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ABSTRACT 

 Field-structured magnetic particle composites are an important new class of 

materials that have great potential as both sensors and actuators.  These materials are 

synthesized by suspending magnetic particles in a polymeric resin and subjecting these to 

magnetic fields while the resin polymerizes. If a simple uniaxial magnetic field is used, 

the particles will form chains, yielding composites whose magnetic susceptibility is 

enhanced along a single direction.  A biaxial magnetic field, comprised of two orthogonal 

ac fields, forms particle sheets, yielding composites whose magnetic susceptibility is 

enhanced along two principal directions.  A balanced triaxial magnetic field can be used 

to enhance the susceptibility in all directions, and biased heterodyned triaxial magnetic 

fields are especially effective for producing composites with a greatly enhanced 

susceptibility along a single axis.  Magnetostriction is quadratic in the susceptibility, so 

increasing the composite susceptibility is important to developing actuators that function 

well at modest fields.  To investigate magnetostriction in these field-structured 

composites we have constructed a sensitive, constant-stress apparatus capable of 1 ppm 

strain resolution.  The sample geometry is designed to minimize demagnetizing field 

effects.  With this apparatus we have demonstrated field-structured composites with 

nearly 10,000 ppm strain. 
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Executive Summary 
 

 The purpose of this project was to determine whether elastomeric composite 

materials can be synthesized in such a way as to have significant levels of 

magnetostriction, much greater than that possible with piezoelectric materials.  In fact, it 

is possible, especially if the composites are synthesized in the presence of magnetic 

fields.  At best, we have produced materials that exhibit roughly 100 times the strain of 

piezo materials. 

 Magnetostriction – roughly speaking the deformation of a material subjected to a 

uniform magnetic field - is a property one normally associates with solid magnetic 

materials, not elastomeric composites.  When a field is applied to such a material it 

contracts along the field so as to increase the interactions between the magnetic spins.  If 

one has such a magnetostrictive material in particulate form, then it is possible to make a 

soft composite material that will in some measure exhibit magnetostriction due to the 

magnetostriction of the constituent particles.  This is not our approach, but such 

composites have been reported and have been found to have modest magnetostriction. 

 The composites we synthesize and study are made with Fe and Ni particles, 

materials which themselves exhibit negligible magnetostrictive strain.  In the presence of 

a magnetic field these particles do acquire a magnetic moment, however, and it is the 

dipolar interactions between these magnetic moments that gives rise to magnetostriction 

of the composite itself. The interactions between dipoles is strongly dependent on the 

organization of the particles within the composite.  We can create a variety of distinct 

composite structures by manipulating the particles with complex, dynamic magnetic 

fields before the elastomeric resin has fully polymerized, so a significant part of this 

project was spent on determining the structuring field that leads to optimal 

magnetostrictive composites. 

 A variety of interesting discoveries were made using an optical cantilever apparatus 

we designed to measure the contraction of prestrained magnetoelastomers in a highly 

uniform magnetic field produced by a Helmholtz coil.  First, we discovered that the 

magnetostrictive strain increased linearly with the sample prestrain, regardless of the 

composite structure.  Second, by controlling the composite structure we discovered we 
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could produce magnetoelastomers with ten times the contraction of random composites.  

Contractions of 10,000 ppm were observed in the best field-structured materials, 

compared to 100 ppm for piezoelectrics.  The dependence of magnetostriction with 

composite structure was found to be in agreement with theoretical predictions we had 

made before this project.  Third, through analysis and simulation we showed that these 

composites are subject to a hierarchy of structural phase transitions that occur as the 

magnetic field is increased.  Detailed calculations show that these particle clumping 

transitions affect the magnetostriction, and even give rise to hysteresis of the sample 

strain.  Finally, we discovered that the magnetostriction of these materials can lead to 

enormous magnetoresistance, far larger than ever observed on other materials.  Our 

current record is a resistance change of 5x106 % at a field of 0.1 T, an effect for which a 

patent is now being pursued. 

 This research has shown that these field-structured magnetoelastomers are viable as 

actuators and highly responsive magnetoresistive materials.  The extreme 

magnetoresistance we have observed has already been demonstrated to have impact on 

chemical resistors we have developed in our lab:  The response of these chemical sensors 

can be varied by a factor of 120,000 by applying a field of 0.1 T.  These materials are 

ready for device development, so connections are now being sought with the robotics 

effort at Sandia. It would be an interesting next step to engineer a complete actuator 

component based on this effect. 
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Chapter 1 
Martin, Anderson 

THEORY AND SIMULATIONS 
 

Introduction 

 

 There is a need for soft actuators that have a much larger strain response than 

piezoelectrics, and that can respond in microseconds.  To meet these needs we are 

developing efficient Field-Structured Magnetostrictive Elastomers (FSMEs). [1-4] These 

are materials whose magnetic permeability is sensitive to tensile or compressive strains, 

as discussed below.  Extant experimental studies of such materials have focused on the 

increase in the shear modulus due to the magnetic field.  But these materials also contract 

in a magnetic field, and thus have the potential for many tensile actuator applications, for 

example as artificial muscles for robots.  We wish to explore these materials as tensile 

actuators, in controlled stress experiments.  The inverse magnetostriction effect is also 

useful, enabling stress/strain sensors based on permeability (or permittivity) changes.  

Related applications include magnetic- or electric-field-tunable capacitors for RF 

applications. 

 Magnetostriction refers to the tendency of magnetic materials to deform in a 

uniform magnetic field.  In fact, there are two primary causes of deformation.  First, a 

material will tend to elongate along the field to increase the penetration of the applied 

field into the body. The penetration of the applied field is opposed by the so-called 

demagnetizing field, [5] which is strongly dependent on the shape of the object, and 

decreases as the object elongates.  Second, a material will tend to compress along the 

field to create a large microscopic, or local, field at each dipole site.  This latter effect is 

magnetostriction.  In our experiments the shape effect can usually be made negligible, so 

to a good approximation the macroscopic field in the elastomer is the applied field. [6]  

 To understand magnetostriction in composite materials, consider as an example a 

simple cubic lattice of induced magnetic dipoles subjected to an applied field that causes 

the dipoles to magnetize. Each dipole creates a small field of its own that is felt by all the 

other dipoles.   The net effect is that the other dipoles enhance the "local" field at a dipole 
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site significantly - easily several times the applied field, which seems like cheating. [7] 

This enhancement is proportionately reflected in the magnetic susceptibility of the 

material.  The net magnetic energy associated with an induced dipole goes down as the 

local field goes up, so any lattice distortion that would increase the local field creates a 

magnetostrictive stress.  An elastic lattice with zero volume compressibility (Poisson 

ratio of 1/2) will increase the local field by compressing along the field direction and 

expanding in orthogonal directions.  The stress is independent of the elastic properties of 

the lattice, but the strain is inversely proportional to the elastic modulus, so a soft lattice 

will exhibit a large strain, and a hard lattice will exhibit little strain. 

 Magnetostriction is usually discussed in connection with pure ferrous materials, the 

dipoles being the spins.  In the composite materials we consider, each magnetic particle 

can be thought of as a dipole, and it is the interaction between these dipoles that gives rise 

to magnetostriction. [8] This effect does not obtain from magnetostrictive distortions of 

the particles themselves, but from particle polarization. 

 
Theory of Magnetostriction 
 

Deformations in an initially uniform magnetic field.  When a magnetic particle 

composite is placed in an initially uniform magnetic field it may deform for a number of 

reasons.  First, the individual particles can exhibit magnetostriction, causing a 

macroscopic deformation of the sample.  This mechanism is negligible at the ~0.1 T 

fields we apply to our samples, and even the applied field did create appreciable stresses 

in the stiff ferrous particles, these would not appreciably transmit through the soft 

polymer matrix.  Second, dipolar interactions between particles can cause 

magnetostriction of the sample.  This is the effect we wish to isolate.  Third, sample 

shape can create demagnetizing fields that can cause significant deformation.  This is an 

effect we try to minimize in our experiments, but that can still be the dominant effect for 

some samples.  Fourth, if ferrous pole pieces are used to direct the flux lines to the 

sample it is possible for image interactions to occur from the capping magnetic 

monopoles.  This is not a factor in our apparatus, but has probably contributed to reports 

of "negative magnetostriction" in particle composites.  Fifth, under special circumstances 

the field can exert a body torque on the sample, even when the field lines are directed 
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along the major axis of the sample.  This torque can lead to large measured strains in our 

apparatus, but only for samples synthesized to minimize magnetostriction.  Rather than 

embark on a full analysis of all of these effects at this point, we have chosen to describe 

each of these as required to interpret our experimental results. 

 

Magnetostriction.  Magnetostriction is a result of the tendency of the magnetized 

particles to move in such a way as to increase their magnetic moments.  The typical 

tendency is for dipole pairs aligned with the applied field to approach each other, causing 

a contraction of the sample along the field, and dipole pairs perpendicular to the field to 

push each other way, reinforcing the contraction along the field, due to the fact that the 

Poisson ratio is close to 1/2 for these materials.   

Self-consistent point dipole theory.  In a recent theoretical paper it has been shown that 

composites of magnetizable particles in an elastic continuum have the potential to exhibit 

large magnetostrictive stresses and strains, provided the particles can be suitably 

arranged. [9] This paper treats composites that have at most one unique axis, taken to be 

the z-axis, along which the field is applied.  For example, a composite consisting of 

chains formed by a uniaxial structuring field will have its unique axis parallel to the 

chains.  A composite structured into sheets by a biaxial field (see below) will have its 

unique axis normal to the sheets, and a composite structured by a triaxial field (below) 

may not have a unique axis, nor will a random composite.  The goal of this paper is to 

predict the stresses that the field will induce in the composite in the directions parallel 

and perpendicular to the applied field.  The principal conclusion is that it is possible to 

use fields to create particle composites that have significantly enhanced or suppressed 

magnetostriction relative to random particle composites. 

 Because this paper has motivated the experimental work described herein, it is helpful 

to give the predictions.  We do so in terms of magnetic variables, since the original paper 

is written in the language of electrostatics.  The case of magnetostriction is slightly 

simpler, because the susceptibility of the continuous, polymer phase will normally be 

very close to zero, and thus the permeability of the polymer phase will be nearly that of 

free space, µ0.  

 In the self-consistent local field approximation the magnetostrictive stresses parallel 
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(z axis) and perpendicular (x axis) to the applied field are  

 

    
    
σ z = − 1

2
µeff µ0 H0

2 (1 + γ zz)        (1) 

    
    
σ x = + 1

2
µeff µ0 H0

2 (1 − γ zx) . 

 

Here µeff is the effective relative composite permeability (dimensionless) 

    µeff = 1 + 2β (φ +ψ 2 )[ ] 1 − β(φ − 2ψ 2 )[ ], which depends on the relative particle 

permeability µp through the contrast factor   β = (µ p − 1) /(µp + 2) , and depends on the 

composite structure through the parameter ψ2 discussed below, and the particle volume 

fraction φ.  The magnetostriction coefficients are defined by the strain derivatives 

γ zi = −µeff
−1∂µeff ,z /∂si,  i = x, y,z .  A calculation gives 

 

    
  
γ zi =

µeff −1( )µeff + 2( )
3µeff

− λi
µeff −1( )2

µeff
    (2) 

 

where 
  
λ z =

−2
π 3

+
2
7

3ψ 2 −ψ 4( )
φ

 and 
 
λ x =

1
π 3

+
4
7

3ψ 2 −ψ 4( )
φ

.  An incompressible 

composite will have Poisson ratio of 1/2, so a field-induced compression along the z-axis 

must be accompanied by a volume-conserving expansion in the x,y directions.  The 

measured stress will thus be   σmeas = σ z − σ x . 

 Magnetostriction of particle composites depends on the structural parameters ψ2 and 

ψ4, and is notably independent of the particle size.  These parameters are given in terms 

of the k-th Legendre polynomial Pk(x) by  

 

    
    
ψ k = −

a
rij

⎛ 

⎝ 
⎜ 
⎜ 

⎞ 

⎠ 
⎟ 
⎟ 

j≠i
∑

3

Pk cosθij( )      (3) 

 

where rij is the distance between a pair of particles in the composite, and θij is the angle 

 14



of their line of centers to the direction of the applied field.  These sums are taken over a 

spherical cavity centered on the i-th particle, then averaged over a statistical number of 

particles.   

 Predictions for simulated structures.  To evaluate these structural parameters we 

must have a model of structure.  We have developed a Brownian Dynamics simulation 

that enables us to model structure in 1-, 2-, and 3-dimensional fields for composites 

containing 10,000 particles.  A detailed description of these simulations can be found in 

reference. [10] 

 From these simulated structures we have obtained the structural parameters for 

composites formed in uniaxial and biaxial fields, as well as for random composites.  In 

the reduced stress units, ′ σ meas =σ meas / 1
2

µeff µ0H0
2 , where the stress is normalized by the 

energy density of the field, we have predicted that the reduced stress of a random 10 

vol.% composite should be -2.7, the minus sign denoting a compressive stress.  For a 

uniaxial composite the reduced stress is enhanced several-fold, -6.9, whereas for a biaxial 

composite with the field directed normal to the sheets the reduced stress is slightly 

suppressed, -2.5.  At higher particle loadings the stresses are larger, but the predicted 

trends are similar.  The maximum stress we computed was for the magnetic ground state 

structure, the body center tetragonal lattice.  A 10 vol.% composite containing aligned bct 

domains would have a reduced stress of -9.4. 

 Unfortunately, it is not possible for us to make magnetostriction predictions for 

samples structured in triaxial magnetic fields, because the mean-field approximation of 

our magnetostriction theory becomes poor in this case.  In essence, the mean field theory 

predicts that the sum of the inverse composite susceptibilities taken along three principal 

directions is invariant to structuring. [11]  Triaxial composites violate this sum rule, due 

to the pure many-body nature of the interactions in this case.  We have discussed this 

point in detail elsewhere. [12] 
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Chapter 2 
Martin, Anderson 

SYNTHESIS AND PROCESSING 
 

Motivation.  The goal of synthesis is to produce materials with optimal magnetostriction.  

