
UCRL-JRNL-221140

Distinguishing Monosaccharide Stereo-
and Structural Isomers with ToF-SIMS
and Multivariate Statistical Analysis

E. S. F. Berman, K. S. Kulp, M. G. Knize, L. Wu,
E. J. Nelson, D. O. Nelson, K. J. Wu

May 5, 2006

Analytical Chemistry



Disclaimer 
 

 This document was prepared as an account of work sponsored by an agency of the United States 
Government. Neither the United States Government nor the University of California nor any of their 
employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for 
the accuracy, completeness, or usefulness of any information, apparatus, product, or process 
disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any 
specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, 
does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United 
States Government or the University of California. The views and opinions of authors expressed herein 
do not necessarily state or reflect those of the United States Government or the University of California, 
and shall not be used for advertising or product endorsement purposes. 
 



Distinguishing Monosaccharide Stereo- and Structural 

Isomers with ToF-SIMS and Multivariate Statistical 

Analysis 

Elena S.F. Berman1*, Kristen S. Kulp1, Mark G. Knize1, Ligang Wu2, Erik J. Nelson2, David O. Nelson3, 

Kuang Jen Wu2  

AUTHOR ADDRESS 1Biosciences Directorate, 2Chemistry and Materials Science Directorate, and 

3Computation Directorate, Lawrence Livermore National Laboratory, 7000 East Avenue,  Livermore, 

CA 94550 

AUTHOR EMAIL ADDRESS berman2@llnl.gov 

RECEIVED DATE (to be automatically inserted after your manuscript is accepted if required 

according to the journal that you are submitting your paper to) 

TITLE RUNNING HEAD. Distinguishing Monosaccharide Isomers with ToF-SIMS 

CORRESPONDING AUTHOR FOOTNOTE. *Biosciences Directorate, Lawrence Livermore National 

Laboratory, 7000 East Avenue L-446,  Livermore, CA 94550  berman2@llnl.gov 

ABSTRACT. Time-of-Flight Secondary Ion Mass Spectrometry (ToF-SIMS) is utilized to examine the 

mass spectra and fragmentation patterns of seven isomeric monosaccharides.  Multivariate statistical 

analysis techniques, including principal component analysis (PCA), allow discrimination of the 

extremely similar mass spectra of stereoisomers.  Furthermore, PCA identifies those fragment peaks 

which vary significantly between spectra.  Heavy isotope studies confirm that these peaks are indeed 

sugar fragments, allow identification of the fragments, and provide clues to the fragmentation pathways.  
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Excellent reproducibility is shown by multiple experiments performed over time and on separate 

samples. This study demonstrates the combined selectivity and discrimination power of ToF-SIMS and 

PCA, and suggests new applications of the technique including differentiation of subtle chemical 

changes in biological samples that may provide insights into cellular processes, disease progress, and 

disease diagnosis. 
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Introduction 

 

Time-of-Flight Secondary Ion Mass Spectrometry (ToF-SIMS) is a soft-ionization, surface-sensitive 

mass-spectral technique which has recently demonstrated applications in the analysis of biomaterials 

and biological samples.1, 2 ToF-SIMS measurements use a finely focused (~200 nm) energetic primary 

ion beam to desorb secondary molecular and fragment ions into a time-of-flight mass spectrometer.  

Desorption and ionization are simultaneous, allowing investigation of compounds which readily 

degrade or are difficult to ionize, such as underivatized monosaccharides.  Coupling the SIMS 

ionization with a time-of-flight mass spectrometer permits fast analyses over a wide mass range with 

good mass resolution (~7000 at m/z = 41).   

ToF-SIMS is routinely used to identify the chemical and molecular composition of a surface.  Since a 

ToF-SIMS spectrum often contains peaks representing the molecular ions or large fragments of the 

parent compounds in the sample, these compounds can be identified or confirmed by careful analysis of 

characteristic peaks in the ToF-SIMS spectra.  Furthermore, small variations in the samples can be 

detected by differences in the fragmentation pattern in the mass spectra.  This has proven to be 
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extremely useful for ascertaining minute variations in side chains or end groups of synthetic polymers 

with nearly identical backbone repeat structures. 

