Determination of MSSM Parameters from LHC and ILCObservables in a Global Fit

PDF Version Also Available for Download.

Description

We present the results of a realistic global fit of the Lagrangian parameters of the Minimal Supersymmetric Standard Model assuming universality for the first and second generation and real parameters. No assumptions on the SUSY breaking mechanism are made. The fit is performed using the precision of future mass measurements of superpartners at the LHC and mass and polarized topological cross-section measurements at the ILC. Higher order radiative corrections are accounted for wherever possible to date. Results are obtained for a modified SPS1a MSSM benchmark scenario but they were checked not to depend critically on this assumption. Exploiting a simulated ... continued below

Physical Description

25 pages

Creation Information

Bechtle, Philip; /SLAC; Desch, Klaus; U., /Freiburg; Porod, Werner; /Valencia U., IFIC /Zurich U. et al. December 2, 2005.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

We present the results of a realistic global fit of the Lagrangian parameters of the Minimal Supersymmetric Standard Model assuming universality for the first and second generation and real parameters. No assumptions on the SUSY breaking mechanism are made. The fit is performed using the precision of future mass measurements of superpartners at the LHC and mass and polarized topological cross-section measurements at the ILC. Higher order radiative corrections are accounted for wherever possible to date. Results are obtained for a modified SPS1a MSSM benchmark scenario but they were checked not to depend critically on this assumption. Exploiting a simulated annealing algorithm, a stable result is obtained without any a priori assumptions on the values of the fit parameters. Most of the Lagrangian parameters can be extracted at the percent level or better if theoretical uncertainties are neglected. Neither LHC nor ILC measurements alone will be sufficient to obtain a stable result. The effects of theoretical uncertainties arising from unknown higher-order corrections and parametric uncertainties are examined qualitatively. They appear to be relevant and the result motivates further precision calculations. The obtained parameters at the electroweak scale are used for a fit of the parameters at high energy scales within the bottom-up approach. In this way regularities at these scales are explored and the underlying model can be determined with hardly any theoretical bias. Fits of high-scale parameters to combined LHC+ILC measurements within the mSUGRA framework reveal that even tiny distortions in the low-energy mass spectrum already lead to unacceptable {chi}{sup 2} values. This does not hold for ''LHC only'' inputs.

Physical Description

25 pages

Source

  • Journal Name: European Physical Journal C

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: SLAC-PUB-11580
  • Grant Number: AC02-76SF00515
  • Office of Scientific & Technical Information Report Number: 877523
  • Archival Resource Key: ark:/67531/metadc876151

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • December 2, 2005

Added to The UNT Digital Library

  • Sept. 21, 2016, 2:29 a.m.

Description Last Updated

  • Dec. 5, 2016, 2:01 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 2
Total Uses: 2

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Bechtle, Philip; /SLAC; Desch, Klaus; U., /Freiburg; Porod, Werner; /Valencia U., IFIC /Zurich U. et al. Determination of MSSM Parameters from LHC and ILCObservables in a Global Fit, article, December 2, 2005; [Menlo Park, California]. (digital.library.unt.edu/ark:/67531/metadc876151/: accessed December 13, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.