THE POTENTIAL OF RECLAIMED LANDS TO SEQUESTER CARBON AND MITIGATE THE GREENHOUSE EFFECT

PDF Version Also Available for Download.

Description

Reclaimed mine lands have the potential to sequester carbon. The use of amendments to increase fertility and overall soil quality is encouraging. Waste amendments such as sewage sludge and clarifier sludge, as well as commercial compost were tested to determine their effects on carbon sequestration and humic acid formation in reclaimed mine lands. Sewage sludge and clarifier sludge have the potential to work as reclaimed mine lands amendments. C:N ratios need to be understood to determine probability of nutrient leaching and water contamination. Microbial activity on the humic acid fraction of sludge is directed toward the readily degradable constituents containing ... continued below

Creation Information

Brown, Terry & Jin, Song May 1, 2006.

Context

This report is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this report can be viewed below.

Who

People and organizations associated with either the creation of this report or its content.

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this report. Follow the links below to find similar items on the Digital Library.

Description

Reclaimed mine lands have the potential to sequester carbon. The use of amendments to increase fertility and overall soil quality is encouraging. Waste amendments such as sewage sludge and clarifier sludge, as well as commercial compost were tested to determine their effects on carbon sequestration and humic acid formation in reclaimed mine lands. Sewage sludge and clarifier sludge have the potential to work as reclaimed mine lands amendments. C:N ratios need to be understood to determine probability of nutrient leaching and water contamination. Microbial activity on the humic acid fraction of sludge is directed toward the readily degradable constituents containing single chain functional groups. This finding indicate that amendments with lower molecular constituents such as aliphatic compounds are more amenable to microbial degradation, therefore serves as better nutrient sources to enhance the formation of vegetation in mine lands and leads to more efficient carbon sequestration.

Language

Item Type

Identifier

Unique identifying numbers for this report in the Digital Library or other systems.

  • Report No.: none
  • Grant Number: FC26-98FT40323
  • DOI: 10.2172/885047 | External Link
  • Office of Scientific & Technical Information Report Number: 885047
  • Archival Resource Key: ark:/67531/metadc876783

Collections

This report is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

What responsibilities do I have when using this report?

When

Dates and time periods associated with this report.

Creation Date

  • May 1, 2006

Added to The UNT Digital Library

  • Sept. 21, 2016, 2:29 a.m.

Description Last Updated

  • Nov. 30, 2016, 5:05 p.m.

Usage Statistics

When was this report last used?

Congratulations! It looks like you are the first person to view this item online.

Interact With This Report

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Brown, Terry & Jin, Song. THE POTENTIAL OF RECLAIMED LANDS TO SEQUESTER CARBON AND MITIGATE THE GREENHOUSE EFFECT, report, May 1, 2006; United States. (digital.library.unt.edu/ark:/67531/metadc876783/: accessed August 17, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.