The analysis of biological samples presents unique challenges to ToF-SIMS.  Biological samples are 

at the same time enormously complex and quite similar to one another.  Additionally, important 

components are often represented at extremely low concentrations.  For efficient analysis of biological 

samples, sufficient sensitivity is needed to detect low abundance components and sufficient selectivity 

is required to discriminate between the very similar molecules and closely related samples. In this study 

we demonstrate the extraordinary selectivity of ToF-SIMS analysis by distinguishing between stereo- 

and structural isomers of biologically relevant monosaccharides.   

Complex biological environments also produce complex mass spectra which are difficult if not 

impossible to interpret in conventional ways. Multivariate statistical analysis and pattern recognition 

techniques are widely employed for interpretation of such complex data sets, as they reduce the data 

complexity and illuminate distinguishing features from the data.  In this work, Principal Component 

Analysis (PCA) has been used to identify similarities and differences in ToF-SIMS spectra and classify 

spectra into groups.3  PCA, a standard, unsupervised multivariate statistical technique, reduces a large 

data matrix to a few manageable variables that can be visualized and interpreted using a series of simple 

plots.  PCA reduces the data complexity by calculating new variables called principal components, 

which represent linear combinations of the original variables and capture the greatest variation in the 

data set.   The molecular fragments with the highest variance in intensity among the statistical groups 

identify important differences between samples.  Wagner and Castner have used PCA to successfully 

cluster ToF-SIMS mass spectra generated from samples of single proteins.4  

A particular challenge for mass spectrometry techniques is distinguishing and characterizing isomers.  

With identical elemental composition, and thus the same molecular weights, isomers exhibit the same 

molecular ion peak and share the same fragment ions in the mass spectra.  Although generally 

considered indistinguishable by conventional spectral interpretation, we show that isomers can be 

3

 



distinguished by analyzing the overall spectral pattern in which each isomer displays its unique relative 

abundance of fragment ions. 

For this work, simple monosaccharides were chosen for analysis due to their biological significance, 

relative abundance in biological samples, and complex array of similar structures.  Monosaccharides are 

the basic building blocks of all carbohydrates, the central metabolic currency of life.  In addition, 

monosaccharides are principal constituents of nucleic acids and important elements of lipids and 

proteins.   Glycoproteins, proteins covalently linked with carbohydrates, are essential in intracellular 

communication, the formation of bacterial cell walls, and, when arrayed on the cell surface, comprise 

unique cellular markers.  In fact, saccharides are the most abundant group of biomolecules and are 

essential to all living organisms.5  Clearly, the detection of monosaccharides and their derivatives will 

be an important aspect of analysis and characterization of any biological sample.   

Due to their critical position in biology, much mass spectral analysis has been focused on 

carbohydrates.  Early work includes several studies of derivatized monosaccharides by Biemann et al., 6, 

7 DeJongh et al.8-10 and Caprioli et al.11  These researchers found that underivatized monosaccharides 

were insufficiently volatile and extremely sensitive to heat, rendering them unsuitable for conventional 

electron impact mass spectrometry.  However, by derivatizing the sugars, they were able to distinguish 

between structural isomers, although stereoisomers produced indistinguishable spectra.  Early work on 

derivatized sugars has been reviewed by Lonngren and Svennson.12  Analysis of simple sugars has 

continued with field desorption mass spectrometry,13 liquid-assisted secondary ion mass spectrometry,14 

quadrupole time-of-flight tandem mass spectrometry,15 and inductively coupled plasma and electrospray 

ionization.16  Zapfe et al.14 and March et al.15 were able to distinguish stereoisomeric hexoses with the 

use of post-ionization fragmentation and tandem mass spectrometry on selected sugar fragments.  Vink 

et al.17 were able to identify stereoisomers of derivatized sugars utilizing peak selection and ratio 

comparison.  In this work underivatized isomers are distinguished in a single mass spectrometric stage 

with minimal data analysis time.   
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Significant research has also focused on the analysis of disaccharides and oligosaccharides, especially 

focused on determining the structures of linkages between monosaccharides.  Infrared laser 

desorption/ionization,18 tandem mass spectrometry,19  post-source decay in matrix-assisted laser 

desorption ionization mass spectrometry (MALDI-MS)20 and multicollision dissociation threshold 

analysis21 have all been utilized with some success.   None of these techniques, however, has been used 

to fully differentiate between monosaccharide isomers. 