As the above theoretical discussion indicates, this is roughly equivalent to finding a 

method of athermally organizing the dense, micron-size particles into structures that 

maximize their effective permeability.  The innovation of triaxial magnetic field 

structuring has made the optimization of athermal composites possible, and we have 

described synthesis in triaxial magnetic fields in detail elsewhere. [12] Here we would 

only like to give a brief description of the synthesis methods we have used, the 

motivation for using these, and the resulting susceptibility enhancements achieved. 

 

Materials.  The magnetostrictive coefficient is independent of particle size, provided this 

is much larger than a single magnetic domain, typically tens of nanometers.  Multidomain 

particles can be magnetically "soft", meaning the remanent magnetization is negligible, or 

"hard", meaning the remanence is significant, such as in permanent magnet materials.  

We prefer to use soft magnetic particles, as these eliminate remanent strain. 

 The susceptibility of the material of which the particles are made is not terribly 

important.  When a field is applied to a soft magnetic particle the resultant magnetization 

is the product of the particle susceptibility times the field.  One might assume the particle 

susceptibility is equal to the susceptibility of the material of which it is composed, but 

this is only true when the material susceptibility is quite small - too small to be of interest 

here.  In fact, the particle susceptibility is practically independent of the material 

susceptibility and is mostly a function of the particle shape.  Material susceptibilities are 

commonly in the range of 102-105 but the susceptibility of a sphere is limited to 3 (MKS), 

[13] because its magnetization creates a demagnetizing field that opposes the applied 

field.  Thus high susceptibility materials are of no obvious benefit. 

 To achieve large magnetostriction the saturation magnetization of the particles 

should be as large as possible.  FSMEs contain nearly contacting particles aligned with 

the applied field.  In the particle gaps the fields can become exceedingly large (~100x the 
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applied field) causing magnetic saturation of the proximal parts of the particles, which 

limits their mutual attraction.  To avoid this it is desirable to choose particles with high 

saturation magnetization, such as Fe, which has a moment of ~2.2 Bohr magnetons per 

atom, giving a saturation magnetization of 2.1 T. (Fe also has little remanence.) We use 

3-5 micron carbonyl iron particles, obtained from Lord Corporation, curing these in the 

silicone polymer, Gelest Optical Encapsulant 41.  To minimize demagnetizing field 

effects, the samples are cast as long solid rectangles, of dimensions 3.25x3.25x50.0 mm, 

unless otherwise specified. 

 

Using magnetic fields to create structure.  More than merely being a practical 

approach, magnetic fields are an ideal way of creating structure, since they naturally lead 

to structures that optimize the composite permeability in a carefully annealed thermal 

system - one in which particle diffusion insures that a free energy minimum is attained in 

the applied field.  This is an obvious point: in an applied field the ground state particle 

structure is that which minimizes the net magnetostatic energy, and at low fields this 

energy is negative and proportional to the composite effective susceptibility.  The 

suspension will therefore evolve to maximize its permeability, and so it would seem that 

a simple uniaxial magnetic field would be optimal for structuring particle composites. 

 Composites with such annealed disorder are not practically achievable in the 

laboratory, because this would require that the dipolar interactions generate particle 

forces comparable to the thermal fluctuations that give rise to diffusion.  If the applied 

field is turned down so as to achieve this condition, the particles will simply sediment.  

To eliminate the effect of gravity, significant fields must be used (0.01-0.02 T).  In such 

fields the dipolar interactions completely dominate thermal fluctuations, so the structures 

that form are an example of quenched disorder.  We have shown that heterodyned triaxial 

magnetic fields can be used to create structures with quenched disorder that mimic those 

having annealed disorder, and have demonstrated through permeability measurements 

that  composites structured by heterodyning have optimal magnetic properties. [12] 

 

Field structuring.  The FSMEs investigated in this paper were made by exposing a 

suspension of 3-5 µm Fe or 4-7 µm Ni particles in a silicone to magnetic fields while the 
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resin gels.   The samples are then post-cured at 70°C for four hours.  The structuring 

fields are created by a resonant triaxial Helmholtz coil of our own design.  This 

computer-controlled magnet and its associated tunable capacitor bank are described 

elsewhere. [12] 

 A variety of structures can be created by dynamic magnetic fields. A uniaxial 

magnetic field, created by a Helmholtz coil or by two parallel plate magnets, causes the 

particles to form chains.  But a biaxial field, created by applying two orthogonal ac fields. 

leads to composites having a layered structure, the particle sheets forming in the field 

plane.  In this case the ac frequencies should be high enough that rotating particle chains 

do not form and in practice we use frequencies in the range of 100-1000 Hz.  In the 

special case of equal component frequencies we set their phase difference to 90° to create 

a rotating field.  Finally, a triaxial magnetic field can be created by combining three 

orthogonal magnetic fields, at least two of which are ac.  Composites formed in triaxial 

fields can have a variety of structures [10, 12], but the important point is that triaxial 

fields can be used to highly optimize the properties of particle composites and this 

deserves further discussion. 

 Triaxial fields.  Particle interactions in triaxial fields are complicated, and are 

treated in detail in [10], but a qualitative discussion here should serve as a practical guide 

as to their effects.  The magnetic interactions between particles are largely due to their 

dipole moments.  At low fields the dipole moment is proportional to the local field, which 

is comprised of two contributions: the applied field and the field due to all the other 

dipoles.  In a balanced triaxial field (i.e. all rms field component amplitudes equal) the 

time-average interaction between the moments induced by the applied field is zero, so the 

only nonvanishing interaction is due to the fields produced by the other dipoles.  Thus the 

interaction is solely due to many-body effects, so that the interaction between any two 

particles is strongly dependent on the positions of the other particles.  

 A triaxial field has three components, each of which has an amplitude and 

frequency, for a total of six parameters.  In a balanced triaxial field the root-mean-square 

(rms) amplitudes are equal, which reduces the field parameters to four.  Within 

reasonable limits the field amplitude only determines the time scale of particle motions, 

and because this is not germane to the structures produced, we really only have to worry 
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about the three field frequencies.  At reasonable high field frequencies (> 100 Hz), it is 

only the beat frequencies between the fields that are important, and there are only two 

such difference frequencies, and thus only two parameters.   

 We will use the term triaxial field to refer to the case where the two beat 

frequencies are so large that the particle suspension cannot follow the beats.  The term 2-

d heterodyning will refer to the case where the particle suspension can follow only one 

beat frequency (e.g. component frequencies of 0 Hz, 200 Hz, 201 Hz), and 3-d 

heterodyning to refer to the case where the suspension can follow both beat frequencies 

(e.g. 200 Hz, 201 Hz, 202 Hz).  Heterodyning creates interesting suspension dynamics 

that are described in a recent paper [12].   

 

Composite susceptibilities.   An interesting aspect of magnetic particle composites that 

is not always appreciated is just how small their susceptibilities are compared to that of 

the material of which their constituent particles are composed.  One sometimes sees a sort 

of "rule of mixing" assumption, where the susceptibility of the composite is taken to be 

the product of the volume fraction of the particle phase times the susceptibility of the 

material of which the particles are made, but in fact this assumption can be very poor, 

because the susceptibility of a single particle is much more a function of the shape and 

orientation of the particle than of the material of which it is composed.  For example, the 

susceptibility of a spherical particle is just χ p = 3β = 3(µp − 1)/(µp + 2) .  For a material 

of high relative permeability µp, such as Fe or Ni, the particle susceptibility approaches 3.  

The Maxwell-Garnet prediction for the susceptibility of a random composite is then just 

  χeff = 3φ 1 −φ( ).  For small volume fractions this gives a specific susceptibility χeff/φ 

close to 3.  The specific susceptibility can be thought of as the effective susceptibility of a 

typical particle in the composite. 

 The effectiveness of field structuring can be judged from measurements [12] on a 

set of Ni particle samples made at a loading of φ=6.8 vol.%.  Because the particles are not 

spherical, the specific susceptibility χeff/φ=7.1 of a random composite was found to 

exceed the Maxwell-Garnet prediction of roughly 3.  A composite structured by a 

uniaxial magnetic field was found to have an enhanced specific susceptibility of 17.2 
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along the structuring, or z axis, and 5.7 normal to this.  A composite structured by  a 

biaxial field had χeff/φ=4.9 along the z axis, and 14.7 in the x-y plane.  Finally, a 

composite formed in a 3-d heterodyned field with the z-axis field component biased by 

+25% gave χeff/φ=23.1 along the z axis and 10.3 normal to this.  Thus biased 

heterodyning permits the formation of anisotropic composites whose susceptibilities 

exceed those created by a simple unaxial field.  This large susceptibility should lead to 

greater magnetostriction. 

 

 20



Chapter 3 
Martin, Anderson, Read, Gulley 

MEASUREMENTS 
   

Optical cantilever apparatus. The reduction of demagnetizing fields is a principal 

difficulty in designing an apparatus to measure magnetostriction.  These fields are created 

by the magnetization of the sample itself and oppose the applied field, seriously reducing 

the field in the sample.  The magnitude of demagnetizing fields is strongly dependent on 

the shape of the magnetic sample.  In order for the applied field to penetrate the sample 

the field must be applied along a long axis of the solid, e.g. in the plane of a sheet or 

parallel to a long cylinder.  An optical cantilever apparatus readily accommodates long 

thin samples, and enables the samples to be pre-stressed, which is important to the 

magnitude of the effect.   The completed apparatus, Fig. 1, consists of the 

magnetoelastomer suspended from a cantilever.  The FSME is centered in Helmholtz coil 

and is pre-stressed by adding weights to the cantilever, so measurements are made at 

constant strain.  A mirror on the cantilever deflects a laser beam, which hits a 640x480 

CCD array positioned 6 m away.  A small beam spot is created by imaging onto the CCD 

a 50 µm aperture positioned a few cm in front of the laser.  This apparatus has ~50 nm 

displacement resolution, which for a 50 mm sample  is ~1 ppm strain resolution. 

 The Helmholtz coil is designed for high field homogeneity and low power 

dissipation.  Field homogeneity was optimized by a careful selection of the coil spacing, 

and power dissipation was minimized by making the coil cross section as thick as 

practical.  The coil pair resistance is 2.2 Ohm and each coil is 400 turns of 1 mm square 

wire.  Two Kepco bipolar current supplies (36V-12A) connected in parallel supply 

currents as large as 18 A to the coil, generating fields up to ~1200 Oe. 

 

Salient aspects of the data.  Let us now examine some typical response data, to 

appreciate the salient aspects of response in these materials in the configuration we have 

described.  The term response will be used to refer to the observed contraction or 

elongation of the magnetoelastomer in a magnetic field.  Response is generally a 

combination of effects, but when the response is essentially due to magnetostriction, or 
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when the magnetostrictive contribution to the response is extracted from the raw data, we 

will refer to this as magnetostriction. 

 

 
Figure 1. (left)  Optical cantilever apparatus. (right)  Cantilever and the Helmholtz coil.  Coil is 

elevated above the stainless steel table to eliminate magnet image dipoles.  

 

 Saturation.  We will start with the simplest case, that of samples of Fe particles 

chained in a uniaxial magnetic field, with the chains parallel to the long axis of the 
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sample.  At low fields the magnetostriction is observed to be proportional to the energy 

density of the field, as expected, Fig. 2.  But at high fields the magnetostriction reaches a 

limiting value as the Fe saturates, Fig. 3a.  This high field data can be fit by the 

remarkably simple expression 

 

     
    
γ =

αW
1+ W /Wch

     (4) 

 

where W=BH is the twice the field energy density and Wch is the characteristic value of 

this, at which the sample strain is 1/2 the maximum attainable.  For composites having 

large susceptibilities one would expect α to be relatively large.  At constant susceptibility 

Wch will increase with the saturation magnetization of the particles.  

 
Figure 2.  At low fields the strain is proportional to the energy density of the field.  These data are 

for a sample structured by a uniaxial magnetic field. 

 

 If this relation is an accurate description of the data, then a plot of W/γ vs W should 

give a straight line.  Data for a 10 vol.% uniaxial sample show that this is indeed the case, 

Fig. 3(bottom), giving α=1.18 ppm/Pa and Wch=8.35 kPa.  In a saturating field the strain 

will approach γmax=αWch, which in this case is 9,800 ppm.  This strain is five times 
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greater than that obtained for terfenol-D.  

 

 
Figure 3. (top) Response data for a 10 vol.% Fe composite shows the effect of magnetic 

saturation.  (bottom) This linear plot shows that Eq. 4 is an accurate description of the data.  From 

this plot a saturation strain of 9,800 ppm is obtained. 
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 Prestress.  It is clear that in order for a chain of hard spheres to contract there must 

be gaps between the particles.  So it is not surprising that there should be some 

dependence of magnetostriction on sample prestress or prestrain.  The low field data in 

Fig. 4 were taken at three widely different prestresses, and show a nonmonotonic 

dependence of the observed strain on prestress.  In this case the elastic modulus of the 

sample is 1.7 MPa, so the sample prestrain varied from 7400 ppm to 61,000 ppm.  The 

prestrain is thus much greater than that needed to create gaps large enough to close.  This 

is a complicated aspect of these materials that we will discuss below. 

 
Figure 4.  Measurements of the response of a uniaxial Fe composite show a dependence on 

prestress.  In fact, the response increases linearly with prestress for stresses below a yield stress.  

Note the especially low response at the highest applied stress. 

 

 Particles.  The linear theory of magnetostriction shows that the stress depends on the 

particle susceptibility, and this should be very similar for Ni or Fe powders. Experiments, 

however, show that Fe composites have six times greater magnetostriction than Ni 

composites (data for 20 vol.% composites). Measurements of the susceptibility of these 

composites show very similar values, so this difference is unexpected.  We believe that it 

is due to poor adhesion of the Ni particles to the polymer, which causes severe field-

induced clumping transitions in the strained Ni composites. 
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Figure 5.  Measurements on samples of aspect ratios 14.3 and 5.9 show how the sample shape 

can influence the response.  Higher aspect ratio samples have greater response, as expected. 

