. On the one hand, the colinearity between the input variables should be avoided 
since the least square method is used in training ANFIS. On the other hand, the 
dimensionality of the inputs for the ANFIS models should be as few as possible. In 
ANFIS, each input variable needs to be fuzzified into problem specific membership 
functions. When the number of input variables is increased, the number of nodes in the 
second layer and the third layer of the ANFIS network will be increased exponentially. 
Correspondingly, the number of rules used in the system will be increased too. This 
increase will not only have a severe influence on the training speed but also on the 
stability of the built models because the number of degrees of freedoms is more than 
necessary. The principle of choosing the number of input variables is that none of the 
redundant input variables should be retained in the ANFIS inputs. 

 
An efficient ANFIS model with parsimonious number of rules and membership 

functions can be achieved only through physically correct choice of inputs. In order to 
characterize the behavior of a dynamic system, physically driving inputs are much more 
efficient than purely input delay and output delay. If all the input variables driving the 
dynamic process are included in the model, much fewer delays will be required to 
perform the input-output mapping. 

 
Model digraph method is in full agreement with the requirement of efficient 

ANFIS modeling using the prior knowledge of the system. All the physically involved 
inputs can be exploited through studying the causal-effect relationship. Therefore, the 
ANFIS model is able to have most appropriate inputs when combined with cause effect 
analysis. If known, some important nonlinearities can also be directly captured through 
an unmeasured node in the model graph before it is presented as an input to an ANFIS 
model.  For example, the pressure loss can be assumed as a square function of the flow 
rate. An unmeasured node can then be designed as the square of the flow rate in the 
model graph and is used as an input to an ANFIS model to estimate the pressure drop. By 
explicitly including nonlinear terms in the inputs, fewer membership functions will be 
needed in the resulting ANFIS models. Model digraph method helps to decompose a 
complex model into several small models. The model decomposition can significantly 
enhance the performance of data driven modeling such as ANFIS when used for FDI. In 
order to achieve an accurate data driven model, the amount of data required is 
proportional to the number of inputs. When a complex model is decomposed, much fewer 
inputs are related to each small model, and correspondingly, much fewer data will be 
required to train the small model than a complex model with a great number of inputs. 
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In the case that sufficient knowledge is known about a system so that the rules 
and the member functions of the inputs can be specified, the training algorithm of the 
ANFIS system can also be adapted for this purpose.  Since ANFIS is a fuzzy model in 
nature, it is easy to integrate expert knowledge in different forms.  Knowledge in 
different confidence can be represented explicitly by appropriate choice of the shape of 
membership function. 

 
7.5. FDI Procedure for Model Digraph Approach 
 

The following is a summary of the procedure to design a data driven model 
digraph based FDI. 

 
• Design the model digraph structure.  

The structure can be obtained from process flowchart and control system design 
chart.  
• Develop individual models. 

 In some cases, one model defined in the first step may be decomposed into 
several models in series. The series of models correspond to the inclusion of some hidden 
nodes and some multi-model digraph sub-modules. 
• Develop fault detection module.  

Appropriate thresholds should be specified for all the nodes. A too small 
threshold may cause false alarms and a too big threshold may cause missing detection. 
• Develop causal reasoning algorithm. 

If only single faults are involved, the simple residual reasoning algorithm can be 
directly implemented. If some dual faults are of concern for the FDI system, some 
extended reasoning schemes may need to be designed. 

The implementation of data driven model digraph based FDI can be summarized 
as following steps: 
• Fault detection is fulfilled by monitoring the residual of each model.  
• For any abnormal model, the possible root causes are identified by tracking 

backwards until a model gives insignificant residual.  
• All the corrupted signals are reconstructed by tracking forward from the identified 

fault origin to the input nodes of the detected model.  
• Finally, cause effect reasoning is performed on the residuals for fault isolation. 
 