 

Experimental Section 

 

Monosaccharides. 

 Galactose, glucose, fructose, mannose, psicose, sorbose, and tagatose were obtained from Sigma 

(St.Louis, MO) and used without further purification.  D-Glucose-U-13C6 was obtained from Cambridge 

Isotope Laboratories (Andover, MA) and used without further purification.  Each sugar was diluted in 

Milli-Q purified water (Millipore, Billerica, MA) to an approximate concentration of 1 mg/ml, after 

which 1µl was spotted on a silicon (Si) wafer and allowed to evaporate at room temperature. All seven 

sugars and the 13C glucose were spotted on each 0.5 × 0.5 inch wafer.  A clean silicon wafer was placed 

on top of the dry sample substrate and pressed to 100 psi momentarily to flatten the sugar spots for 

improved ToF-SIMS analysis.   

 

ToF-SIMS Analysis.   

ToF-SIMS measurements were conducted on a PHI-TRIFT III instrument (Physical Electronics USA, 

Eden Prairie, MN) equipped with a gold (197Au) liquid metal ion gun utilizing Au+ ions, operated at 

22kV and in bunched-ion mode.  Positive ion ToF-SIMS spectra were acquired over an area of 100 x 

100 µm; three to ten spectra were recorded for each sugar spot. The samples were held at room 

temperature before and during the course of the ToF-SIMS measurements.  All ToF-SIMS spectra were 
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calibrated to the CH3
+, C2H3

+, and C4H7
+ peaks before analysis.  Identical experiments were performed 

over a period of two months to monitor variation in and generalizability of the results. 

 

Statistical Analysis. 

In an effort to establish reproducibility, we have applied the following data preprocessing: for each 

mass spectrum, peaks due to sodium, potassium and silicon were removed after which the spectrum was 

normalized to the total ion count of the remaining peaks.   

The between-substrate standard deviation and the within-substrate standard deviation for a given m/z 

peak was estimated by means of a linear mixed-effect model.22 The model used was the standard one for 

a blocked one-way layout, containing a fixed effect for the sugars and two nested random effects: one 

for sample substrates, and one for the residual deviation within any given substrate. The average ratio of 

the between-substrate to within-substrate standard deviations was estimated by regressing the logarithm 

of the between-substrate standard deviations on the logarithm of the within-substrate standard 

deviations. A simple linear representation was used (slope and intercept) to model the relationship, and 

a robust fitting method was employed to discount the effect of any single potential outlier. The slope 

parameter was not significantly different from one, indicating that the ratio was not detectably different 

across the range of values for the residual standard deviation. The ratio was then calculated by taking 

the antilogarithm of the intercept parameter. 

Data reduction of the complete data set was accomplished by mean-centering the data matrix of 

spectra and reducing the data set by principal component analysis (PCA) using MATLAB software v. 

7.0 (MathWorks Inc., Natick, MA) along with PLS Toolbox v. 3.5 (Eigenvector Research, Manson, 

WA).  The PCA software generates a scores plot for visualization of data relationships and a loadings 

plot for identification of important mass fragments.  Ninety-five percent data contours were drawn using 

the error_ellipse.m code by J. Andrew Johnson of Binghamton University, acquired from the MATLAB 

Central File Exchange. 
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To determine the expected prediction error associated with a new, unclassified sample, a simple 

variable selection and expected prediction error analysis was applied to the complete set of 

experimental data. PCA was done on a portion of the data, the training set, after which the reduced data 

was used in a linear discriminant analysis to produce a classifier.  The remaining data, the test set, was 

then reduced and classified based on this classifier.  The predicted classes were compared to the actual 

classes for the test set, resulting in a count of the misclassified test cases.  Finally, the prediction error 

was estimated by summing up the misclassified test cases and dividing by the size of the overall data 

set.   

