LES SOFTWARE FOR THE DESIGN OF LOW EMISSION COMBUSTION SYSTEMS FOR VISION 21 PLANTS

PDF Version Also Available for Download.

Description

In this project, an advanced computational software tool was developed for the design of low emission combustion systems required for Vision 21 clean energy plants. Vision 21 combustion systems, such as combustors for gas turbines, combustors for indirect fired cycles, furnaces and sequestrian-ready combustion systems, will require innovative low emission designs and low development costs if Vision 21 goals are to be realized. The simulation tool will greatly reduce the number of experimental tests; this is especially desirable for gas turbine combustor design since the cost of the high pressure testing is extremely costly. In addition, the software will stimulate ... continued below

Creation Information

Smith, Clifford E.; Cannon, Steven M.; Adumitroaie, Virgil; Black, David L. & Meredith, Karl V. January 1, 2005.

Context

This report is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this report can be viewed below.

Who

People and organizations associated with either the creation of this report or its content.

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this report. Follow the links below to find similar items on the Digital Library.

Description

In this project, an advanced computational software tool was developed for the design of low emission combustion systems required for Vision 21 clean energy plants. Vision 21 combustion systems, such as combustors for gas turbines, combustors for indirect fired cycles, furnaces and sequestrian-ready combustion systems, will require innovative low emission designs and low development costs if Vision 21 goals are to be realized. The simulation tool will greatly reduce the number of experimental tests; this is especially desirable for gas turbine combustor design since the cost of the high pressure testing is extremely costly. In addition, the software will stimulate new ideas, will provide the capability of assessing and adapting low-emission combustors to alternate fuels, and will greatly reduce the development time cycle of combustion systems. The revolutionary combustion simulation software is able to accurately simulate the highly transient nature of gaseous-fueled (e.g. natural gas, low BTU syngas, hydrogen, biogas etc.) turbulent combustion and assess innovative concepts needed for Vision 21 plants. In addition, the software is capable of analyzing liquid-fueled combustion systems since that capability was developed under a concurrent Air Force Small Business Innovative Research (SBIR) program. The complex physics of the reacting flow field are captured using 3D Large Eddy Simulation (LES) methods, in which large scale transient motion is resolved by time-accurate numerics, while the small scale motion is modeled using advanced subgrid turbulence and chemistry closures. In this way, LES combustion simulations can model many physical aspects that, until now, were impossible to predict with 3D steady-state Reynolds Averaged Navier-Stokes (RANS) analysis, i.e. very low NOx emissions, combustion instability (coupling of unsteady heat and acoustics), lean blowout, flashback, autoignition, etc. LES methods are becoming more and more practical by linking together tens to hundreds of PCs and performing parallel computations with fine grids (millions of cells). Such simulations, performed in a few weeks or less, provide a very cost-effective complement to experimental testing. In 5 years, these same calculations can be performed in 24 hours or less due to the expected increase of computing power and improved numerical techniques. This project was a four-year program. During the first year, the project included the development and implementation of improved chemistry (reduced GRI mechanism), subgrid turbulence (localized dynamic), and subgrid combustion-turbulence interaction (Linear Eddy) models into the CFD-ACE+ code. University expertise (Georgia Tech and University of California, Berkeley) was utilized to help develop and implement these advanced submodels into the unstructured, parallel CFD flow solver, CFD-ACE+. Efficient numerical algorithms that rely on in situ look-up tables or artificial neural networks were implemented for chemistry calculations. In the second year, the combustion LES software was evaluated and validated using experimental data from lab-scale and industrial test configurations. This code testing (i.e., alpha testing) was performed by CFD Research Corporation's engineers. During the third year, six industrial and academic partners used the combustion LES code and exercised it on problems of their choice (i.e., beta testing). Final feedback and optimizations were then implemented into the final release (licensed) version of the combustion LES software to the general public. An additional one-year task was added for the fourth year of this program entitled, ''LES Simulations of SIMVAL Results''. For this task, CFDRC performed LES calculations of selected DoE SIMVAL cases, and compared predictions with measurements from NETL. In addition to comparisons with NOx and CO exit measurements, comparisons were made to measured pressure oscillations. Potential areas of improvement for combustion and turbulence models were identified. In conclusion, this program advanced the state-of-the-art in combustion LES analysis, providing a software tool for more accurate analysis as well as the capability of assessing transient combustion events.

Language

Item Type

Identifier

Unique identifying numbers for this report in the Digital Library or other systems.

  • Report No.: None
  • Grant Number: FC26-00NT40975
  • DOI: 10.2172/889781 | External Link
  • Office of Scientific & Technical Information Report Number: 889781
  • Archival Resource Key: ark:/67531/metadc876229

Collections

This report is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

What responsibilities do I have when using this report?

When

Dates and time periods associated with this report.

Creation Date

  • January 1, 2005

Added to The UNT Digital Library

  • Sept. 21, 2016, 2:29 a.m.

Description Last Updated

  • Dec. 1, 2016, 10:38 p.m.

Usage Statistics

When was this report last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 3

Interact With This Report

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Smith, Clifford E.; Cannon, Steven M.; Adumitroaie, Virgil; Black, David L. & Meredith, Karl V. LES SOFTWARE FOR THE DESIGN OF LOW EMISSION COMBUSTION SYSTEMS FOR VISION 21 PLANTS, report, January 1, 2005; United States. (digital.library.unt.edu/ark:/67531/metadc876229/: accessed September 20, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.