7.6. Applications to Nuclear SG System 
 

Figure 7.5 shows the model digraph of steam generator water level system for a 
PWR nuclear power plant. The models in series can be summarized as follows: 

 

Controller output (t)=f(steam flow rate(t)-feed water flow rate(t), SG level(t)-SG 
reference level(t)). 
FCV valve position (t+1)=f (controller output (t), FCV valve position (t)). 
FCV flow rate (t)=f (FCV valve position (t), SG pressure (t)). 
FCV flow rate (t)=f (FCV valve position (t), SG pressure (t)). 
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Steam flow rate (t+1)=f (feed water flow rate (t), SG pressure (t), hot leg temperature (t), 
cold leg temperature (t+1)). 

 
 Figures 7.6 and 7.7 show a comparison between the estimated controller output 
and the indicated controller outputs for a controller gain offset fault and a feed water flow 
meter offset fault.  As can be seen, the residual can be used to isolate a controller fault as 
a local fault.  If some other faults related to the controller input signals such as feed water 
flow rate, steam flow rate, or SG level occur, the residual of the controller output remains 
close to zero. The reason is that the controller model always uses indicated signals.  Even 
if some faults happen to the input signals of the controller, the controller model itself is 
still not violated.  By the way, the capability of isolating the controller fault as a local 
fault demonstrates that the ANFIS model is precise enough to capture the dynamic 
behavior of the controller. 
 

Figures 7.8 and 7.9 show a comparison between the estimated valve position 
change and the indicated valve position change for a valve position offset fault and a feed 
water flow meter offset fault.  As can be seen, the residual can be used to isolate a valve 
position fault as a local fault. If feed water flow meter offset fault happens, the residual of 
the valve position change remains close to zero.  The reason is that the valve position 
change is physically determined by the controller output signal. 

 
Figure 7.10 shows the model digraph to estimate the feed water flow rate.  Figure 

7.11Figure  shows the residual of feed water flow rate before and after SG pressure is 
reconstructed for a feed water flow meter sensor fault.  The figure shows that the residual 
does not change much before and after all the input signals are reconstructed. Therefore, 
the detected fault can be isolated as a local fault.  Figure 7.12 shows the residual of feed 
water flow rate before and after SG pressure is reconstructed for SG pressure sensor fault. 
The reconstruction of SG pressure signal can fully explain the original residual.  This 
indicates that the detected fault is a secondary fault and the fault can be isolated as a SG 
pressure sensor fault. 

 
Figures 7.13-7.15 show the residual of the steam flow rate for a steam flow meter 

sensor fault, feed water flow meter sensor fault and SG pressure sensor fault, 
respectively.  Figure 7.13 shows that the residual of steam flow rate does not change 
much before and after the SG pressure, the feed water flow rate, and the feed water flow 
rate and the SG pressure is reconstructed. Therefore, the detected fault can be correctly 
isolated as a steam flow meter sensor fault.  Figure 7.14 shows the residual of the steam 
flow rate for feed water flow meter sensor fault. The reconstruction of feed water flow 
rate signal can fully explain the original residual. This indicates that the detected fault is a 
secondary fault and the fault can be isolated as a FCV flow meter sensor fault.  Figure 
7.15 shows the residual of the steam flow rate for the SG pressure sensor fault, the 
reconstruction of the SG pressure signal can fully explain the original residual.  
Therefore, the detected fault is a secondary fault and can be correctly isolated as a SG 
pressure sensor fault. 
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In order to detect and isolate the SG narrow range level sensor fault, it is 
necessary to build a dynamic model to estimate SG level.  From the physics point of 
view, SG level can be determined by the SG mass and the SG thermal parameters.  For 
this reason, an unmeasured node, SG mass, is used to estimate SG level.  The SG level is 
expressed as a function of SG mass, SG pressure, SG temperature as well as feed water 
temperature, cold leg temperature and hot leg temperature, shown in Figure 7.16.  The 
SG mass can be estimated as a function of feed water flow rate and steam flow rate.  In 
fact, without using the SG mass as an explicit variable, it is extremely difficult to build a 
data driven model to estimate the SG level.  The reason is that the SG mass is the integral 
effect of the incoming feed water flow rate and the out-flowing steam flow rate.  A given 
value of SG mass may correspond to any value of FCV flow rate and steam flow rate.  In 
the specific case, a model using delay input does not help to track the dynamic behavior 
either since the SG indicated level would be ultimately brought back to its normal value 
after a SG level sensor fault due to the controller feedback. 