 

Results 

 

Averages of ten representative mass spectra of each of the four furanose sugars, fructose, psicose, 

sorbose and tagatose are displayed in Figure 1.  Intact molecular ion peaks were not observed in the 

positive ion ToF-SIMS spectra, however the spectra do show many characteristic monosaccharide 

fragments.  The mass spectra are highly similar, as would be expected for stereoisomers.  Only psicose, 

with the presence of a large potassium peak at m/z =39 and the corresponding [M+K]+ peak at m/z = 

219, is visually distinguishable.  A possible explanation for this observation will be discussed below.   

Averages of ten representative mass spectra of each of the three pyranose sugars, galactose, mannose, 

and glucose, as well as the heavy isotope 13C glucose are displayed in Figure 2.  Once again, the 

steroisomers give nearly identical spectra which are also very similar to those of their structural isomers 

the furanoses.     
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Figure 1:  Average mass spectra of furanose monosaccharides: (a) fructose (b) psicose (c) sorbose 

and (d) tagatose. 
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Figure 2: Average mass spectra of pyranose monosaccharides: (a) galactose (b) mannose (c) glucose 

and (d) D-glucose-U-13C6. 

Due to the great similarity between the mass spectra of these isomeric sugars, differentiation by 

conventional methods appears impossible.  Principal component analysis, however, is readily able to 

differentiate all seven isomeric hexoses.  The PCA scores plot shown in Figure 3a illustrates the 

excellent clustering of mass spectra of individual sugars and separation of mass spectra from different 

sugars.  The clustered spots are enclosed by ninety-five percent data contours.  The loadings plot, Figure 
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3b, provides information as to which mass peaks are important in driving the achieved classification.  

Nearly all of the masses which are critical to the classification are identified as important sugar 

fragments. 

 

 

a

   

b 

Figure 3: Scores plot (a) from principal component analysis data reduction of ToF-SIMS spectra from 

seven isomeric monosaccharides spotted on a silicon substrate. Data points are multiple analyzed areas 

from a single spot.  Ellipses are 95% data contours. Loadings plot (b) showing masses responsible for 

discrimination between monosaccharides.   

 

Figure 4 demonstrates the reproducibility of the combined ToF-SIMS/PCA technique.  PCA has been 

performed on spectra taken from all seven sugars that were spotted on six separate silicon sample 
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substrates.  These data were taken two months after those displayed in Figure 3a.  As expected, there is 

some scatter from substrate to substrate, and some cluster of data from a given substrate.  Overall, the 

excellent differentiation between stereoisomers remains evident and the similarity of the analyses is 

obvious.   

 

Figure 4:  Scores plot from principal component analysis data reduction of ToF-SIMS spectra from six 

substrates each spotted with seven isomeric monosaccharides.  The seven sugars are represented by the 

color scheme while the six substrates are represented by different shaped symbols: 1,▼; 2, * ; 3, ■; 4, ●; 

5, ♦; 6, ▲.  These data were taken two months after that shown in Figure 3a.  Ellipses are 95% data 

contours. 

 

Although the first two principal components are sufficient to differentiate an individual data set, the 

noise in the data causes the actual values of the loadings to differ from set to set. Hence, classifying new 

data using a classifier based on previous data may cause the new data to be classified incorrectly. To 

quantify the effect of noise like that observed in Figure 4 on discriminating sugars, we estimated the 

expected prediction error obtained by classifying a random future spectrum using the PCA-based 

classifier generated from the data displayed in Figure 3a.   The classifier was generated as described in 

the statistical methods section above; Figure 5 shows the results of that analysis. We see that, in general, 

four or five principal components from one data set should be sufficient to classify future data with a 
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very high degree of accuracy.  Given the large number of peaks contained in the mass spectra, this is a 

very significant reduction in the dimensionality of the data needed for classification. 