 
Figure 6.  The structure of the particle agglomerates has an enormous impact on the response, 

with biaxial composites exhibiting a negative response. 
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 Shape.  The observed response can also depend on the sample shape.  In Fig. 5 

measurements on a sample with an aspect ratio of 14.3 are compared to those on a sample 

of aspect ratio 5.9.  The high aspect ratio sample has significantly greater response, due to 

the reduced effect of demagnetization fields.  Accounting for demagnetization field 

effects is thus an important aspect of this work. 

 Structure.  The structure of the particle agglomerates within the composite have an 

enormous influence on the response, Fig. 6.  An unstructured sample has much smaller 

magnetostriction than a sample structured by a uniaxial field, and a sample structured by 

a biaxial field normal to the long axis of the sample even exhibits a negative response.  

Some samples exhibit even more complex behavior, with an observed positive response 

at low fields and a negative response at high fields.  But whether or not this mixed 

behavior occurs is also dependent on the prestress.   

 
Figure 7.  Biaxial composites made at small particle loadings are found to have an anomalously 

large response at small applied stresses. 

 

 Extraordinary response.  A few samples were found to exhibit an extraordinary 

response, Fig. 7.  This extraordinary response occurs at lower particle loadings, low 
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applied stresses, and high fields.  It only occurs for samples structured by a biaxial field. 

 There are quite a few effects for which an explanation is needed.  We will start by 

considering demagnetization field effects as an understanding of these is essential to the 

interpretation all of the response data. 
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Chapter 4 
Martin 

DEMAGNETIZING FIELD STRESSES 
 

The stress on a magnetic prolate spheroid due to its demagnetizing field arises because an 

elongation of the sample will decrease its demagnetizing field, thus increasing its internal 

field and magnetic moment.   Our sample geometry is that of a solid rectangle, so this 

computation does not exactly correspond to experiment, but is nonetheless a good 

approximation.  In fact, the reason we use the prolate spheroid geometry is that the field 

inside a prolate spheroid is uniform when placed in an initially uniform field.  This makes 

possible an analytical solution to internal field, which can be formulated in terms of a 

demagnetization factor that is independent of the material susceptibility.  The field inside 

a solid rectangular object is not uniform, and does not admit to an analytical solution.  A 

demagnetization factor can be defined for the average internal field, but then this depends 

in a complex way on the material susceptibility. 

 Consider a prolate spheroid of aspect ratio g>1 with its long axis aligned with the 

field, which we take to be along the z axis.  For this case the demagnetization factor n is 

 

   

    

n =
1

g2 −1
g

2 g 2 −1
ln

g + g2 −1
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−1
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⎣ 

⎢ 
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⎤ 

⎦ 

⎥ 
⎥ 
⎥ 

≅ ln 2g( )−1[ ] g 2    for g >> 1.

   (5)  

 

If an external field is applied to an FSC, the internal field will be quite non-uniform, due 

to the discrete particles.  Here it will be adequate to treat the composite as a continuum 

solid, so the "macroscopic" internal field is uniform throughout the material.  If the 

applied field is low enough that this magnetic solid is far from saturation, then we can 

assume the composite susceptibility χ is independent of field.  The internal field is then 

    Hint = H0 − nM = H0 − nχHint  and  
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         Hint = H0 (1+ nχ )      (6) 

 

The energy of a linear magnetic material of moment m in an applied field H0 is 

  
U = − 1

2
µ0m ⋅H0 .  This expression includes the work done by the perfect power supply 

used to keep the applied magnetic field constant.  The applied field will thus cause a 

force 
    
F = −

∂U
∂Z

ö , where Z is the length of the solid.  A positive force indicates an 

elongational stress.  In terms of the sample moment 

z 

 m = VM  the force is 

    
F = + 1

2
µ0 H0V

∂M
∂Z

ö  , where z
  
V =

π
6

ρ2 Z  is the sample volume and the sample 

magnetization is     M = χcH int .  Using Eq. 6 for the internal field gives  

 

     
    
F =

1
2

µ0 H0
2V

(1 + nχ )2
∂χc
∂Z

− χ 2 ∂n
∂Z

⎡ 

⎣ 
⎢ 
⎢ 

⎤ 

⎦ 
⎥ 
⎥     (7) 

 

The volume of a prolate spheroid of minor diameter ρ is 
 
V = 1

6
πρ2 Z  so   ρ = 6V πZ  

and     g = Z3/ 2 6V π .   

 

Large aspect ratio samples.  For samples having a large aspect ratio it is simple to 

obtain an analytical result for the demagnetizing stress.  In this approximation, and for an 

incompressible spheroid, 
    

∂na
∂Z

=
−3

ρg3
ln 2g − 3

2( ).  Substituting this equation into Eq. 7 

gives for the measured stress 

 

    

    

σmeas =
σ mag

1 + nχ( )2
+

µ0 χ 2H0
2

1 + nχ( )2
ln 2g − 3/ 2

g2
    (8) 

 

where the magnetostrictive stress is 
 
σmag = 1

3
µ0 H0

2 ∂χ
∂γ

 and γ is the strain.  This 
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expression can be used to correct experimental data taken at low applied fields for the 

demagnetizing field strain, with the result  

 

  γmag = γmeas −
µ0M 2

E
n − 1 2g2[ ]⎧ 

⎨ 
⎩ 

⎫ 
⎬ 
⎭ 

×
H0

H0 − nM
⎛ 

⎝ 
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⎠ 
⎟ 

2

   (9) 

 

where   M = χH int  and E is the tensile modulus. 

 

Saturation. At magnetic fields large enough that the linear susceptibility approximation 

fails, the calculation of the stress becomes more complex.  Define the non-linear 

susceptibility .  Then the internal field can be written as     χ H int( )= M / Hint

    
Hint = H0 / 1 + nχ Hint([ )].  For composites the susceptibility is small, perhaps no larger 

than 5, and for long prolate ellipsoids the demagnetization factor is small as well, so the 

product   nχ  is small.  With little error we can use the approximation 

    
Hint = H0 / 1 + nχ H0( )[ ].  For a change in the sample magnetization at constant applied 

field the force is still 
    
F = + 1

2
µ0 H0V

∂M
∂Z

ö  .  Using these expressions we can show that 

Eq. 9 is approximately correct even for saturating fields. 

z

 

Small aspect ratio samples.  For samples with a small aspect ratio, say g<4, Eq. 9 is a 

really poor approximation, as Fig. 8a shows.  On the other hand, differentiating the exact 

form, Eq. 5, of the demagnetizing factor n with respect to g would just create a mess.  A  

0good approximation to the exact derivative dn/dg, taken numerically, is all that is really 

needed.  Balancing accuracy against simplicity we came up with 

 

     
    

dn
dg

≈ −
2n
g

+
1
g3

1− 7
8

ln 1 + g2( ) g2⎡ 
⎣ ⎢ 

⎤ 
⎦ ⎥ .   (10) 

 

This expression becomes exact for large g and is never off by more than ~1.4%, as shown 

in Fig. 8b.  The formula for the effect of demagnetizing fields on the measured strain is  
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 (11) 

 

This expression will give dramatically different results for the estimated magnetostriction 

for short, thick samples.  To correct the sample strains in a controlled stress experiment 

one can simply divide Eq. 11 by the composite tensile modulus E. 

  
Figure 8.  (a) Approximate and exact forms of the demagnetization factor are compared.  (b)  The 

approximate and exact derivatives differ substantially for aspect ratios less than 5. 

 
Figure 9.  Demagnetizing field strain is found to be essentially independent of the applied stress. 

 

 A key prediction of Eq. 11 is that the demagnetizing field strain (or stress) is 
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independent of the sample preload.  Experimental data in support of this are shown in 

Fig. 9 for a 10 vol.% biaxial composite with an aspect ratio of 4.7.  Here the observed 

response is entirely negative (elongation), being dominated by demagnetization fields.  

Because magnetostriction does depend on the sample preload, the combination of the two 

effects can lead to complicated trends. 

  

 
Figure 10.  (a) For a 30 vol.% biaxial field-structured composite the response data depend 

nonmonotonically on the field, with both negative and positive responses. (b) The 

magnetostriction extracted from the response data is positive and monotonic. 

 

An example.  A biaxial, 30 vol.% Fe particle composite is an ideal example of the 

importance of demagnetization field corrections, since it should exhibit small 

magnetostriction and thus the demagnetization fields should produce a significant 
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contribution to the response.  The data for this sample, Fig. 10a, show a complex 

behavior with both negative and positive responses obtained at some sample preloads.  

The modulus for this composite is 7.5 MPa, so the range of sample prestrains is from 

3400 - 13300 ppm.   

 To correct this response data for demagnetizing field effects requires an expression for 

the sample magnetization.  In an earlier paper [11] we studied the magnetization behavior 

of field-structured particle composites and found that the expression 

 

      M =
χH

1+ χH
φMsat

⎛ 
⎝ 

⎞ 
⎠ 

2
     (12) 

 

is quite accurate.  Here φ is the volume fraction of particles, χ is the composite 

susceptibility, and Msat is the saturation magnetization of the particle material.  Msat for Fe  

is 1.72x106 A/m.  The composite susceptibility we obtain from earlier experiments, [11] 

and along the applied field χ is 3.03 for a 30 vol.% biaxial composite.   

 
Figure 11.  The magnetostriction effect can be extracted from the response data by modeling and 

subtracting the effect of demagnetizing fields. 
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Figure 12.  Modeling the demagnetization field strain for random (a) and uniaxial (b) composites 

shows that the effect becomes increasingly significant as the particle loading increases. 

 

 We first examine the response at the lowest preload, Fig. 11, since this is mostly due to 

demagnetization fields.  This curve is fit to the sum of two functions, Eq. 4, whose two 

parameters we seek, and Eq. 11, whose parameters are known.  Some adjustment to the 

sample aspect ratio is also required, as the samples are solid rectangles, not prolate 

spheroids.  The result is that the demagnetization strain is 27 ppm at this preload.  The 
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fits to all of the data sets were made with exactly the same demagnetization response, and 

the extracted magnetostriction curves are in Fig. 10b.  From this we see that the 

magnetostrictive response is really quite poor for this sample, as predicted by theory.  We 

also observe an increase in the magnetostriction with increasing preload. 

 Finally, it is of interest to examine the dependence of the demagnetization strain on 

particle loading for the aspect ratios of our standard samples.  This shown in Fig. 12 for 

both random and uniaxial composites, using the measured tensile modulus and composite 

susceptibility.  For the uniaxial samples the demagnetization field correction becomes 

significant at 30 vol.%. 
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Chapter 5 
Martin, Read, Gulley 

EXTRAORDINARY RESPONSE 
 

Some of the samples we synthesized to test our understanding of magnetostriction in 

field-structured composites exhibited an extraordinary positive response at low preloads 

and high fields.  This surprised us because this effect only occurred for samples we 

expected to have minimal magnetostriction.  This extraordinary response only occurs 

when the transverse susceptibility (i.e. normal to the long axis) of the magnetoelastomer 

significantly exceeds the longitudinal susceptibility.   

  

Susceptibility anisotropy.  For most samples the field exerts a stabilizing torque, since a 

magnetic material will tend to align along its long axis.  The cause of the extraordinary 

response is a destabilizing torque, due to an inverse susceptibility anisotropy in some 

samples.  The parallel and perpendicular sample susceptibilities, including the effect of 

demagnetizing fields, are 

 

    
    
χ || =

χc,||

1+ n||χc,||
 ,   χ⊥ =

χ c,⊥

1+ n⊥χ c,⊥
,     (13) 

 

in terms of the susceptibilities intrinsic to the composite itself, χc,||  and χc,⊥ .  In the 

absence of an applied stress the sample will align along the axis of greatest susceptibility.  

The magnetic field is applied along the longitudinal axis, but if the perpendicular 

susceptibility is larger, i.e.   χ⊥ > χ|| , the field will exert a destabilizing torque on the 

sample.   

 The question arises as to whether it is possible for this destabilizing torque to arise in 

a long thin FSC.  Consider the worst case, a long cylindrical sample.  For this the 

demagnetization factors are very close to   n|| = 0, n⊥ =1/ 2.  For a 10 vol.% sample made 

of particle sheets we have shown [11] that the composite susceptibility normal to the 

sheets is 0.335 (MKS) and in the plane of the sheets it is 1.593.  If the sheets are formed 
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normal to the cylindrical axis, the sample susceptibility is 

  χ⊥ = 1.593 (1 + 0.5 ×1.593) = 0.8875  which is much greater than the longitudinal 

susceptibility of  0.335.  Such a sample will have a destabilizing torque, provided the 

applied stress is small enough.   

 At higher particle concentrations a destabilizing torque will not occur.  For example, 

for a 20 vol.% composite of particle sheets the susceptibility normal to the sheets is 1.380 

(MKS) and in the plane of the sheets it is 2.750.  If the sheets are again formed normal to 

the cylindrical axis, the sample susceptibility is  χ⊥ = 2.750 (1+ 0.5 × 2.750) = 1.158  

which is now lower than the longitudinal susceptibility of 1.380, so the torque will be 

stabilizing, even at zero applied stress. 

 

Torque balance.  The magnetic torque on the sample can be computed by from 

considering the magnetostatic energy of a sample inclined at an angle θ to the applied 

field.  The magnetostatic energy is 
 
U = − 1

2
µ0m ⋅H0  where m is the sample moment.  Let 

our Cartesian coordinates (x, y) be such that the applied field is in the y direction.   The 

coordinates (x', y'), are defined such that the sample is along the y' direction. The sample 

moment is then     m = vH0 (χ|| cosθö ′ y − χ⊥ sinθö ′ x ), where v is the sample volume.  The 

energy is thus 
    
U = − 1

2
vH0

2( χ || cos2 θ + χ ⊥ sin2 θ ) and the magnetic torque is  

 

        τm = µ0vH0
2 cosθ sinθ χ⊥ − χ ||( ).    (14) 

 

A positive, destabilizing torque occurs when the transverse susceptibility exceeds the 

longitudinal.  The stress applied to the sample exerts the negative torque     τs = − Fl sinθ , 

where l is the sample length.  Balancing the mechanical and magnetic torques gives the 

equilibrium angle  

 

     
    
cosθ =

σ
µ0H0

2 χ⊥ − χ||( )
    (15) 
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in terms of the sample stress σ.  When this expression gives a positive value of cosθ that 

is less than unity, an instability will occur.  This condition occurs with large fields and 

small applied stresses.  The sample strain is just 1-cosθ. 

