ISOPAR L Release Rates from Saltstone Using Simulated Salt Solutions

PDF Version Also Available for Download.

Description

The Modular Caustic-Side Solvent Extraction (CSSX) Unit (MCU) and the Salt Waste Processing Facility (SWPF) will produce a Deactivated Salt Solution (DSS) that will go to the Saltstone Production Facility (SPF). Recent information indicates that solvent entrainment in the DSS is larger than expected. The main concern is with Isopar{reg_sign} L, the diluent in the solvent mixture, and its flammability in the saltstone vault. If it is assumed that all the Isopar{reg_sign} L is released instantaneously into the vault from the curing grout before each subsequent pour; the Isopar{reg_sign} L in the vault headspace is well mixed; and each pour ... continued below

Creation Information

Bronikowski, M February 6, 2006.

Context

This report is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this report can be viewed below.

Who

People and organizations associated with either the creation of this report or its content.

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this report. Follow the links below to find similar items on the Digital Library.

Description

The Modular Caustic-Side Solvent Extraction (CSSX) Unit (MCU) and the Salt Waste Processing Facility (SWPF) will produce a Deactivated Salt Solution (DSS) that will go to the Saltstone Production Facility (SPF). Recent information indicates that solvent entrainment in the DSS is larger than expected. The main concern is with Isopar{reg_sign} L, the diluent in the solvent mixture, and its flammability in the saltstone vault. If it is assumed that all the Isopar{reg_sign} L is released instantaneously into the vault from the curing grout before each subsequent pour; the Isopar{reg_sign} L in the vault headspace is well mixed; and each pour displaces an equivalent volume of headspace, the allowable concentration of Isopar{reg_sign} L in the DSS sent to SPF has been calculated at approximately 4 ppm. The amount allowed would be higher, if the release from grout were significantly less. The Savannah River National Laboratory was tasked with determining the release of Isopar{reg_sign} L from saltstone prepared with a simulated DSS with Isopar{reg_sign} L concentrations ranging from 50 mg/L to 200 mg/L in the salt fraction and with test temperatures ranging from ambient to 95 C. The results from the curing of the saltstone showed that the Isopar{reg_sign} L release data can be treated as a percentage of initial concentration in the concentration range studied. The majority of the Isopar{reg_sign} L that was released over the test duration was released in the first few days. The release of Isopar{reg_sign} L begins immediately and the rate of release decreases over time. At higher temperatures the immediate release is larger than at lower temperatures. In one test at 95 C essentially all of the Isopar{reg_sign} L was released in three months. Initial curing temperature was found to be very important as slight variations during the first few days affected the final Isopar{reg_sign} L amount released. Short scoping tests at 95 C with solvent containing all components (Isopar{reg_sign} L, extractant, suppressor, and modifier) released less Isopar{reg_sign} L than the tests run with Isopar{reg_sign} L. Based on the scoping tests, the Isopar{reg_sign} L releases reported herein are conservative. Isopar{reg_sign} L release was studied for a two-month period and average cumulative yield distributions were produced. From an SPF pouring perspective where saltstone will be poured in a shorter time period of one to two weeks, prior to being capped, the release of Isopar{reg_sign} L occurring in two weeks is more important. The average percentages of Isopar{reg_sign} L released after 13 days from saltstone are, to one sigma standard deviation: 60% {+-} 17% at 95 C, 13% {+-} 4.3% at 75 C, and 4.6% {+-} 1.2% at ambient temperature.

Notes

available

Language

Item Type

Identifier

Unique identifying numbers for this report in the Digital Library or other systems.

  • Report No.: WSRC-TR-2005-00568
  • Grant Number: DE-AC09-96SR18500
  • DOI: 10.2172/890224 | External Link
  • Office of Scientific & Technical Information Report Number: 890224
  • Archival Resource Key: ark:/67531/metadc876626

Collections

This report is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this report?

When

Dates and time periods associated with this report.

Creation Date

  • February 6, 2006

Added to The UNT Digital Library

  • Sept. 21, 2016, 2:29 a.m.

Description Last Updated

  • Nov. 2, 2016, 12:56 p.m.

Usage Statistics

When was this report last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 3

Interact With This Report

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Bronikowski, M. ISOPAR L Release Rates from Saltstone Using Simulated Salt Solutions, report, February 6, 2006; [Aiken, South Carolina]. (digital.library.unt.edu/ark:/67531/metadc876626/: accessed December 17, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.