Radon Transport Into a Single-Family House with a Basement

PDF Version Also Available for Download.

Description

We describe the results of a five-month study during which {sup 222}Rn (radon) concentration, air-exchange (or ventilation) rate, and weather and radon source parameters were continuously monitored in a house near Chicago, with a view to accounting for the radon entry rate. The results suggest that the basement sump and perimeter drain-tile system played an important role in influencing the radon entry rate and that pressure-driven flow was more important than diffusion as a mechanism for radon entry. For the first 15 weeks of the study period the mean indoor radon concentration and air-exchange rate were 2.6 pCi {ell}{sup -1} ... continued below

Creation Information

Nazaroff, W.W.; Feustel, H.; Nero, A.V.; Revzan, K.L.; Grimsrud,D.T.; Essling, M.A. et al. January 1, 1984.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Sponsor

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

We describe the results of a five-month study during which {sup 222}Rn (radon) concentration, air-exchange (or ventilation) rate, and weather and radon source parameters were continuously monitored in a house near Chicago, with a view to accounting for the radon entry rate. The results suggest that the basement sump and perimeter drain-tile system played an important role in influencing the radon entry rate and that pressure-driven flow was more important than diffusion as a mechanism for radon entry. For the first 15 weeks of the study period the mean indoor radon concentration and air-exchange rate were 2.6 pCi {ell}{sup -1} (96 Bq m{sup -3}) and 0.22 hr{sup -1}, respectively; both parameters varied over a wide range. Radon concentration measured at the sump cover varied bimodally between 0-10 pCi {ell}{sup -1} (0-400 Bq m{sup -3}) and 300-700 pCi {ell}{sup -1} (10,000-30,000 Bq m{sup -3}). These two modes corresponded well to periods of low and high indoor radon concentration; average indoor concentrations for these periods were 1.5 and 6.5 pCi {ell}{sup -1} (55 and 240 Bq m{sup -3}), respectively. For data sorted into two groups according to radon activity at the sump, the indoor radon concentration showed little dependence on air-exchange rate. This result is accounted for by a model in which the radon entry rate, determined by mass balance, has two components--one diffusive, the other pressure-driven and presumed to be proportional to the air-exchange rate. In fitting this model to the data we found that (1) the flow component dominated the diffusive component for periods of both high and low activity at the sump; and (2) the magnitude of the diffusive component agreed well with the expected contributions of radon emanating from concrete and soil and diffusing into the house. To account for the flow component, we hypothesize that pressure drives air carrying a high concentration of radon generated in the soil, either through the bulk of the soil or along the outside of the basement walls, then into the basement through cracks and openings. During the final six weeks of the study, measurements were made with the water level in the sump maintained first below, then above the entrance of the pipe connected to the perimeter drain tile system. Average indoor radon concentrations during these two periods were 10.6 and 3.5 pCi {ell}{sup -1} (390 and 130 Bq m{sup -3}), respectively. The relatively high latter value compared with the mean for the first 15 weeks, combined with the observation of intervals of high airborne alpha activity at the sump during this period, suggest that the level of water in the sump does not, by itself, account for the variation in alpha activity at the sump that we had previously observed. Fireplace operation substantially increased the air-exchange state, but had only a small effect on indoor radon concentration, providing corroborative evidence that pressure-driven flow is an important mechanism for radon entry into this house.

Source

  • Journal Name: Atmospheric Environment; Journal Volume: 19; Journal Issue: 1; Related Information: Journal Publication Date: 1985

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: LBL--16572
  • Grant Number: DE-AC03-76SF00098
  • Office of Scientific & Technical Information Report Number: 875726
  • Archival Resource Key: ark:/67531/metadc876629

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • January 1, 1984

Added to The UNT Digital Library

  • Sept. 21, 2016, 2:29 a.m.

Description Last Updated

  • Sept. 21, 2017, 3:55 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 5

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Nazaroff, W.W.; Feustel, H.; Nero, A.V.; Revzan, K.L.; Grimsrud,D.T.; Essling, M.A. et al. Radon Transport Into a Single-Family House with a Basement, article, January 1, 1984; Berkeley, California. (digital.library.unt.edu/ark:/67531/metadc876629/: accessed November 23, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.