 For the 10 vol.% sample of sheets,  χ⊥ − χ || = 0.553.  At an applied stress of 3.45 

kPa (0.5 psi) the critical field will be 70.5 kA/m (883 Oe). Larger fields will show a clear 

instability, as the data in Fig. 7 demonstrate. 
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Chapter 6 
Martin, Read, Gulley 

EXPERIMENTAL RESULTS 
 

In these controlled stress experiments the strain is directly measured, but in addition there 

are a number of computed quantities that are of interest.  These include the maximum 

strain at saturation, the characteristic field product BH (twice the field energy density), 

the magnetic field contribution to the stress and modulus, the work performed, and the 

energy efficiency. 

 Before giving these factors it is worth noting that the self-consistent point dipole 

model actually overestimates magnetostriction.  Consider the 10 vol.% composite 

structured by a uniaxial field, for which the predicted stress is 6.9 × 1
2

µeffµ0H0
2 .  

Experiments show that the effective relative permeability for this composite is 

µeff = 2.36  and the tensile modulus is 1.7 MPa (245 psi).   Using these parameters we 

predict a strain of , where B is the magnetic induction field 

created by the magnet in the absence of the sample.  Experimental data at low fields and 

optimal sample preload give , so the real material falls well 

short of expectations.  We believe the discrepancy is related to the fact that the observed 

magnetostriction is dependent on preload, and the reasons for this are complex, as 

discussed briefly below. 

γ(ppm) = (4.8m3 / J)B × H

γ(ppm) = (1.2m3 /J )B × H

 

Saturation strain and characteristic field product.  The maximum strain at magnetic 

saturation and the characteristic field product are obtained from fitting to Eq. 4, as 

described above.  For the 10 vol.% chain sample the result is in Fig. 13a.  Here it is seen 

that the greatest saturation strain occurs at an applied stress of ~80 kPa, corresponding to 

an applied tensile strain of 4.7%.  At this preload the characteristic field product B× H  is 

6.4 kPa, so the composite reaches half its saturation strain at a field of ~72 kA/m (900 

Oe).  A field of this magnitude is easily achieved with an open-air Helmholtz coil, 

making these materials a practical choice for actuator applications. 
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Figure 13.  (a) The saturation strain is shown to approach 10,000 ppm for a 10. vol.% Fe 

composite.  The characteristic field products, Eq. 4, are well within the range of open air coils. (b)  

The magnetic modulus is as large as 500 kPa, but the magnetic stress reaches only 15 kPa. 

 

Magnetic modulus and stress.  Because measurements at low applied stresses show a 

linear dependence of the sample strain on the applied stress, invoking a magnetic tensile 

modulus  should be a useful way to describe the data.  For a sample under constant 

stress, the effect of the magnetic field is to change the strain alone.  This strain change is 

Em
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∆γ =σ[1/ E0 −1/(E0 + Em )], so the magnetic modulus is 

 

     Em =
∆γE0

2

σ −∆γE0
.     (16) 

 

where  is the tensile modulus in the absence of an applied field.  The magnetic 

modulus for the 10 vol.% Fe chain composite is given in Fig. 13b, using the measured 

tensile modulus of 1.7 MPa (245 psi).   increases with magnetic field and can be as 

large as 0.4 MPa at modest fields.  Fig. 13b shows a pronounced yield behavior, and the 

yield stress is found to increase with magnetic field, so it would be careless to use the 

magnetic modulus to compute stresses and strain without taking this yield behavior into 

account. 

E0

Em

 When the magnetic field is turned on, the sample contracts, so part of the stress 

initially supported by the elastomer is taken up by the magnetic interactions between the 

particles.  This magnetic stress load is  

 

    σm = σEm /(E0 + Em ) = ∆γE0 ,     (17) 

 

a formula which is intuitive, since a force added to a harmonic well merely generates a 

displaced harmonic well with the same stiffness.  The data in Fig. 13b show that a 

magnetic stress of 15 kPa can be obtained at a particle loading of 10 vol. %.   

 It is interesting to look at the work done per unit volume of sample during this 

strain.  This "work density" is the product of the strain and the applied stress.  For the 10 

vol.% Fe sample this work density is u=9800ppmx80.4kPa=0.8kPa at magnetic 

saturation.  

 

Particle loading.  As the particle loading increases, the sample response decreases, Fig. 

14a, but the magnetic stress increases, Fig. 14 b, because of the increase in the composite 

tensile modulus.  The work density increases with particle loading, Fig. 15a, reaching a 

value of over 1 kPa at an applied strain of ~2% for a particle loading of 45 vol.%.  The 

magnetic modulus, Fig. 15b, increases sharply with concentration, peaking at over 2 MPa 

 42



at 45 vol.%, compared to the zero field tensile modulus of 10.8 MPa. 

 

 
Figure 14.  The saturation strain (a) and stress (b) as a function of applied strain for uniaxial 

composites of a range of particle loadings. 
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Figure 15.  The work density (a) and magnetic modulus (b) as a function of applied strain for 

uniaxial composites of a range of particle loadings. 
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Figure 16.  Response (a) and magnetostriction data (b) for a 10 vol.% Fe composite. 

 

Structure.  It is of some interest to compare the magnetostriction of random composites 

to uniaxial and biaxial field-structured composites.  In Fig. 16 are shown the response and 

magnetostriction data for a random 10 vol.% Fe composite.  These data were corrected 

for demagnetizing fields as described above.  Comparing these data to the 10 vol.% 
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uniaxial data, Fig. 5, we see that there is a difference of about a factor of 5 in the 

magnetostrictive strain.  We are unable to provide data for a biaxial sample at this particle 

loading because of the torque instability exhibited by this sample.   

 At 30 vol.% the torque instability does not exist, and comparing data taken at the 

same applied stress show that the magnetostrictive strain of the biaxial sample is roughly 

6.6 times smaller.  The tensile modulus of the biaxial composite, 7.5 MPa, is larger than 

that of the uniaxial composite, 4.2 MPa, so the measured magnetic stress ratio (see Eq. 

17) is 6.6x4.2/7.5=3.7.  The theoretical magnetic stress ratio, based on simulated 30 

vol.% structures, is 4.4, which is in reasonable agreement with the observations.  In the 

linear regime the biaxial composite strain response is  and the 

uniaxial composite obeys  at an applied stress of 100 kPa.  

Accounting for the modulus difference gives a magnetic stress ratio of 3. 

γ(ppm) = (0.13m3 / J)B × H

γ(ppm) = (0.66m3 /J )B × H

 
Figure 17.  Biased heterodyning leads to composites with greater magnetostriction than those 

synthesized in a simple uniaxial field. 

 

Triaxial composites.  As mentioned above, we have been successful in using triaxial 

magnetic fields to enhance the susceptibility of particle composites, [12] and according to 

the self-consistent point dipole theory given above this enhancement should increase the 

magnetostriction of these materials.  To test this hypothesis we made samples with 
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several triaxial field conditions, including two- and three-dimensional heterodyning.  

Because the uniform field region of our triaxial magnet is small, we had to reduce the 

length of our samples, which reduced their aspect ratio.  For comparison, a uniaxial 

composite of the same size, 3.3x3.3x24mm was made.  Key results of this study are 

shown in Fig. 17.  As expected, the balanced triaxial field with 2-d heterodyning reduced 

the magnetostriction relative to the uniaxial sample. But the biased 3-d heterodyned 

composite showed a significant increase in magnetostriction, consistent with its larger 

susceptibility.  We cannot make a detailed comparison to theory, as our mean-field 

approach is not valid for composites made in triaxial fields. [12] 
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Chapter 7 
Martin, Anderson 

MAGNETIC-FIELD-DRIVEN INSTABILITIES IN SINGLE CHAINS 
 

 A remaining issue is why the observed strain depends on the sample preload, when 

the preloads are clearly sufficient to accommodate a much greater contraction without the 

particles contacting.  This is a complex effect that we believe has to do with field-induced 

particle clumping transitions.  The possibility of clumping was discussed in our paper on 

electro- and magnetostriction, but here we would like to develop that idea quantitatively.  

This is a complex topic that at this time is not fully resolved, so in this chapter we wish 

only to summarize a few basic issues for a single chain. 

 The elementary physical idea is that of a soft mode in a chain of particles.  There 

are two forces on a particle in a long chain of particles subjected to a longitudinal 

magnetic field:  an attractive dipolar interaction with the other particles in the chain, and 

an elastic interaction with the gel that tends to localize the particle at the mid point 

between the vicinal particles.  Each of these potentials has a curvature, and when the sum 

of these curvatures is zero the force on the particle is zero and the chain become unstable 

to fluctuations. 

 In the interest of simplicity we will consider a simpler instability: that of a single 

particle in an elongated chain with all of the other particles held fixed.  All of the 

particles are initially equally spaced and we calculate the force on one single particle 

displaced a distance ε from the midpoint between its neighbors.  If the displacement is 

positive and the force is negative, or vice versa, then the midpoint is a stable position. 

The chain is taken to be aligned along the z axis.  Each dipole of moment m = mˆ   

produces a field that along the chain axis is H

z

m =
1

2πr 3 mˆ z .  A self-consistent point 

dipole calculation shows that the moment of each dipole is  

where H

m = vχ pH0 /(1− χ pζ (3) /6δ3 )

0 is the magnitude of the applied field, v =
π
6

d3  is the particle volume, ζ(x) is the 

Reimann zeta function, and the elongation δ=1+γ where γ is the chain strain (at δ=1 the 

particles just contact.)  The particle susceptibility is 3β where β is the permeability 
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contrast factor defined above.  The dimagnetophoretic force on a particle is given by the 

well-known expression F = µ0m⋅ ∇Hloc, which reduces to F = µ0m(∂Hloc ∂z)ˆ z  for an 

enchained particle, with Hloc the local field.   

To compute the force on a particle we need to know the gradient of the local field.  

This local field is the sum of the applied field plus contributions from all of the other 

dipoles.  From symmetry the local field is an even function and can thus be expressed as 

a series of the square of the particle displacement. To first order in ε2 the result is 

 

Hloc(ε) =
H0

1−
χ pζ (3)

6δ3

1+
χ pζ(5)

δ5d2 ε2⎡ 

⎣ ⎢ 
⎤ 

⎦ ⎥      (18) 

 

The force on a particle is thus 

 

  F = +ζ(5)
πd
3δ5

µ0χ p
2 H 0

2

1−
χ pζ(3)

6δ3
⎡ 

⎣ ⎢ 
⎤ 

⎦ ⎥ 

2 εˆ z      (19) 

 

and we note that this magnetic force is always destabilizing.   

The force on a single particle embedded in a gel and displaced in the z direction is 

Fg = −3πdGˆ z , where G is the gel modulus.  For a particle in a chain, G will have to be 

renormalized due to debonding of the gel from the particle in the particle gap region, so 

G may be regarded as an effective parameter.  In this view of the gel each particle is 

localized as if by a cantilever spring.  Elastic interactions between particles are not 

included, so we simply call this the cantilever model. 

 The stability criterion is obtained by comparing forces.  The single particle 

becomes unstable when 

 

  
ζ(5)
δ5

µ0β 2H0
2

1−βζ(3) /2δ3[ ]2
≥

G
n

.      (20) 
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The factor n=1 for the single particle fluctuation with the rest of the particles constrained.  

For the physically more realistic case of unconstrained particles, the soft mode will 

exhibit itself as a clumping of particles into dimers.  Without giving the details, the 

instability transition is given by Eq. 20, with n=2.   

 Consider the application of a field to a chain that is prestrained.  As the field is 

ramped up, the particles suddenly dimerize.  At a higher field the dimers form tetramers, 

and at a yet higher field the tetramers form octamers and so forth, so that there is a non-

ending succession of clumping transitions, each with its own stability condition.  As the 

field is ramped back down, there is a succession of declumping transitions.  But each of 

these transitions occurs at a lower field than the corresponding clumping transition.  For 

example, a tedious calculation shows that the declumping transition for dimers is 

 

  31
32

ζ(5)
δ5

µ0β 2H0
2

1− βζ (3)/2δ3 1+
6

ζ(3)
δ −1

δ
⎛ 
⎝ 

⎞ 
⎠ 

2⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ 

⎧ 
⎨ 
⎩ 

⎫ 
⎬ 
⎭ 

2 ≤
G
n

.   (21) 

 

De-clumping thus occurs at a smaller field, and the chain is hysteretic. 

 

Stress calculation.  Before giving simulation results we must discuss the problem of 

stress calculation for the cantilever model.  In general, the stress in a chain of particles is 

computed across any particular plane by simply summing the force of interaction 

between each particle on one side of the plane with all of the other particles on the other 

side.  The force of interaction between the two semi-chains is then normalized by the area 

associated with the single chain to generate a stress.  This computational prescription 

seems simple enough, but in the cantilever model the force on a particle due to the gel is 

not a pairwise interaction.  How then does this gel force contribute to the stress? 

 To compute the gel stress we must account for the fact that the gel itself provides 

the support for the cantilevers.  To model this we imagine that the cantilevers are 

connected to the nodes of a chain of springs, as depicted in Fig. 18. Each of the n 

Hookean springs has a force constant K and thus in the unperturbed state the tension in 
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each spring is Kl0, where l0 is the unperturbed spring length.  Now suppose the particle 

attached to the cantilever attached to node m+1 is displaced by a force F applied along 

the chain direction. The effect of this cantilever force is to alter the tension in the springs 

above and below this node. The tension change in each spring contributes to the magnetic 

stress in a plane that bisects that spring. 