 
Figure 7.17 shows the residual of the SG level for a SG level sensor fault before 

and after the input signal is reconstructed.  As can be seen, the residual does not change 
because of the input reconstruction for the detected fault.  This indicates that the fault is a 
local fault. The detected fault can then be successfully isolated. 

 
Figure 7.18 shows the residual of the steam flow rate for simultaneous feed water 

flow meter sensor fault and SG pressure sensor fault.  The original residual can be used to 
detect the fault. In order to isolate the faults, reconstructed residuals are used.  When 
either SG pressure or feed water flow rate is reconstructed, the residual can be reduced. 
However, the reconstruction of either signal is not enough to explain 100 percent of the 
original residual.  Only when feed water flow rate and SG pressure are reconstructed can 
the residual reach minimal. Therefore, from explaining maximal fault signature point of 
view, the simultaneous dual faults can be correctly isolated. 
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Figure 7.5. Model digraph of nuclear SG system. 
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Figure 7.6. Controller output for controller gain offset fault. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 7.7. Controller output for feed water flow meter sensor fault. 
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Figure 7.8. Change of valve position for valve position fault. 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
 

 

Figure 7.9. Change of valve position for feed water flow meter sensor fault. 
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Figure 7.10. Model digraph of feed water flow rate. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 7.11. Model digraph approach to isolate feed water flow meter sensor fault. 
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Figure 7.12. Model digraph approach to isolate SG pressure sensor fault using feed water 
flow rate model. 

 
 
 
 
 
                           
                          
 
 
 
 
 
 
 
 
 
 
 
 

Figure 7.13. Model digraph approach to isolate steam flow meter sensor fault. 
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Figure 7.14. Model digraph approach to isolate feed water flow meter sensor fault. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 7.15. Model digraph approach to isolate SG pressure sensor using steam flow rate 
model. 
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Figure 7.19 shows the residual of feed water flow rate for simultaneous feed water 
flow meter sensor fault and SG pressure sensor fault.  The original residual can be used to 
detect the fault.  After SG pressure is reconstructed, the residual of FCV flow rate can be 
reduced by 50%. After both SG pressure and FCV position are reconstructed, the residual 
of FCV flow rate cannot be further reduced. It can be concluded that SG pressure sensor 
is faulty and FCV valve position is healthy.  However, the remained residual is still about 
0.5%.  This fraction of the original residual must be explained by the assumption that the 
feed water flow meter sensor has a fault. 
 
7.7. Comparison with Other Approaches 
  

Although PCA based FDI and ANFIS model based FDI with structured residual 
design can be used for fault detection and isolation in some applications, model digraph 
approach has some unique features in FDI system design and application to engineering 
problem. 

 
Both PCA based FDI and ANFIS model based FDI with structured residual 

design must be designed for enumerable faults. However, model digraph approach 
isolates a fault based on cause effect reasoning on model residuals, so it is not necessary 
to predefine the faults and their fault signatures. To incorporate an automated fault 
detection and isolation into a large safety critical system such as nuclear power plants, 
this is a significant step moving forward to engineering application. 

 
Model digraph approach achieves fault isolation by screening out a fault among 

all the possible fault candidates so that all the abnormal measurements can be explained. 
Therefore, there is no problem with misdiagnosing one fault as another.  However, both 
PCA based FDI and ANFIS model based FDI with structured residual design do not have 
a safeguard against the possibility that some unknown faults may have the same fault 
signatures as defined for a fault in the fault dictionary.  Although structured residual 
design approach is able to avoid misdiagnosing one fault as another for the enumerated 
faults through manipulating the residual structures, it still cannot fully solve the problem. 
In addition, structured residual design is not always achievable especially for a non-linear 
system. 

 
Data driven model digraph approach is able to meet the requirement for 

automation because only normal operation data are necessary to adaptively upgrade 
system models.  The fault signatures used for fault isolation are extracted from the 
understanding about the physical system instead of time consuming simulation or 
additional experiments. 