 

Figure 5: Expected prediction error as a function of the number of principal components used to 

classify future sugar spectra by linear discriminant analysis. 

Discussion 

 

In addition to the differentiation and classification of sugars made possible by this analysis, we have 

utilized the mass spectra to gain a better understanding of the fragmentation of these underivatized 

monosaccharides. The mass spectrum of glucose, Figure 2c, is considered in detail as a typical 

representative of the monosaccharides.  Peak shifts between the glucose (Figure 2c) and 13C glucose 

(Figure 2d) spectra are used to support fragment analyses and peak assignments. Fragmentation of 

fructose, galactose, mannose, psicose, sorbose and tagatose closely follows that of glucose with only 

minor modifications.   

A very important mode of fragmentation for the monosaccharides is the successive loss of water from 

the alcohol functional groups.  Scheme 1, adapted from Biemann et al. Scheme A,7 illustrates the 

successive loss of three water molecules from the protonated molecular ion, producing the ion series m/z 

= 163, 145, and 127.  The shifts of these peaks to m/z = 169, 151, and 133 in the 13C glucose spectrum 
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supports these fragment assignments, as do the exact molecular masses obtained from the high-mass-

resolution ToF-SIMS.  The apparent incomplete shift of peak m/z = 163 to 169 appears, by differences 

in cracking patterns and a lack of any other incomplete shifting, to be an impurity in the 13C glucose.  

Scheme 1 also illustrates an additional proposed fragmentation by loss of the small neutral molecule 

formaldehyde.  This loss results in the fragment of m/z =115 which is more prominent in the furanose 

spectra than those of the pyranoses.  This observation can be understood given the two locations for 

formaldehyde elimination, CH2OH substituents, in the furanose sugars as opposed to one in the 

pyranoses.  The assignment of the peak at m/z =115 is supported by the closest molecular formula of 

C5H7O3 to the high-resolution mass, by the appearance of a peak at m/z = 120 in the 13C glucose 

spectrum and by the ICP analysis of Taylor et al.16 

Scheme 1: Successive loss of water and/or formaldehyde from glucose. 
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Another important mode of fragmentation is that of α-cleavage as described by McLafferty and 

Tureček, p. 57.23 Scheme 2 shows fragments formed by cleavage alpha to either unsaturated (a) or 

saturated (b) heteroatoms.  These reactions account for peaks of m/z = 29, 31, 61 and 91.  Analysis of 

the 13C glucose spectrum supports these fragment assignments with peaks shifting to m/z = 30, 32, 63 

and 94.  High-resolution masses also support these assignments.  The α-cleavage reaction would also be 

expected to result in a fragment of mass 121, but this peak is not observed to be significant in any of the 

sugar spectra. 

Scheme 2:  Cleavage of glucose alpha to an unsaturated (a) or saturated (b) heteroatom. 
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Consideration of why the peak at m/z = 121 is not observed has led to the postulated fragmentation 

pathway illustrated in Scheme 3.  The α-cleavage fragment of mass 121 is simply the protonated, four-

carbon sugar D-erythrose.  This sugar would be capable of forming the hemiacetal form, D-

erythrofuranose as illustrated in the first step to the left on Scheme 3.  Subsequent loss of water 

molecules, as in Scheme 1, produce fragments of m/z = 103 and 85.  These proposed fragmentations are 

corroborated by the most probable elemental compositions from high resolution spectra, C4H7O3 and 

C4H5O2 respectively.  These assignments are further supported by the peak shifts from m/z = 85 to 89 

and m/z =103 to 107 in the 13C glucose spectrum.  The high intensity of the m/z = 85 ion bolsters this 

proposed structure as well, as the hydroxyfuran fragment is expected to be especially stable due to 
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aromaticity.  It is also possible that the loss of water occurs without the cyclization, producing the 

fragments illustrated in the right fork of Scheme 3.  However, the ICP analysis of Taylor et al.16 

supports the ring structures for these fragments.    