The computation of the change in the spring tension is straightforward.  Let x and 

y denote the spring length below and above node m+1, respectively.   The total chain 

length, which is fixed, is then L = nl0 = mx + (n − m)y .  A force balance gives 

F = K(x − y).  Combining these two equations and solving then gives y = l0 −
m
n

F
K

.  The 

tension of the springs above node m+1 change by −
m
n

F  and below node m+1 they 

change by +
n − m

n
F .  Two points are noteworthy.  First, the tension change in each 

spring is independent of the initial (zero field) spring tension.  Second, this tension 

change depends on the position of the particle to which the force is applied, which is an 

unusual aspect of the cantilever model.  The gel contribution to the stress across a plane 

that intersects spring m, which connects nodes m and m+1, is 

 

  σ gel = −
j −1
n −1

Fj
j=1

m

∑ +
n − j
n −1j= m +1

n

∑ Fj .    (22) 

 

The remaining stress contributions are from the dipolar and hard sphere interactions 

between particles separated by the stress plane.  The sum of these terms gives a sample 

magnetic stress that is independent of the location of the stress plane, which is an 

important check on Eq. 22.   

 

Simulations.  The implications of this cantilever model of magnetostriction are 

interesting.  To explore the predicted instabilities a dynamics simulation was written that 

included, in addition to the magnetic and gel forces, both hard sphere interactions and 

viscoelastic dissipation in the gel, the latter of which serve to damp phonons that would 

arise from the clumping instabilities.  Typical results of this simulation are shown in 
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stress versus elongation data in Fig. 18.  Upon extension a series of de-clumping 

transitions are observed, until at full elongation the chain consists of equally spaced 

particles.  Clumping transitions occur at lower elongations upon contraction, as expected, 

causing true hysteresis in the stress curves (the contraction stress is lower, so we have not 

created a perpetual motion machine of the first kind.)  Two points are important.  First, 

because of the energy dissipation it is not possible to obtain the stress from a strain 

derivative of the dielectric constant.  Second, the stress still decays monotonically with 

the strain, unlike the experimental data, so this single chain model does not explain the 

preload dependence of our measured magnetostriction.  Current work is focused on 

understanding collections of interacting chains.  These calculations show some promise 

of explaining the preload dependence. 

  

 
Figure 18.  Simulation of the cantilever model shows abrupt changes in the stress that are due to 

clumping transitions. 
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Chapter 8 
Anderson, Martin 

INSTABILITIES IN INTERACTING CHAINS 
 

Introduction 
 

 Our experimental observations of magnetostrictive effects, in elastomers 

containing field-structured chains of roughly spherical magnetic particles, presents us 

with several unexpected results.  One major surprise is that the magnetically-induced 

contractions increase when tensile prestrain is increased, typically varying in direct 

proportionality with the prestrain.  Modeling a single chain produced field-driven 

clumping instabilities, but did not manage to reproduce the prestrain dependence of 

magnetostriction.  This raises the possibility that the prestrain dependence is actually due 

to chain interactions.  In fact, this is quite an interesting and subtle subject, since the 

clumping instabilities within a chain generate interactions between chains.  The reason for 

this is that the field due to a long single chain of dipoles falls off exponentially fast with 

the distance from the chain.  When this transverse distance exceeds the interparticle 

spacing the field from the chain can be ignored.  But when a field is applied to a chain the 

particles undergo the clumping instabilities described above, and this causes the field due 

to this chain to increase dramatically: The exponential fall-off still occurs, but the 

interaction length scale becomes the average distance between the clumps.  This is how 

the clumping instability induces interactions.  To explore the effect of multiple-chain 

interactions we developed the analytic and numerical analyses discussed here.   

 In what follows, we assume:  (a) monodisperse spheres of magnetic material are 

embedded in a non-magnetic elastomeric matrix, (b) the magnetic material has high 

permeability and is magnetically soft (β=1 polarization limit), (c) all spheres are 

structured into long chains, parallel to the z axis, with the spheres in each chain in contact 

when the matrix is not mechanically strained, and (d) test samples are much longer (in the 

z direction) than their width, so that the depolarization contribution to the induced strain 

can be ignored. 
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Magnetostriction without clumping 

 

 It is informative to calculate the magnitude of the magnetostriction when the 

spheres are not allowed to form clumps.  In this case the sphere-to-sphere spacing in a 

stretched matrix becomes (1+γ)d, where γ is the applied tensile strain and d is the sphere 

diameter.  In the β=1 limit the magnetic field along a chain axis at a distance s from a 

polarized sphere of moment m is (1/4)(m/m0)(d/s)3, where m0 is the moment acquired by 

an isolated sphere in a uniform magnetic field H0.  The local field, including the field 

arising from all other dipoles of moment m in a long chain is therefore 

 

Hlocal/H0 = m/m0 =[1+(1/2)ζ(3)(m/m0)(1+γ)-3],   (23) 

 

from which 

 

m/m0 = [1-(1/2)ζ(3)(1+γ)-3]-1 = [1-0.601028(1+γ)-3]-1.  (24) 

 

For samples loaded with 10% or less spheres by volume, the field contributions from 

neighboring chains (presumed to be uniformly spaced in the x-y plane) is small and has 

been ignored.  Under this circumstance, at zero strain the ratio m/m0 is 2.5064. 

 The free energy associated with a polarized sphere in a uniform applied magnetic 

field of strength H0 is -(1/2)µ0mH0, where µ0=4π∗10-7 Wb/(A m) is the permeability of 

free space, m=3vsHlocal, and vs is the sphere volume.  The magnetic free energy per unit 

sample volume, Umag, is therefore -(3/2)φµ0[1-(1/2)ζ(3)(1+γ)-3]-1H0
2 = -(3/2)φ[1-

(1/2)ζ(3)(1+γ)-3]-1B0
2/µ0, where φ is the volume fraction occupied by the spheres.  From 

evaluating the numerical quantities, we find 

 

Umag = -1.19366∗106 φ [1-0.601028(1+γ)-3]-1 B0
2.  (25) 

 

With φ=0.1 and B0=1200 gauss (0.12 T), Umag = -1719 J m-3 [1-0.601028(1+γ)-3]-1.  At 

zero strain the energy reduction is 4308 J m-3.  The magnetic contribution to the stress 

can be found by differentiating Eq. 25 with respect to strain, with the result 
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σmag = -2.15227∗106 φ (1+γ)-4 [1-0.601028(1+γ)-3]-2 B0
2. (26) 

 

By using the above φ and B0, σmag = -3099 Pa (1+γ)-4[1-0.601028(1+γ)-3]-2.  Results from 

evaluating Eq. 26 at various applied prestrains, γ0, are listed in Table I. 

 
Table I:  Predicted magnetic compressive stress and contractile strain 

10 vol % of β=1 spheres, no sphere clumping, B0=1200 gauss 
Applied 

prestrain(%) 

Magnetic stress: 

psi & (Pa) 
Predicted contraction with sample modulus E=150 psi (1.034 MPa): 

from comparing σmag and E  from minimization of free energy 

0 2.824  (19470) 1.88 % ----- 

2 2.208  (15230) 1.47 % 1.84 % 

4 1.772  (12220) 1.18 % 1.37 % 

6 1.451  (10000) 0.97 % 1.08 % 

8 1.208    (8330) 0.81 % 0.87 % 

 

 This table also shows the predicted contraction, γ0-γ, determined simply by 

comparing the magnetic stress with a typical experimentally measured modulus, E, of 

150 psi (1.034∗106 Pa).  The larger contraction found by minimizing the net free energy 

reflects the increase in contractive force as the spheres move closer to each other. 

 From either of these calculations, a roughly 50% reduction in magnetostriction is 

expected as the prestrain is increased from 2% to 8%.  We also note that the magnitude of 

the predicted contraction is roughly consistent with our observation of contractions of the 

order of 1% under experimental conditions comparable to the parameters used in these 

calculations. 

 

Magnetostriction with clumping 

 

 The above analysis fails to explain our experimental observation of increased 

magnetically induced contractions in pre-strained samples.  Clearly, a major contribution 

to these magnetostrictive effects is missing from our simple calculations.  Thus, we 

expect that particle-clumping may be playing a significant role, so a computational model 

has been developed to explore some of these effects. 
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 In the model described below, we relax the condition that the sphere spacing in 

the chains follows the tensile strain of the matrix, thereby allowing spheres to clump.  But 

we still require that the overall length of the particle chains is consistent with the applied 

strain, and the present version of the model requires that all sphere clumps be of the same 

length.  Thus, if the clumps are k spheres in length, the gaps between the clumps must be 

k times larger than the inter-sphere gaps if the spheres were evenly spaced. 

 

Mean moment.  As was implied in the derivation of Eq. 25, the magnetic contribution to 

the free energy, Umag, obeys the formula 

 

Umag = - (3/2)φ m m0( )B0
2 / µ0,    (27) 

 

where m  is the mean moment of spheres in the chains.  Thus, the mean normalized 

moment m m0  was needed, as a function of applied strain and clump length.  Obtaining 

the moments self-consistently required iterative numerical calculations that included 

three-dimensional summations of, in some cases, tens of millions of dipolar fields.  The 

requirement that all clumps were the same length allowed all clumps, and in effect all 

chains, to be treated as identical, which greatly improved the computational economy.  

Nevertheless, these calculations were sufficiently costly of computational time that 

finding minimal free energies relied on the use of pre-computed m m0  tables. 

 In our calculations of m m0 , the chains of magnetic spheres are arranged on a 

square lattice with a chain spacing consistent with a volume fraction of 10%.  When 

tensile strain is applied along the chain axes, the chain spacing is reduced to maintain 

constant volume fraction. 

 At finite applied strains, the arrangement of the inter-clump gaps in each chain 

presents further choices.  We investigated two high-symmetry options, in which (a) the 

gaps in neighboring chains are aligned with the gaps in the central chain and (b) the gaps 

in neighboring chains are either aligned with gaps in the central chain or are displaced 

along the z axis to be aligned with the midpoints of clumps in the central chain.  In option 

(b), alignment with gaps or clump midpoints was alternated checkerboard-fashion, an 

arrangement we will call z-staggered inter-clump gaps.  Because substantial electric 

 56



fields arise from the ends of the clumps, these two arrangements give markedly different 

strain and clump-length dependences of the mean moments.  The results of option (b), 

shown in Fig. 19, were applied to our free-energy minimization routines.  Option (a) 

calculations, which yielded a significantly less dramatic dependence on clump length, 

have not been applied to the model. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 19.  Mean normalized moment m m0 as a function of applied strain and clump length.  

Volume fraction of magnetic spheres was 10% and chains were arranged on a square lattice with 

z-staggered inter-clump gaps.  Moments were computed for all clump lengths of 10 or less;  for 

longer clump lengths, ten specific lengths approximately equally spaced on the logarithmic axis 

were computed, and values for clump lengths lying between these were obtained through 

parabolic interpolation 

 

 A further z-position issue arose from the periodic, Bessel-function axial-field 

component from a line of evenly-spaced dipoles.  This field contribution affected the 

computed mean moment at a ±0.3% level at 20 vol% particle loading, an amount that is 

quite noticeable because changes in the mean moment are the important quantity.  At the 

10 vol% particle loading invoked in our modeling, the greater chain spacing allowed this 

field contribution to decay to around ±0.004%, but we still needed to remove it to reduce 

chaos when minimum-energy conditions were sought.  Our first-order nulling scheme 
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was, in effect, to average the results from the dipole-field summations when the 

neighboring chains were displaced vertically by plus and minus 0.25 d.  This procedure 

removed all noticeable oscillatory beats in the magnetic energy as a function of clump 

length. 

 

Mechanical energy contributions.  If not for the possibility of particle clumping, the 

elastic energy density would simply be Uelastic= γ 2E.  When a constant force (stress=σ0) is 

applied, the prestrain satisfies γ0=σ0E.  The energy-density contribution from work done 

against this constant force (for example, by a change in sample length from 

magnetostrictive contraction) is given by Ustress=(γ0-γ)γ0E.  These two contributions can 

be combined to give a mechanical energy density Umech=(γ 2-γ0γ+γ0
2)E.  For convenience 

the elastic energy due to the prestrain alone can be subtracted, simplifying the mechanical 

energy density to the formula 

 

Umech = (γ0-γ)2E,      (28) 

 

where γ0-γ is the contractile strain. 

 No obviously correct way to model the elastic-energy consequences of particle 

clumping is evident, therefore we consider two different models.  In the first of these 

models, the spheres in each chain are presumed to be linked together with simple springs 

that exert no force when the spheres are in contact.  A parameter is needed to control the 

magnitude of the inter-particle forces from these springs, and it is intuitive to specify the 

fraction, f, of the net modulus of a sample that arises from these springs.  In the second 

model considered the spheres are viewed as individually attached to cantilever springs 

whose “fixed” ends ride along with the strained elastomeric matrix.  The controlling 

parameter in this case, also denoted f, will be normalized so that a clumping of all spheres 

into pairs has the same energy cost in either mechanism.  In either model the elastic 

matrix is presumed to be uniformly strained, independent of particle clumping. 

 In the chain-springs model (m1), clumps of length k have the effect of reducing 

the number of springs that must be stretched to 1/k the total number of springs, but the 
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inter-clump gaps become k times larger.  This results in an elastic-energy clumping cost 

that is linear in k.  By using Eq. 28 the net mechanical energy can be written 

 

Umech, m1 =  [ (γ0-γ)2 + f (k-1) γ 2 ] E .   (29) 

 

The matrix modulus receives no contribution from the chains in the cantilever-springs 

model (m2), but particle clumping causes the springs attached to each sphere to be 

deformed according to the series γd[1,3,5,…,(k-1)], for clumps of even length k, and by 

γd[0,2,4,…,(k-1)] for clumps of odd length.  These series represent only half of a clump 

because the spring deformation is symmetrical about the clump center.  The elastic 

energy from these deformations varies the mean square of the deformations, or as 

γ 2[12+32+52+…+(k-1)2]/k in the case of even k.  For either even or odd lengths, the sums 

in the square brackets, after normalization to k, equal (k2-1)/6.  The net mechanical 

energy can then be written as (the factor 2/3 equates the elastic energy costs of 

dimerization in either model) 

 

Umech, m2 =   [ (γ0-γ)2 + (2/3) f (k2-1) γ 2 ] E .   (30) 

 

In this version the elastic energy cost of forming clumps is not linear in the clump length, 

but approaches a quadratic dependence on the clump length at large k. 