 
 Digraph approach allows accurate data driven modeling. The most parsimonious 

model structure can be obtained through a model digraph.  Therefore, it can improve the 
accuracy of the developed data driven models significantly.  In addition, the model 
structure is consistent with the system decomposition, so it helps to arrive at a modular 
FDI system.  
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Because fault isolation is based on reasoning about model residuals, data driven 
model diagraph approach is also able to deal with simultaneous faults.  
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Figure 7.16. Model digraph of SG level measurement. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 7.17. Model digraph approach to isolate SG level sensor fault. 
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Figure 7.18. Model digraph approach to isolate feed water flow meter sensor fault and SG 
pressure sensor fault. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 7.19. Model digraph approach to isolate SG pressure sensor fault and feed water 
flow meter sensor fault. 
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8. APPLICATION TO EXTENDED SYSTEM AND THE 

DEVELOPMENT OF THE FDI DEMONSTRATION MODULE 

(neriFinalReport02-09) 

8.1. Application of FDI Method to Feed Pump Monitoring 
In order to test the feasibility of applying the FDI algorithm to the scope that 

includes an extension of the SG system boundary, the FDI algorithm is extended to the 
subsystem beyond the steam generator.  In this application an attempt is made in 
detecting the performance degradation of the feed pump.  The deviation of the feed 
pump from its nominal operating condition is studied using the established FDI modules.   

 
The feed water pump dynamics affects system variables such as the feed flow rate 

and FCV position.  Therefore, the deviation of the feed pump speed from its nominal 
value (about 1200 RPM) would cause the change of parity relation among related 
variables.  The induced pump fault is an over-speed operation.  There is about 25% 
increase of pump speed and head for the pump fault in NCSU code.  The fault signature 
of the over-speed pump is reflected in the residual space generated from the GMDH 
models that are established in order to simulate the causal relationship among variables in 
a SG system.  It is found that the fault signature due to the pump over-speed is 
significantly different from other fault signatures described in Chapter 6.  Therefore, it is 
straightforward to extend the FDI algorithm to equipment beyond the SG system 
boundary in this case. 

 
Figure 8.1 shows the residual pattern during pump over-speed operation.  The 

residual pattern indicates that this pump anomaly mainly affects the FCV position (the 
third residual in the figure) change, which is reasonable from the point of keeping the 
required power output and the SG water level set point.  The nine residual directions are 
the same residuals used in SG residual pattern generation. 
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Figure 8.1. Residual Pattern for the case of equipment anomaly 
caused by feed pump overspeed operation. 

 

8.2. Development of a FDI Demonstration Module 

The FDI system developed at The University of Tennessee is part of a control design 
architecture for nuclear power plants, being developed jointly with ORNL and NCSU, 
under a DOE-NERI grant.  A stand-alone demonstration module has been developed to 
illustrate the capabilities of the FDI system.  As part of this effort a graphical user 
interface (GUI) are developed using the MATLAB platform.  The elements of the GUI 
are shown in Figure 8.2.  The demonstration illustrates the steps involved in establishing 
an FDI system using the static GMDH models, training phase, fault generation, and 
classification using structured residual analysis or directional residual analysis.  A 
separate GUI has been developed for the transient FDI analysis.   
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Figure 8.2. Graphical user interface for the FDI system. 

 

 

 

 



 171

9. CONCLUDING REMARKS AND RECOMMENDATIONS FOR 
FUTURE WORK 

 
(neriFinalReport02-10) 

 
9.1. Summary and Concluding Remarks 
 
 An integrated method for incipient fault detection and isolation (FDI) of sensors 
and field devices, using data characterization, fault detection, and classification, has been 
developed and described in this report.  The FDI system uses three approaches for 
characterizing system variables – states and control functions.  These are (1) group 
method of data handling (GMDH) with rational function approximation, (2) principal 
component analysis (PCA) with nonlinear extension, and (3) adaptive network fuzzy 
inference system (ANFIS).  The isolation of device faults is performed using a rule-based 
decision-making, a multi-observer digraph logic, and a pattern classification of prediction 
error vectors in the fault space.  This integrated approach enhances the fault diagnostics 
capability and provides a robust method for FDI.  The extensions of the basic approaches 
also include the more difficult situations of detection and isolation of dual faults in the 
steam generator system of a PWR plant and fault detection during plant transients.  A 
stand-alone demonstration of the FDI system has been developed using the Halden’s 
PICASSO GUI platform.  A MATLAB-based demonstration of the FDI technique, that 
illustrates the various computational steps of the software system, is also included as part 
of the deliverables. 
 