Scheme 3: Loss of water after α-cleavage of glucose to produce fragments of m/z = 103 and 85. 
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The base peak for many of the pyranoses at m/z = 73 has been identified by Biemann et al.7 as 

OHHO , and a mechanism for its formation has been proposed by Lonngren and Svennson.12  

Our work supports this assignment both by high mass resolution (C3H5O2) and the shift of this peak 

from m/z = 73 to 76 in the 13C glucose spectrum. DeJongh’s10 assignment of m/z = 57 to 
HO

 and 

Biemann’s7 assignment of m/z = 43 to CH3CO+ are similarly confirmed.  Alkali metal cationization of 
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monosaccharides is well known,19, 21, 24 suggesting that the relatively small peak at m/z = 203 is due to 

the [M+Na]+ adduct and the similar m/z = 219 peak most evident in the psicose spectrum is due to the 

[M+K]+ adduct.   

Of the significant peaks in the mass spectra, only one is unassigned by this analysis.  The rather large 

peak at m/z = 87 is determined by high resolution to be of molecular formula C4H7O2; the shift of this 

peak to m/z = 91 in the 13C glucose spectrum supports this conclusion.  However, the reactions which 

lead to this fragment are unknown at this time. 

Given the similarity of both the mass spectra and the fragmentation patterns of these stereo- and 

structural isomers, it is remarkable that PCA of the mass spectral data (Figure 3) reveals consistent 

grouping of spectra from the same sugar and separation of different sugars.   Inspection of the loading 

plot, Figure 3b, shows that the differentiation of sugars is indeed due to sugar fragments rather than 

sample impurities or other confounding peaks.  Furthermore, one can see that the pyranoses, glucose, 

galactose and mannose, tend to favor fragmentation into sections with masses 73, 87, and 91 while the 

furanoses, fructose, psicose, sorbose and tagatose, tend to fragment into masses 57, 85, 115, and 163.  In 

addition, psicose shows a relatively large contribution from the alkali metal adducts of the molecular 

ion.  It is postulated that the structure of psicose, with all the hydroxyl groups on the same side of the 

molecule, creates a more favorable environment for binding of the alkali metal cations.  From the 

previous analysis, it is interesting to note that fragments of mass 73 and 91 are small, linear portions of 

the molecules while fragments of mass 85, 115 and 163 are ring structures.  Together, these suggest that 

the five-membered rings are more stable in the bombardment of primary ions than are the six-membered 

rings.   

This work on underivatized monosaccharides provides a critical first step for analysis of biological 

samples by ToF-SIMS.  We have shown that ToF-SIMS with PCA has sufficient sensitivity to 

distinguish between closely-related, biologically relevant isomers.  Coupled with the reproducibility and 

sensitivity of the technique, this result will allow discrimination of similar biological samples and 

elucidation of the ions which are primarily responsible for the spectral differences between samples.  
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Some potential applications include differentiation of subtle chemical changes in biological samples that 

may provide insights into cellular processes, disease progress, and disease diagnosis. 

 

Conclusion 

 

This work has demonstrated the application of Time-of-Flight Secondary Ion Mass Spectrometry 

(ToF-SIMS) coupled to multivariate statistical analysis as a unique analytical method with the necessary 

reproducibility and selectivity to discriminate between stereoisomers of common monosaccharides.  

Application of this impressive selectivity will enable routine, small-molecule analysis of complex 

biological samples.  Current research applications of this technology include early detection of cancer, 

cancer tissue analysis, metabolomics, and investigations into the mechanisms of apoptosis.   

ACKNOWLEDGMENT (Word Style “TD_Acknowledgments”). This work was performed under the 

auspices of the U. S. Department of Energy by the University of California, Lawrence Livermore 

National Laboratory (LLNL) under Contract No. W-7405-Eng-48. The project 04-ERD-104 was funded 

by the Laboratory Directed Research and Development Program at LLNL. 