 

Free-energy minimization.  Our software automated the search for minimal-energy 

conditions, where the energy is defined as the sum of Umag from Eq. 27 and Umech from 

either Eq. 29 or Eq. 30.  After the parameter f was input, one has the option of either 

selecting values of clump length or allowing an automated search for the clump length 

that minimized the energy (see Fig. 20).  In either case, finding the minimal-energy 

sample contraction (which depended on the two main parameters, clump length and f) 

was automated.  The strain was resolved to 0.001%, with m m0 values at each strain 

being extracted from the much coarser tabulated values by an interpolation scheme that 

maintained continuity in both the values and their first derivative with strain.  Having a 
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continuous first derivative was crucial in preventing results from the automated 

contraction scan from becoming pinned at strains used to prepare the m m0 table. 

 Figure 21 shows the predicted magnetostrictive effects, under the assumption that 

the energy-minimizing clump lengths shown in Fig. 20 pertain.  We have determined in 

Chapter 7 that the sphere clumping process is encumbered with hysteresis, and this 

argues against such clump lengths actually being realized with high precision. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 20.  Clump lengths that minimize the free energy, in the chain-springs model, as a 

function of the chains’ share of the z-axis modulus.  Volume fraction of magnetic spheres was 

10% and chains were arranged on a square lattice with z-staggered inter-clump gaps.  The 

sample modulus was 150 psi (1.034 MPa) and the magnetic field was 1200 gauss. 
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Figure 21.  Computed magnetostrictive contraction at clump lengths that minimize the free 

energy, in the chain-springs model.  Physical parameters were as indicated for Fig. 20. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 22.  Cluster lengths that minimize the free energy, in the cantilever-springs model, as a 

function of the cantilever stiffness.  The cantilever stiffness is normalized to give the same elastic 

energy cost of forming dimers in either model.  Physical parameters were as indicated for Fig. 20. 
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Figure 23.  Computed magnetostrictive contraction at clump lengths that minimize the free 

energy, in the cantilever-springs model.  Physical parameters were as indicated for Fig. 20. 

 Figures 22&23 demonstrate the sensitivity of predictions, of clump size and 

magnetostrictive effects, to the modeled elastic coupling between enchained spheres.  

The tendency of sphere clumping to reduce the inverse relation between prestrain and 

contraction appears to be much less noticeable in the cantilever-springs model, where the 

elastic energy cost of large clumps rises quadratically, rather than linearly, with the 

clump length 

 

Discussion 

 

These modeling efforts have not explained our experimental findings of direct variations 

between magnetostrictive contractions and prestrain, although the inverse variation has 

been greatly reduced compared to one’s naïve expectation.  Figure 24 helps to illustrate 

the complicated relationship between clump length and magnetostrictive contraction.  

The large dots mark the clump lengths, and corresponding contractions, that would 

minimize the free energy.  It is interesting to note that the predicted contractions would 
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change to a direct variation with prestrain, were the clump lengths somehow held at 15 

spheres for example, beyond the crossing of the curves.  Perhaps this curious effect points 

toward an explanation. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 24.  Contractile strain that minimizes the free energy, in the chain-springs model, as a 

function of clump length.  The chains’ share of the z-axis modulus was 2%.  Large dots mark the 

minimal-energy clump lengths.  Physical parameters were as indicated for Fig. 20. 
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Chapter 9 
Martin, Read, Williamson  

EXTREME MAGNETORESISTANCE 
 

Introduction 

 

 We have shown that field-structured composites (FSCs) of electrically conducting 

magnetic particles, e.g. Au-plated Ni particles, in a polymer matrix have considerable 

interest as sensors. [14,15]  In particular, as pressure sensors FSCs have shown reversible 

~12 decade electrical conductivity changes  with strains of only 6%.  This is a gauge 

factor (relative resistance change per unit strain) of 1014, which is ~1011 times better than 

previously known piezoresistive materials.  Combining this large piezoresistance with the 

exceptional magnetoresistance we have observed should lead to exceptional 

magnetoresistance effects.  Measurements we have made indicate that this is indeed the 

case, even at applied magnetic flux densities less than 0.1T, which are easily achieved 

with open air copper coils.  Here we report on magnetoelastomer composites made with 

3-5 micron carbonyl Fe particles coated with Au. 

 

Results 

 

Magnetostriction.  A composite of 10. vol.% Au-plated carbonyl Fe particles in a 

silicone prepolymer (Gelest Optical encapsulant 41) was structured a uniaxial magnetic 

induction field of  0.08T and cured at 55°C.  This sample was molded into a solid 

rectangle of dimensions 4.9x4.9x27.6mm.  The mechanical response of this sample was 

assessed by constant stress measurements in an optical cantilever apparatus.  These 

response curves are shown in Fig. 25 for samples containing plated and unplated 

particles.  The composite containing the plated particles has a much smaller response, 

only about 500 ppm strain at an induction field of 0.12 T.  This reduced response appears 

to be primarily due to poor adhesion of the polymer to the plated particles, and partly due 

to the lower magnetic susceptibility of the Au-plated Fe composite.  For example, our 
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experiments have shown that Ni particle FSCs of Ni particles have only 16% of the 

magnetostriction of Fe FSCs, even though the magnetic susceptibilities of these 

composites are nearly identical.  Adhesion mitigates against the field-driven particle 

clumping instabilities that reduce magnetostriction.  

 
Figure 25.  Response curves for Au-plated and unplated Fe particle composites shows that the 

plated particles give much less response.   

 

Magnetoresisitance.  A stress of 35.5 kPa was applied to the Au/Fe particle sample.  

This stress was chosen to reduce the electrical conductivity of the composite.  A field of 

0.08 T was then applied to the composite, producing a 300 ppm strain.  The 

magnetoresistance data in Fig. 26 show an extreme effect, roughly 4.7 million percent, 

the largest value ever observed at this field for any material. 

 Magnetoresistive materials are usually used for sensing magnetic fields, such as in 

reading magnetic memory.  For these composite materials to be useful for field variations 

over such small length scales would require a reduction of the particle size.  Fortunately, 

the synthesis of magnetically soft, superparmagnetic nanoparticles is now routine.  
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Strongly magnetic Fe nanoparticles, with saturation magnetism rivaling that of bulk Fe 

have now been made, and we have shown that these can be used to create 

nanocomposites with susceptibilities ten times greater than can be achieved with the 

carbonyl Fe particles used in this study.  Such composites should have very large 

magnetostriction at small applied fields.  If these Fe particles can be coated with Au 

without significant agglomeration, then these would likely bring the extreme 

magnetoresistance we have observed into the nanoscale.   

 
Figure 26.  Magnetoresistance data for the Au-plated composite shows nearly five decades of 

response at a field of ~0.08 T. 

 

 The extreme magnetoresistance of FSCs could have other technological implications, 

such as the ability to use magnetic fields to control the response range of sensors.  For 

example, applying a magnetic field to a chemiresistor would tend to increase the 

concentration at which it finally transitioned to an insulator, and thus broaden its sensing 

range.   
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Chapter 10 
Anderson, Martin 

SIMULATING PARTICLE CLUMPING IN A MAGNETOELASTOMER 
 

Introduction 

 

 In this chapter we consider the behavior, when a uniform magnetic field is 

applied, of an idealized elastomeric solid that contains an array of parallel chains of 

magnetic particles.  We imagine that these chains extend the length of the solid and that 

the particles in each chain are in contact with each other in the absence of applied 

mechanical strain.  When such a sample is stretched, we imagine that the particle 

coordinates are uniformly deformed, resulting in gaps of roughly equal length between 

formerly contacting particles in each chain. 

 In the computations reported here, a model 3-D elastomeric solid was held at 

constant macroscopic tensile strain along the axis defined by the chains.  The purpose of 

these computations was to examine the practicality of determining the equilibrium 

positions of the embedded particles by means of finite-difference particle-trajectory 

simulations.  We did not attempt to quantitatively emulate the mechanical and magnetic 

properties of our test samples. 

 These simulations tracked a large number of particles, and we found that the 

computational progress toward equilibrium was very slow and showed a rate that fell 

roughly inversely with the accumulated number of trajectory iterations.  Nevertheless, the 

behavior of this computation was interesting and potentially informative. 

 Contractile forces in a pre-stretched, magnetic-particle containing elastomer, 

when a uniform magnetic field is applied, can be viewed as arising from two sources:  (1) 

interactions between magnetically polarized particles embedded in the sample’s elastic 

matrix, and (2) elastic tension in the matrix.  The first of these contributions is readily 

appreciated, but the second contribution, perhaps unexpectedly, also responds to the 

application of the magnetic field as follows: 

 

 When a uniform magnetic field is applied to such a pre-stretched sample, 
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magnetic forces are generated which each particle in each chain to be attracted to its two 

neighboring particles.  But the forces on a given particle would typically not be perfectly 

balanced, and small variations in particle spacing, for example, would cause a force 

imbalance that would grow as pairs of particles became drawn together.  If magnetic 

forces were sufficiently large to overcome the elastic opposition to this small-scale 

deformation, the process would be expected to result in lengthening particle clumps in 

each chain.  As these clumps lengthened and the gaps between consecutive particle 

clumps in a chain became fewer, at a fixed macroscopic strain the matrix material in the 

vicinity of these gaps would become increasingly stretched.  Thus, particle clumping 

could effectively raise the elastic tension in a sample if the sample were held at constant 

macroscopic strain. 

 In what follows, we assume:  (a) monodisperse spheres of magnetic material are 

embedded in a non-magnetic elastomeric matrix, (b) the magnetic material has high 

permeability and is magnetically soft (β=1 polarization limit), and (c) all spheres are 

structured into long chains, parallel to the z axis, with the spheres in each chain coming 

into contact when the matrix is not strained. 

 

Model Magnetoelastomer 

 

 The model material in our computations contained 5000 monodisperse, unit-

diameter spheres of magnetic material that were arranged into 100 individual z-oriented 

chains, each containing 50 spheres that were in contact in the absence of strain.  These 

particle chains formed a uniformly spaced 10 by 10 square lattice in the x-y plane.  

Uniform gaps were opened between the particles in a chain when a z-axis tensile strain, 

10% in these calculations, was applied.  The spacing between stretched chains was 

consistent with the chosen 20% volume fraction of the spheres.  In the absence of 

magnetic interactions, corresponding particles in the different chains would have resided 

at the same z-coordinate. 

 

Mechanical interactions.  The mechanical properties of our model material were 

determined by two sets of linear springs.  Interparticle forces arising from the elastic 
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matrix were modeled with springs that linked each sphere to the two adjacent spheres 

within a chain, and to its four lateral neighbors which were the corresponding spheres in 

the four nearest neighboring chains.  The intra-chain springs generated no force when 

spheres were exactly in contact, and the inter-chain springs generated no force when the 

connected particles had identical z coordinates.  Note that because lateral cyclic boundary 

conditions were not applied, particles in chains residing at the lateral boundaries of the 

model solid were connected with only two or three spheres in neighboring chains. 

 At the top and bottom ends of each chain, springs having a force constant twice as 

large as those within the chain were extended beyond the ends of the chains and anchored 

at upper and lower fixed planes normal to the z axis.  The spacing between these planes 

was set to give a 10% z-axis macroscopic strain.  During the course of computations, the 

z-axis forces that would have been needed to hold the model material at the fixed tensile 

strain were obtained, at both the top and bottom boundaries, by summing the 

deformations of the chain-end springs. 

 A realistic emulation of the mechanical properties of real elastomers, in which the 

ratio of Young’s modulus and shear modulus would be very close to 3:1, was not 

intentionally incorporated in these simulations.  We simply desired a lateral mechanical 

interaction that would attempt to align the small-scale particle displacements of adjacent 

chains.  Accordingly, the chain-axis springs and transverse springs were assigned 

arbitrary force constants of 1.0 and 0.2.  With these values, the transverse springs had 

about 60% greater stiffness than would have been consistent with a 3:1 ratio of Young’s 

and shear moduli, but we also ran a simulation in which the transverse-spring interaction 

was set to zero. 

 In order to avoid severe interpenetration of adjacent spheres in a chain, a fast-

rising repulsive force, corresponding to a spring constant 400 times larger than that of the 

chain-axis springs, was generated whenever the difference in sphere coordinates became 

less than unity.  This interaction succeeded in preventing sphere interferences greater 

than a few percent of the sphere diameter. 

 

Magnetic interactions.  Each of the dipoles experienced magnetic forces from all other 

dipoles.  These forces were summed from pair-wise dipolar interactions, where both 
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moments of a pair were treated as independent vectors.  But only the projection of the 

vector force along the z axis was retained. 

 Note that the demagnetizing field arising at the top and bottom ends of the model 

elastomer was not compensated by placing capping monopoles at the chain ends or by 

invoking a cyclic boundary condition there.  Thus, the magnetic interactions between the 

dipoles tended to deform the particle coordinates toward the vertical midplane.  This 

tendency is evident in Figure 27, and this effect stretched the springs at the ends of each 

chain and increased the calculated chain tension at the chosen macroscopic strain. 
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Figure 27.  Mean departures, at 800 iterations, of horizontal planes of spheres from their 
z-positions in the absence of magnetic interactions.  Both ends of the model sample are 
contracted toward the vertical mid-plane.  Departures are normalized to sphere diameter. 

 

 

 

Self-consistent dipole moments:  Each sphere experienced not only the applied 

magnetic field, but also the fields arising from the moments of all other spheres.  In the 

computations reported here, each dipole moment was calculated from the net field at its 

location.  These calculations were iterated to convergence. 

 

Simulation Method 

 

Physical units.  For the purposes of this computation, the applied field, the permeability 

of free space, and the sphere diameters were all effectively set to unity.  And, as was 
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mentioned, the mechanical force constants were also arbitrarily set.  The chosen 

numerical quantities, however, resulted in comparable mechanical and dipolar forces. 

 At the outset of a simulation, the coordinates of each of the spheres were 

determined according to the chosen sphere volume fraction and macroscopic strains.  A 

small random fluctuation, 0.5% of a sphere diameter, was imposed on the z-axis (vertical) 

coordinates.  The initial moments were then found by cycling ten times through a self-

consistent calculation of each dipole’s moment.  At this point, the residual errors in the 

moments had fallen to a few parts per million. 

