Vadose Zone VOC Mass Transfer Testing At The SRS Miscellaneous Chemical Basin

PDF Version Also Available for Download.

Description

Active remedial activities have been ongoing since 1996 to address low levels of solvent contamination at the Miscellaneous Chemical Basin at SRS. Contaminant levels in the subsurface may be approaching levels where mass transfer limitations are impacting the efficiency of the remedial action. Rate limited mass transfer effects have been observed at other sites in the vadose zone at the SRS, however, detailed measurements and evaluation has not been undertaken. Anecdotal evidence suggests that the mass transfer rates are very slow from the fine grain sediments. This conclusion is based on the observation that measured soil gas concentrations tend to ... continued below

Creation Information

Riha, B October 30, 2005.

Context

This report is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this report can be viewed below.

Who

People and organizations associated with either the creation of this report or its content.

Author

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this report. Follow the links below to find similar items on the Digital Library.

Description

Active remedial activities have been ongoing since 1996 to address low levels of solvent contamination at the Miscellaneous Chemical Basin at SRS. Contaminant levels in the subsurface may be approaching levels where mass transfer limitations are impacting the efficiency of the remedial action. Rate limited mass transfer effects have been observed at other sites in the vadose zone at the SRS, however, detailed measurements and evaluation has not been undertaken. Anecdotal evidence suggests that the mass transfer rates are very slow from the fine grain sediments. This conclusion is based on the observation that measured soil gas concentrations tend to be low in permeable zones relative to the higher concentrations found in fine grain zones. Decreasing soil gas concentration with depth below the ''upland unit'' at several areas at SRS is also evidence of slow diffusion rates. In addition, due to the length of time since disposal ceased at the MCB, we hypothesize that mobile solvents have migrated downward, and the solvent remaining in the upper fine grain zone (''upland unit'') are trapped in fine grain material and are primarily released by gas diffusion (Riha and Rossabi 2004). Natural weathering and other chemical solutions disposed with the solvents can further enhance this effect by increasing the micro-porosity in the clays (kaolinite). This microporosity can result in increased entrapment of water and solvents by capillary forces (Powers, et. al., 2003). Also supporting this conclusion is the observation that active SVE has proven ineffective on VOC removal from the fine grain zones at the SRS. Adsorption and the very slow release phenomenon have been documented similarly in the literature especially for old solvent spills such as at the SRS (Pavlostathis and Mathavan 1992; Oostrom and Lenhard 2003). Mass transfer relationships need to be developed in order to optimize remediation activities and to determine actual loading rates to groundwater. These metrics will aid in answering the question ''How clean is protective of the environment''? For this study, a field test was developed to measure a mass transfer factor by injecting clean air into the subsurface through a sample port or well and measuring the rebound VOC concentration over time. Interpretation of the he results of these tests will provide a mass transfer rate that will be used to determine the appropriate type of SVE for the area (passive, enhanced or active SVE), a measured field parameter to estimate mass loading to the groundwater, and time frame for cleanup.

Notes

available

Language

Item Type

Identifier

Unique identifying numbers for this report in the Digital Library or other systems.

  • Report No.: WSRC-TR-2005-00266
  • Grant Number: DE-AC09-96SR18500
  • DOI: 10.2172/890182 | External Link
  • Office of Scientific & Technical Information Report Number: 890182
  • Archival Resource Key: ark:/67531/metadc876230

Collections

This report is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this report?

When

Dates and time periods associated with this report.

Creation Date

  • October 30, 2005

Added to The UNT Digital Library

  • Sept. 21, 2016, 2:29 a.m.

Description Last Updated

  • Nov. 2, 2016, 1:22 p.m.

Usage Statistics

When was this report last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 1

Interact With This Report

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Riha, B. Vadose Zone VOC Mass Transfer Testing At The SRS Miscellaneous Chemical Basin, report, October 30, 2005; [Aiken, South Carolina]. (digital.library.unt.edu/ark:/67531/metadc876230/: accessed September 22, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.