REFERENCES (Word Style “TF_References_Section”). 

 (1) Belu, A. M.; Graham, D. J.; Castner, D. G. Biomaterials 2003, 24, 3635-3653. 
(2) Lockyer, N. P.; Vickerman, J. C. Applied Surface Science 2004, 231-232, 377-384. 
(3) Pachuta, S. J. Applied Surface Science 2004, 231-232, 217-223. 
(4) Wagner, M. S.; Castner, D. G. Langmuir 2001, 17, 4649-4660. 
(5) Voet, D.; Voet, J. G. Biochemistry, 2 ed.; John Wiley & Sons Inc: New York, New York, 1995. 
(6) Biemann, K.; Schnoes, H. K.; McCloskey, J. A. Chemistry and Industry 1963, 448-449. 
(7) Biemann, K.; DeJongh, D. C.; Schnoes, H. K. Journal of the American Chemical Society 1963, 

85, 1763-1771. 
(8) DeJongh, D. C.; Biemann, K. Journal of the American Chemical Society 1963, 85, 2289-2294. 
(9) DeJongh, D. C.; Biemann, K. Journal of the American Chemical Society 1964, 86, 67-74. 
(10) DeJongh, D. C.; Radford, T.; Hribar, J. D.; Hanessian, S.; Bieber, M.; Dawson, G.; Sweeley, C. 

C. Journal of the American Chemical Society 1969, 91, 1728-1740. 
(11) Caprioli, R. M.; Seifert, W. E. J. Biochimica et Biophysica Acta 1972, 297, 213-219. 
(12) Lonngren, J.; Svensson, S. Advances in Carbohydrate Chemistry and Biochemistry 1974, 29, 42-

106. 
(13) Beckey, H. D. International Journal of Mass Spectrometry and Ion Physics 1969, 2, 500-503. 
(14) Zapfe, S.; Muller, D. Rapid Communications in Mass Spectrometry 1998, 12, 545-550. 
(15) March, R. E.; Stadey, C. J. Rapid Communications in Mass Spectrometry 2005, 19, 805-812. 

17

 



(16) Taylor, V. F.; March, R. E.; Longerich, H. P.; Stadey, C. J. International Journal of Mass 
Spectrometry 2005, 243, 71-84. 

(17) Vink, J.; Bruins Slot, J. H. W.; de Ridder, J. J.; Kamerling, J. P.; Vliegenthart, J. F. G. Journal of 
the American Chemical Society 1972, 94, 2542-2544. 

(18) Spengler, B.; Dolce, J. W.; Cotter, R. J. Analytical Chemistry 1990, 62, 1731-1737. 
(19) Hofmeister, G. E.; Zhou, Z.; Leary, J. A. Journal of the American Chemical Society 1991, 113, 

5964-5970. 
(20) Spengler, B.; Kirsch, D.; Kaufmann, R.; Lemoine, J. Journal of Mass Spectrometry 1995, 30, 

782-787. 
(21) Cancilla, M. T.; Wong, A. W.; Voss, L. R.; Lebrilla, C. B. Analytical Chemistry 1999, 71, 3206-

3218. 
(22) Pinheiro, J. C.; Bates, D. M. Mixed Effects Models in S and S-PLUS; Springer-Verlag: New 

York, 2000. 
(23) McLafferty, F. W.; Turecek, F. Interpretation of Mass Spectra, 4 ed.; University Science Books: 

Sausalito, CA, 1993. 
(24) Lemoine, J.; Fournet, B.; Despeyroux, D.; Jennings, K. R.; Rosenberg, R.; de Hoffmann, E. 

Journal of the American Society of Mass Spectrometry 1993, 4, 197-203. 
 
 

SYNOPSIS TOC (Word Style “SN_Synopsis_TOC”).  

18

 
glucose 

C

CH2OH

OHH
HHO
OHH
OHH

OH
C

CH2OH

OHH
HHO
HHO
OHH

OH

galactose 

 