 

Main computation.  The major segment of a computation consisted of a large number of 

iterations, each having two tasks.  In the first of these, the z-position of each of the 5000 

spheres was incremented linearly proportional to the sum of the mechanical and magnetic 

forces acting on it from all other spheres.  This process was analogous to a trajectory 

simulation with equal time steps and linear frictional drag.  The proportionality constant 

used had been pre-determined, by trial and error, to be near the limit of computation 

stability.  The second task was to re-compute the dipole moments from the local fields by 

cycling once through the dipoles once, in order to maintain near self-consistency. 

 

Results and Discussion 

 

Transverse springs present.  Figure 28 displays the roughly logarithmic growth of 

tension as a function of the number of computational iterations.  This slow evolution 

predicts that a great number of iterations would be necessary to approach an equilibrium 

particle configuration.  However, this simulated behavior may shed some light on the 

behavior of actual test samples, if the mechanical response of the samples were limited 

by viscoelastic behavior.  By interpreting the computational iterations as fixed intervals 

of time, the horizontal axis might be analogous to elapsed time.  These results would then 

predict that particle clumping obeys logarithmic kinetics. 

 Sections near the center of the solid, showing the evolution of a plane of spheres 

over the duration of a simulation, are shown in Figure 29.  The steady coarsening of the 

particle clumps in each chain is evident.  Note that the gap positions can, in some cases, 
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be followed from one panel to the next.  The tendency for adjacent gaps to be diagonally 

offset is also apparent. 

 

 

 

 

 

 

 

 

 

 

 

Figure 28.  Evolution of the mean z-moment (normalized to the moment of an isolated 
sphere) and the tension at top and bottom ends of the model elastomer, during the coarse 
of a computation.  Sphere volume fraction was 20% and fixed z-axis strain was 10%. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 100 iterations 800 iterations 4600 iterations 

Figure 29.  Evolution of clumping in a ten-chain simulation. 
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Transverse springs absent:  We repeated the simulation, from an identical starting 

condition, with the transverse mechanical interaction turned off.  Figure 30 displays 

results that can be compared with those in Fig. 28.  The mean moment becomes larger, 

but the growth of tension becomes suppressed compared with the Fig. 28  results. 

 

 

 

 

 

 

 

 

 

 

 

 Figure 30.  Evolution of the mean z-moment and the tension at top and bottom ends, in 
the absence of transverse mechanical interactions.  This simulation was started identically 
with the simulation of Fig. 28. 

 

 

Figure 31 indicates another surprising consequence of omitting the transverse mechanical 

interaction.  The particle clumping is seemingly not greatly affected at 800 iterations, but 

the particles at the top and bottom ends appear to have a larger variation in vertical 

positions. 

 

 Figure 31.  Plane of spheres sectioned in same 
vertical planes as shown in Fig. 29.  These two 
views compare the clumping structure at 800 
iterations with the  transverse-spring constant 
set at 0.2 (left panel) and 0.0 (right panel). 

 

 

 

 

 

It would be of interest to repeat these computations using real magnetic and mechanical 

units, and to explore the parameter space. 
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Chapter 11 
Huber, Frankamp 

IRON NANOPARTICLES 
Introduction 

Iron has a number of properties that make it particularly useful as a nanoparticle.  Iron is 

cheap and plentiful, it is environmentally benign, and has no human toxicity except in 

extreme doses.  Its magnetic properties are also very useful.  Iron has the highest room 

temperature saturation magnetization of any element, and its cubic crystalline structure 

makes it a soft magnetic material.  The high saturation magnetization means that an iron 

nanoparticle can possess a very large magnetic moment, while the fact that it is a soft 

magnet means that a fairly large nanoparticle (with a correspondingly large moment) can 

still have a superparamagnetic blocking temperature at a relatively low temperature.  The 

magnetic softness of iron nanoparticles can, however, be overcome if necessary.  For 

magnetic storage applications, where a hard magnet is desirable, iron rods can be used.  

The shape anisotropy of the nanorods makes them extremely hard.  In either case, the 

high magnetic moment of iron is a huge advantage. 

 Iron has one major weakness that impacts its usefulness in nanoparticle form, its 

reactivity.  Iron is very reactive towards both water and the oxygen in air.  This reactivity 

manifests itself slowly in large iron structures as rusting, but in nanoparticles can occur 

rapidly and spectacularly.  This has effectively limited the use of iron nanoparticles to 

inert or reducing environments unless they are pretreated to passivate them towards 

oxidation. 

 This section outlines the synthetic approach used to create composite materials 

containing both micron sized iron particles and superparamagnetic nanoparticles 

dispersed in the elastomeric polymer. The previously described study of magnetostriction 

in micron sized magnetic particles prompted an investigation of similar behavior using 

magnetic nanoparticles to essentially modulate the susceptibility of the polymer medium.  

To this end, magnetic nanoparticles, both iron and iron oxide, were prepared and 

analyzed as possible candidates.   
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Synthesis and characterization of Iron Particles 

 The most popular chemical decomposition method is the thermal decomposition 

of iron pentacarbonyl.  This method has long been used to make micron-scale iron 

particles, often called carbonyl iron (these are in fact the type of particles used in the 

previously discussed micron scale iron composites).  The advantage of the decomposition 

of this species is that its decomposition yield only iron and carbon monoxide, which 

leaves as a gas.  There are no ions or other impurities to be contaminate the product (if 

the iron pentacarbonyl was pure).  Iron pentacarbonyl is also very soluble in organic 

solvents, which is useful as one will not easily yield metallic iron nanoparticles in an 

aqueous environment.  Iron pentacarbonyl also decomposes at modest temperatures, with 

the rate becoming appreciable around 100°C and being quite fast around 200°C (at this 

temperature a typical decomposition reaction can be complete in under an hour).  Precise 

control of particle size is rather difficult in these types of systems, owing to the 

extraordinarily complex kinetics of the decomposition of iron pentacarbonyl.  The 

decomposition rate, and even the mechanism and kinetic order of the decomposition, are 

highly dependant upon the reaction conditions.  The decomposition is self catalyzed, as 

well as being catalyzed by numerous other species, so as concentrations change through 

the course of the reaction, the reaction rate can change greatly.  The first literature reports 

of the formation of iron nanoparticles through iron pentacarbonyl used a variety of 

polymers as both catalyst and surfactant.[16, 17]  A number of other surfactants have 

been used for this type of reaction, but the essence of the reaction has changes little.  The 

iron carbonyl, an appropriate high boiling point solvent, and the surfactant are placed in a 

vessel under an inert atmosphere and heated.  The carbon monoxide must be allowed to 
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vent for the reaction to continue to completion, so an oil bubbler is often used as a one 

way valve.   

 We have developed a unique method for forming iron nanoparticles from the iron 

pentacarbonyl decomposition reaction.  We utilize a beta-diketone surfactant that binds 

the particles weakly enough that it does not significantly perturb the magnetic properties 

of the iron, but strongly enough to prevent agglomeration.  This process is illustrated in 

Figure 33, and the resultant materials are shown in Figure 34 
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Figure 33. Iron nanoparticle formation using thermal decomposition of iron pentacarbonyl, and 

our unique surfactant, pentanedione (a beta-diketone). 
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Figure 34. Representative TEM of Fe nanoparticles prepared using thermal decomposition of 

iron pentacarbonyl. 

 

 Iron nanoparticles are extraordinarily reactive, most notably being pyrophoric.  It 

is important to keep this in mind whenever handling iron nanoparticles both for safety 

reasons and to maintain the nanoparticles’ integrity.  There are a number of ways to 

mitigate the extreme reactivity that iron nanoparticles have towards oxidizing agents, 

including gently oxidizing the surface.  By exposing the surface of the particles to a weak 

oxidizer, or a very dilute strong oxidizer, the particles can be passivated.  At ambient 

temperatures, the oxidation of iron nanoparticles typically produces magnetite, which is a 

strongly adherent layer that can passivate the particles towards further oxidation.  While 

rapid oxidation produces heat that can lead to delamination of the oxide and wholesale 
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oxidation in a potentially spectacular reaction, the slow, gentle oxidation of the surface 

only can protect the core and maintain it as iron.  An example of this is shown in Figure 

5.  Species that have been used successfully for this passivation include: low partial 

pressures of oxygen, carboxylic acids, and alcohols.  While oxidizing the surface may 

leave the core unchanged, it will still enormously change the properties of the 

nanoparticle.  The chemical properties are obviously greatly altered as are magnetic 

properties due to the very large fraction of the volume that is contained in the outer layers 

of the particle.  These are also issues for the other methods of preventing oxidation, 

coating with oxidation resistant coatings, and alloying.  Alloying will naturally make an 

entirely different material, such as iron platinum alloys that are still highly magnetic, but 

are indefinitely stable in air.  Even coating particles has a surprisingly strong effect on the 

magnetic properties of the particles, generally greatly weakening them.  This has been 

shown by a number of researchers to occur when gold coating iron nanoparticles. 

We conducted our own investigations of methods of passivation including gold coating 

and preoxidizing the nanoparticles (see Figure 35).  While both of these methods were 

successful in preserving an iron core, the did so at extreme detriment to the magnetic 

properties of the nanoparticles.  The gold coated particles were so weakly magnetic that it 

was difficult to determine a precise value, and the oxidized particles were reduces to only 

about 60 emu/g.  For this reason, this approach was not used for the production of 

composite materials, though research is ongoing.   

We chose instead to attempt to imbed iron nanoparticles into a silicone encapsulent under 

inert conditions.  The silicone would then act as an oxygen barrier for the small amount 
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of time they would need to be handled in air.  This approach met with some immediate 

difficulty when a commercial encapsulant was used. 

 

Figure 35.  Gently oxidized iron nanoparticles show clear evidence of an oxide layer and a darker 
iron core. 

 
Commercial silicones universally contain additives to control the cure and final 

properties of the cured material.  These additives and their concentrations are closely 

guarded trade secrets.  One common additive is a thermally unstable cure inhibitor.  High  

purity silicones are often cured through the hydrosylilation reaction shown in Figure 36, 

which is a reaction that readily occurs at room temperature.  To maximize working time 

at room temperatures, cure inhibitors are added to one of the precursors.  Fast cure is 

desirable, however at a slightly elevated temperature, so cure inhibitors that quickly 

decompose at these elevated temperatures are generally employed.  One common class of 

thermally unstable cure inhibitors are organic peroxides.  These organic peroxides 

produce oxygen during their decomposition which would be expected to severely harm 

the magnetic properties of our iron nanoparticles.  This was observed in every 
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commercial preparation attempted, so the decision was made to prepare our own, 

unadulterated, formulation. 
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Figure 36. Platinum catalyzed hydrosilation reaction is utilized in bother commercial silicone 

encapuslants, and our custom formulations. 

 
   Formulating this silicone system was not easy, but we were able to devise a 

method that contained only three components:  a vinyl polymer, a silane crosslinker, and 

a platinum catalyst (in a minute quantity of solvent).  We established protocols for 

systems that cured from anywhere between 5 minutes and 5 hours.  We decided that to 

facilitate handling and degassing, a minimum of 20 minutes was required, but closer to an 

hour was ideal.  The problem arose when adding iron nanoparticles to the mixture.  The 

nanoparticles interact with the platinum catalyst in some way that deactivates them 

towards the hydrosilation reaction.  For example, a system that reliably cured in 20 

minutes, when used in the presence of iron nanoparticles the sample failed to set, even 

after many days.  The use of additional catalyst proved effective only when extreme 

quantities were used, and it was unpredictable and uncontrollable.  In light of these 

difficulties we shifted our focus to more chemically stable magnetite nanoparticles. 
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Chapter 12 
Frankamp, Huber 

MAGNETITE NANOPARTICLES 
 

Synthesis and Characterization of Magnetite Nanoparticles                    

 Magnetite nanoparticles were prepared using two different methods.  The first 

method involves the decomposition of iron oleate at high temperature (Figure 37).[18]  

 

FeCl3-6H2O
O

O

Sodium Oleate

Na+ Fe(Oleate)3

Fe(Oleate)3 + Oleic Acid
0-320 Deg. C
@ 3.5 deg/min

1-octadecene

60° C

Fe3O4

Oleate capped  
Figure 37. Synthesis of magnetite nanoparticle using Hyeon method.  

 

 This method was investigated based on the author’s claim of scalability, 40 

gram’s of final product, and monodispersity, in theory eliminating the need for size 

selective precipitation to narrow the distribution of nanoparticle size.  During this 

investigation we developed a method to synthesize the sodium oleate compound used in 

the first step as it is not widely available commercially (Figure 38).   
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Figure 38. Soponification of oleic acid to sodium oleate using NaOH. 

 

 Essentially soponification, the transformation from oleic acid to sodium oleate, 

was carried out by drop wise addition of one molar equivalent of 3 M methanol solution 

of NaOH to a rapidly stirring solution of oleic acid.  The oleic acid was dissolved in 

acetone.  A white precipitate forms immediately as the carboxylic acid forms a salt 

complex with incoming sodium ions.  The solution was allowed to stir for 20 minutes, 

followed by filtration and drying under vacuum.  On average, the yield of this reaction 

was better than 95%. 

 Once we synthesized a sufficient stockpile of the sodium oleate compound the 

formation of the iron complex proceeded smoothly at 70° C, resulting in a viscous, deep 

red oil.  The remaining challenge was to control the rate of heating, as the preparation 

method calls for a steady increase of 3-3.5° C per minute up to a final temperature of 

320° C.    This presented a challenge because our thermocouple controlled hot plate was 

insufficient to bring the required mass of solvent and precursor to the desired final 

temperature, soaking out at ~ 270° C.  To overcome this obstacle we used a heating 

mantle and variable transformer which easily provided the energy needed to reach 320° 

C.  Unfortunately, the rate of heating was difficult to regulate.  We decided to manually 

ramp the power settings to bring us to the desired temperature in the appropriate amount 

of time.  Several batches of nanoparticles were prepared using this method and a 

representative TEM is shown in Figure 39.    
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Figure 39. Representative TEM of magnetite nanoparticles formed using iron oleate precursor. 