 The methods being developed under this task for the DOE-NERI project have 
been tested and illustrated using process measurements from a laboratory process control 
loop and a U-tube steam generator in a PWR.  All the faults being simulated were 
detected successfully.  The faults were primarily of the bias and drift types.  Appendix A 
provides a summary of the software system.  The computer codes and the data used for 
analysis are available on a CD-R.  The outcomes of the projects have been disseminated 
in scientific meetings and by journal publications. 
 
9.2. Recommendations for Future Work 
 
 The following recommendations are presented for extension and implementation 
of the research and development results of this project: 
§ Application of the FDI methods to new generation reactors such as the gas-cooled 

reactor and the IRIS reactor. 
§ Incorporation of FDI-based techniques for monitoring critical plant equipment for 

on-line maintenance that would assist in extending the duration of fuel cycles of 
future power plants. 

§ Extension of the FDI method by increasing the system boundary to include the 
whole plant, both primary and balance of plant systems. 

§ Implementation of fault detection and isolation as an autonomous (without human 
intervention) monitoring system that would be executed with minimal human 
interaction. 
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Appendix A.  Summary of Computer Codes Developed for the Fault 
Detection and Isolation (FDI) System 

 
(neriFinalReport02-11) 

 
A.1. Software System for Single Fault Analysis 
 
A.1.1. Package 1: FDI Modules for the Steady State Case 
These MATLAB codes are used for steam generator system modeling based on the 
GMDH algorithm and residual direction identification using PCA.  The training data are 
generated using a detailed simulation code developed by NCSU.   
 
Implementation Steps: 

• Run the code 'FDI_ornl.m' under MATLAB command. 
• Follow the instructions that appear on the screen.   

 
Read the file called README.txt for further details. 
System requirement:  MATLAB 5.3 or higher. 
 
A.1.2. Package 2: FDI Modules for the Transient Case 
The GMDH algorithm is adapted for transient process modeling.  PCA is used in residual 
direction identification.  The training data are collected during transient processes as the 
thermal power changes from one level to another.   
 
Implementation Steps: 

• Run the codes named 'SG_model_*.m' for system modeling.  For example, 
SG_model_TCV.  

• Run the codes in the form of 'fault_det_*.m' for fault detection and directional 
fault isolation.   

 
Read the file ‘README.txt’ for further details. 
System requirement:  MATLAB 5.3 or higher versions. 
 
A.1.3. Package 3:  GUI for FDI Demonstration 
System requirement:  MATLAB 6.0 or higher versions.  
 
Demonstration procedure for steady state FDI:  

a. Input command ‘guitest’ under MATLAB environment.  
b. Select the demo options in the upper right pop-up menu.   The second option, that 

is, residual generation, is required before residual analysis. 
c. Choose a component model of interest in the model selection menu.   There are 

totally six GMDH models that can be selected. 
d. Select the fault type in the pop-up menu called fault type. 
e. Press the start button to begin the demo.  
f. Choose the display option from the display list box in the middle part of the panel.  

The results will be illustrated in the upper left plot.  
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g. Press residual analysis button located in the right bottom corner on the panel.  The 
FDI result will be described in text form under this button.  At the same time, the 
fault direction is plotted in the left bottom corner. 

 
FDI demo for transient condition:  

Input the command ‘gui_tran’ under MATLAB environment.   Refer to the static FDI 
above for menu option information.  

 
Note: at least 256 MB memory is required for transient demonstration. 
 
 
A.2. Software System for Dual Fault Analysis 
 
A.2.1. Development environment 
The codes are developed under MATLAB 6.0 environment.  The MATLAB Fuzzy Logic 
toolbox is necessary to run them.  To run the demonstration, Picasso 3.0, MATLAB 
compiler 2.0, MS FORTRAN 6.0 and MS C++ 6.0 are required.  
 
