Determining the 3-D fracture structure in the Geysers geothermal reservoir

PDF Version Also Available for Download.

Description

The bulk of the steam at the Geysers geothermal field is produced from fractures in a relatively impermeable graywacke massif which has been heated by an underlying felsite intrusion. The largest of these fractures are steeply dipping right lateral strike-slip faults which are subparallel to the NW striking Collayomi and Mercuryville faults which form the NE and SW boundaries of the known reservoir. Where the graywacke source rock outcrops at the surface it is highly sheared and fractured over a wide range of scale lengths. Boreholes drilled into the reservoir rock encounter distinct ''steam entries'' at which the well head ... continued below

Physical Description

79-85

Creation Information

Sammis, Charles G.; An, Linji & Ershaghi, Iraj January 1, 1992.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

The bulk of the steam at the Geysers geothermal field is produced from fractures in a relatively impermeable graywacke massif which has been heated by an underlying felsite intrusion. The largest of these fractures are steeply dipping right lateral strike-slip faults which are subparallel to the NW striking Collayomi and Mercuryville faults which form the NE and SW boundaries of the known reservoir. Where the graywacke source rock outcrops at the surface it is highly sheared and fractured over a wide range of scale lengths. Boreholes drilled into the reservoir rock encounter distinct ''steam entries'' at which the well head pressure jumps from a few to more than one hundred psi. This observation that steam is produced from a relatively small number of major fractures has persuaded some analysts to use the Warren and Root (1963) dual porosity model for reservoir simulation purposes. The largest fractures in this model are arranged in a regular 3-D array which partitions the reservoir into cubic ''matrix'' blocks. The net storage and transport contribution of all the smaller fractures in the reservoir are lumped into average values for the porosity and permeability of these matrix blocks which then feed the large fractures. Recent improvements of this model largely focus on a more accurate representation of the transport from matrix to fractures (e.g. Pruess et al., 1983; Ziminerman et al., 1992), but the basic geometry is rarely questioned. However, it has long been recognized that steam entries often occur in clusters separated by large intervals of unproductive rock (Thomas et al., 1981). Such clustering of fixtures at all scale lengths is one characteristic of self-similar distributions in which the fracture distribution is scale-independent. Recent studies of the geometry of fracture networks both in the laboratory and in the field are finding that such patterns are self-similar and can be best described using fractal geometry. Theoretical simulations of fracture development in heterogeneous media also produce fractal patterns. However, a physical interpretation of the mechanics which produce the observed fractal geometry remains an active area of current research. Two hypotheses for the physical cause of self-similarity are the Laplacian growth of fractures in a self-organized critical stress field, and the evolution of percolation clusters in a random medium. Each predicts a different, fractal dimension. The more important questions from a reservoir engineering point of view are: (1) is the network of fractures in the Geysers reservoir fractal and if so over what range of fracture sizes is the self-similarity observed and what is its fractal dimension, and (2) do the conventional dual porosity numerical simulation schemes provide an adequate description of flow and heat mining at the Geysers? Other papers in this volume by Acuna, Ershaghi, and Yortsos (1992) and Mukhopodhyoy and Sahimi (1992) address the second question. The primary objective of this paper is to try to answer the first. Toward this goal we have mapped fracture patterns in surface exposures of the graywacke source rock at the outcrop scale (meters), at the road-cut scale (tens of meters) and at the regional scale (kilometers). We have also examined cores collected at depth from the graywacke reservoir rocks, and analyzed drilling logs making use of the pattern of steam entries as well as the fluctuations in drilling rate.

Physical Description

79-85

Source

  • Seventeenth Workshop on Geothermal Reservoir Engineering: Proceedings, Stanford University, Stanford, CA, January 29-31, 1992

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: SGP-TR-141-13
  • Grant Number: None
  • Office of Scientific & Technical Information Report Number: 888664
  • Archival Resource Key: ark:/67531/metadc876363

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • January 1, 1992

Added to The UNT Digital Library

  • Sept. 21, 2016, 2:29 a.m.

Description Last Updated

  • Nov. 23, 2016, 3:11 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 1

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Sammis, Charles G.; An, Linji & Ershaghi, Iraj. Determining the 3-D fracture structure in the Geysers geothermal reservoir, article, January 1, 1992; United States. (digital.library.unt.edu/ark:/67531/metadc876363/: accessed October 18, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.