A.2.2. PCA Based FDI Module 

 
• MultiplePCA 

In this code, five single faults (steam flow meter sensor faults, feed water 
flow meter sensor fault, feed water control valve position fault, steam generator 
narrow range level sensor fault) can be detected and isolated based on five PCA 
models.  The Q-statistics are calculated for each PCA model.  The residual 
structure defined by the Q-statistics after a fault happens is used for fault 
isolation.  The code has incorporated six cases to show its success in fault 
detection and isolation. 

 
• PCADir 

In this code, five single faults (steam flow meter sensor faults, feed water 
flow meter sensor fault, feed water control valve position fault, steam generator 
narrow range level sensor fault) can be isolated based on fault directions.  The 
fault directions are defined by the change of PCA scores and residuals before a 
fault and after a fault.  It has incorporated six cases to show its success in fault 
isolation. 
 

A.2.3. ANFIS Based FDI Module 
 
• AnfisFCVFlow, AnfisSGLevel,AnfisSGPrs,AnfisSteamFlow,AnfisValPos 

These five codes are used to train ANFIS models to predict feed water 
flow rate, steam generator narrow range level, steam generator pressure, steam 
flow rate, and feed water control valve position.  These models are dynamic 
models, so they can be used to track the dynamic behavior after a fault happens. 
Each code also shows the residual responses for the selected 13 faults so that an 
appropriate rule base can be developed for fault isolation.   
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• ANFISvalidation 

In this code, the four ANFIS models developed to predict steam flow rate, 
feed water control valve position, feed water flow rate and steam generator level 
are examined to simulate the power transient from 100% power level to 90% 
power level with a slow ramping rate. The code gives the prediction error for 
these four variables.       

• LocalResdGen 
In this code, the five ANFIS models developed are used to generate the 

residual patterns for all the considered 13 faults.  It can be used to study the 
stability of residual structures for different fault magnitudes and different initial 
power level when a fault occurs. 
 

A.2.4. Model Digraph Based FDI Module 
 
• MAnfisFCVFlow 

This code computes feed water flow rate based on a) measured feed water 
control valve position and feed water temperature; b) reconstructed feed control 
valve position and feed water temperature.  It may be used to isolate a feed water 
flow meter sensor fault. 

 
• MAnfisSGLevel 

This code computes steam generator narrow range level based on a) wide 
range level and steam generator pressure; b) wide range level and reconstructed 
steam generator pressure.   It may be used to isolate a steam generator level sensor 
fault and a steam generator pressure sensor fault. 

 
• MAnfisSGPrs 

This code computes steam generator pressure based on steam generator 
temperature.   It may be used to isolate a steam generator pressure sensor fault. 

 
• MAnfisSteamFlow 

This code computes steam flow rate based on a) measured feed water flow 
rate, measured steam generator pressure, clod leg temperature and hot leg 
temperature; b) reconstructed feed water flow rate, steam generator pressure, clod 
leg temperature and hot leg temperature; c) measured feed water flow rate, 
reconstructed steam generator pressure, clod leg temperature and hot leg 
temperature.   It may be used to isolate a feed water flow meter sensor fault, a 
steam generator pressure sensor fault and a steam flow meter sensor fault. 

 
• MAnfisController 

This code computes feed water controller output based on measured steam 
generator level, measured feed water flow rate and measured steam flow rate.   It 
may be used to isolate a controller fault. 
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• ManfisValPos 
This code computes feed water control valve position based on controller 

output.   It may be used to isolate a feed water control valve position fault. 
 

A.2.5. FDI Demonstration Using PICASSO Platform 
 

This demonstration is able to show the effectiveness of the developed FDI 
approach for nuclear power plants under the environment of Picasso-3, a user 
interface management system.  The software has the following functions a) Create 
a fault by changing the fault characteristic parameters; b) Display essential 
parameters on the flowchart of the reactor system; c) Display the residual patterns 
specific to a fault; and d) Trend the process variables relevant to the fault, and 
echo the FDI results. 
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