  

 It is clear from the TEM that the size distribution is not uniform as predicted form 

the literature.  In addition, we were never able to reproduce the quantity of nanoparticle 

reported in the reference 1.  Furthermore, the particles produced using this method was 

not easy to purify often resulting in a ‘goo’ rather than a particulate powder. 

 Given these synthetic challenges we decided to investigate a more straight 

forward method of magnetite formation using the coprecipitation of ferric chloride and 

ferrous chloride in the presence of ammonium hydroxide. [19]  The general synthetic 

scheme for this coprecipitation method is outlined in Figure 40. 

 

Fe(II)Cl2 + Fe(III)Cl3
NH4OH

H20 80° C
Fe3O4

 
Figure 40.  General synthetic scheme for the preparation of magnetite from the coprecipitation of 

iron (II) and iron (III) chloride with ammonium hydroxide. 
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Characterization 

 

 In general a 1:2 (Fe(II) to Fe(III)) molar ration of iron salts where taken up into 

water and sparged with nitrogen gas for 30 minutes as the temperature stabilized at the 

desired temperature.  To this solution the ammonium hydroxide was added drop wise 

through an addition funnel with vigorous magnetic stirring.  There are several advantages 

to this preparation method.  The first is the ease of synthesis, no controlled heating 

required, and the relatively benign starting materials.  Secondly, this preparation method 

can be used to produce large quantities of magnetite.  We were able to produce enough 

material to prepare all subsequent magnetostriction samples from the same batch of 

nanoparticle.  Finally, it is very easy to purify and, if need be, can be functionalized to 

change the surface chemistry of the particles. The drawback is a more polydisperse 

sample than the previously discussed Hyeon preparatory method.  A representative TEM 

is shown in Figure 41 with selected area electron diffraction (SAED) data shown in 

Figure 42. The SAED data is summarized in Table 2 and strongly indicates the presence 

of cubic magnetite.   
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Figure 41. Representative TEM image for coprecipitation synthesis of magnetite. 

 85



 
Figure 42. SAED of magnetite nanoparticles prepared using the coprecipitation method. 

  
Table 2. SAED of magnetite sample prepared using coprecipitation. 

Measured Spacing (Å) Magnetite Standard (Å) Hkl Intensity 

2.92 2.86 200 30 

2.47 2.44 311 100 

1.67 1.65 422 20 

1.58 1.56 511 40 

1.46 1.43 400 50 
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 SQUID analysis was performed to elucidate the magnetic properties of these 

particles.  In general we are looking for particles that exhibit a blocking temperature very 

near to the working temperature, that is to say somewhere near 298 K. It is clear from 

Figure 43 that the blocking temperature is somewhere above 280 K, the melting 

temperature of the Poly Ethylene Glycol used as a binder in this experiment. Also, we see 

some coercivity, 8 Oe, at 295 K indicating that there are ‘blocked’ particles in the sample 

(Figure 44).  This slight coercivity could be explained by a small population of particles 

that are not within the superparamagnetic regime.  In fact, several particles with 

diameters in the +20 nm range can be seen in the above TEM data (Figure 9), these could 

easily account for this slight hysteretic behavior at this temperature. 

 
Figure 43.  The blocking temperature of the coprecipitation magnetite sample. 
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Figure 44.  Hysteresis plot shows a slight coercivity at this temperature and a MS close to the 

bulk value for magnetite. 

 

 A small portion of the hysterisis measurement was repeated over a range of 

temperatures and is plotted in Figure 45.  As we would expect, the coercivity (HC) 

steadily decreases inversely proportional to the rising temperature.   
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Figure 45.  Comparison of the slope near the origin at various temperatures provides both 

coercivity and a scaled susceptibility. 
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Chapter 13 
Huber, Frankamp 

PREPARATION OF NANOPARTICLE CONTAINING 

MAGNETOSTRICTIVE ELASTOMERS 
 

Preparation of Magnetostriction Samples 

 As stated earlier, the purpose of creating a sample of magnetite was to 

systematically manipulate the susceptibility of the matrix used to create 

magnetoresponsive materials.  To that end, a series of samples were prepared with a 

constant volume percent of carbonyl iron, diameter 200-400 nm, using the magnetite 

nanoparticles to ‘dope’ the PDMS matrix.  Samples with magnetite ratios of 0, 3, 5, 7, 

and 9 volume percent were mixed, degassed, and cured overnight at 60° C in a uniaxial 

field.  Careful attention was given to vacuum degassing the slurries prior to heating to 

ensure that no voids were left in the body of the sample.     

 In general the molds required 0.500 mL total volume to be completely filled. 

Taking this into account we would prepare samples of ~ 0.150 mL excess volume to 

ensure proper filling of the mold area.  The degassing process consisted of several cycles 

between vacuum (~ 100 mtorr) followed by rapid pressurization to collapse surface 

bubbles.  This process was repeated 3 to 4 times until the dissolved gas, as evidenced by 

a limited number of bubbles, was negligible.  Following these evacuation cycles the 

sample was repeatedly struck against the bench top to facilitate the migration of any 

remaining bubbles to the top of the sample and ultimately out into the atmosphere.  If this 

vacuum degassing step was not performed numerous voids were present as seen in Figure 
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14. After curing the samples were carefully freed from the mold, measured to obtain 

physical dimensions, and analyzed using a home made magnetostriction apparatus.  

 

 

Figure 46. Fully degassed sample (top) is free of voids compared to a sample cured without 

careful vacuum treatment (bottom). 
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Chapter 14 
Huber, Frankamp, Martin 

MAGNETOSTRICTION MEASUREMENTS OF NANOPARTICLE 

CONTAINING MAGNETOSTRICTIVE ELASTOMERS 

 
Introduction 

We predicted that the addition of magnetic nanoparticles to micron scale 

magnetostrictive composites would yield an effective increase in the susceptibility of the 

matrix.  Due to the large size difference between the two particles, and the lack of 

mobility in a cured matrix, it was anticipated that the individual susceptibility of the 

nanoparticles and matrix could be simply averaged.  This would yield a matrix with a 

higher effective susceptibility, which would provide for a higher magnetostrictive 

response.  It appears, however, the behavior is not this simple. 

The first indication that the nanoparticle filler would not behave as expected was 

that the nanoparticles decreased the modulus of the composite.  Typically, when rigid 

inclusions are place in an elastomeric matrix, the composite shows a higher modulus than 

the pure matrix.  In most cases the modulus then increases with increasing loading.  It 

was therefore surprising to see that the addition of nanoparticles to the magnetostrictive 

composites yielded a decrease in modulus (see figure 47).   
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Figure 47.  The modulus of the composite decreases slightly upon incorporation of larger volume 

fraction of nanoparticle. 

 

There are a number of possible explanations for this decreasing modulus.  The 

matrix may have weak adhesion to the nanoparticles, allowing the matrix to deform 

around them.  The nanoparticles may phase separate in a manner that creates weaknesses, 

or they may associate with the micron particles in such a way as to negate their positive 

influence on the modulus. 

Interestingly, the magnetic response was also opposite what we anticipated.  The 

addition of nanoparticles weakens the magnetostriction of the composite, despite the 

increase in magnetic material (see figures 48 and 49).  There appears to be something 

structural causing this unusual behavior, and a simple model with well dispersed 

nanoparticles will not explain it.   
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Figure 48. We observe an over all decrease in the magnetostrictive character upon magnetite 

doping. 
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Figure 49. Plots of stress versus applied field clearly demonstrate the systems response to 

higher loadings of nanoparticles 
 

Data 

The nanoparticles themselves can be used to create a magnetostrictive composite, 

though its response is not as strong as the micron scale composites.  This was expected 

due to the weaker magnetic properties of the magnetite nanoparticles compare to the iron 

particles, and is not necessarily due to the size of the particles.  The magnetostrictive 

strain of a 9 volume percent nanocomposites is shown in figure 50.  Though the 

magnitude of magnetostriction is about 30 times lower than in a 20% micro-composite, 

the magnetostriction is still well within the sensitivity of the instrument.  It is worth 

noting that the modulus of the nanocomposite is calculated to be 146 psi, which is higher 

than both the 9% nanoparticle hybrid and the 7% nanoparticle hybrid, and substantially 

higher than the unfilled polymer.  The nanoparticles therefore do not inherently lower the 

modulus of the composite, but do so only in conjunction with the micron scale particles. 
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Figure 50.  The initial slope of this line is much sharper for samples of nanosized magnetic 

particles based in part on their increased low field suseptability.  

 

The shape of the data in figure 50 is also interesting.  While the behavior of the 

micron scale composites could be crudely approximated as linear, this plot has a much 

stronger curve.  This can be explained by the high low field response of 

superparamagnetic particles, which typically have a much higher susceptibility than 

micron scale particles.  Going to a higher saturation magnetization material could yield 

very interesting magnetostrictive nanocomposites with excellent low field responses. 

Still there remains the question of the decrease in modulus and magnetostriction 

when nanoparticles and micron particles are combined.  Since we have established that 

the nanoparticles can be fashioned into magnetostrictive elastomers it is clearly not some 

inherent property of the nanoparticles, but a question of the structure of the hybrid 

composite.  A reasonable explanation of both the modulus and magnetostriction 

depression would be the creation of a structure where nanoparticles are drawn into the 

gaps between micron scale particles, where the magnetic field is concentrated.  High 
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concentrations of nanoparticles could lead to poor adhesion to the matrix.  If adhesion is 

poor, then instead of acting as a high modulus inclusion, the nanoparticles could cause 

delamination where the delaminated area acts as a bubble (a low modulus inclusion).  

Predicting how this concentration of nanoparticles in the gaps would effect 

magnetostriction is not trivial, but it seems feasible that it would cause the noted 

decrease. 

While we have some plausible theories as to what is causing the unexpected 

behavior of the hybrid micro-nano composites, more study is required to understand the 

physical underpinnings.  We have a great deal of data on these system, shown in tables 3-

8, and we will continue our attempts to understand this data. 

 
Table 3.  Measured strain in hybrid micro/nano magnetostrictive composites as a function of field 

and prestress.  This composite contained 20% microparticles and 0% nanoparticles by volume. 

 

Field2 (Oe2) 
 

0.28 psi 
prestress 

1.25 psi 
prestress 

3.38 psi 
prestress 

7.35 psi 
prestress 

13.70 psi 
prestress 

4212.01 9.4051 11.2861 21.8198 44.0159 19.9388
16848.04 18.0578 40.2538 93.6748 126.781 102.327
37908.09 46.2731 74.1122 191.864 267.481 211.803
67392.16 61.3213 101.575 291.182 431.506 361.908
105300.3 89.1604 129.038 368.303 604.184 547.377
151632.4 139.572 156.501 441.287 651.324 746.477
206388.5 230.237 210.674 600.422 1035.28 881.834
269568.6 317.817 221.208 649.328 1178.01 1119.04
341172.8 391.625 231.742 699.74 1326.77 1407.85

421201 499.223 246.414 704.918 1445.38 1631.66
509653.2 585.373 258.452 726.91 1612.23 1906.4
606529.4 670.396 284.786 790.032 1689.82 2077.27

 
Table 4.  Measured strain in hybrid micro/nano magnetostrictive composites as a function of field 

and prestress.  This composite contained 20% microparticles and 3% nanoparticles by volume. 

 

Field2 (Oe2) 
 

0.28 psi 
prestress 

1.25 psi 
prestress 

3.38 psi 
prestress 

7.35 psi 
prestress 

13.70 psi 
prestress 

4212.01 0 7.90028 13.9195 15.4244 33.106
16848.04 13.9195 18.434 39.1252 45.1445 115.495
37908.09 23.3246 40.2538 81.2601 93.6748 211.803
67392.16 25.5819 68.8453 124.9 150.105 351.751
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105300.3 42.8873 89.5366 167.787 236.256 519.538
151632.4 46.2731 108.723 221.584 303.597 668.138
206388.5 63.5785 129.038 267.481 425.487 849.67
269568.6 70.7264 149.353 312.249 498.094 1059.41
341172.8 79.3791 164.025 359.275 580.483 1169.97

421201 96.3082 179.073 404.796 672.653 1427.95
509653.2 116.999 192.616 439.783 907.297 1581.4
606529.4 141.829 208.041 476.651 948.843 1796.5

 
Table 5.  Measured strain in hybrid micro/nano magnetostrictive composites as a function of field 

and prestress.  This composite contained 20% microparticles and 5% nanoparticles by volume. 

 

Field2 (Oe2) 
 

0.28 psi 
prestress 

1.25 psi 
prestress 

3.38 psi 
prestress 

7.35 psi 
prestress 

13.70 psi 
prestress 

4212.01 10.1575 10.9099 11.2861 15.0482 25.5819
16848.04 12.7909 21.0674 39.1252 49.2827 84.6459
37908.09 18.8102 38.3728 67.7167 94.051 210.674
67392.16 39.8776 59.4402 114.366 151.234 346.86
105300.3 49.6589 79.3791 168.916 216.317 499.599
151632.4 59.4402 101.199 197.883 283.658 634.656
206388.5 69.2215 125.652 240.394 360.78 930.751
269568.6 80.8839 137.691 293.439 445.802 994.409
341172.8 93.6748 158.382 333.317 525.557 1214.2

421201 105.337 170.044 369.809 623.37 1405.17
509653.2 112.109 185.469 420.596 676.039 1614.91
606529.4 116.623 196.379 445.049 874.463 1767.02

 
Table 6.  Measured strain in hybrid micro/nano magnetostrictive composites as a function of field 

and prestress.  This composite contained 20% microparticles and 7% nanoparticles by volume. 

 

Field2 (Oe2) 
 

0.28 psi 
prestress 

1.25 psi 
prestress 

3.38 psi 
prestress 

7.35 psi 
prestress 

13.70 psi 
prestress 

4212.01 13.1671 4.89065 30.81 26.3343 18.0578
16848.04 19.1864 16.1768 91.79 82.3887 78.6266
37908.09 21.4436 29.7201 165.15 177.192 171.549
67392.16 33.8584 36.1156 225.72 288.172 288.925
105300.3 39.1252 50.7875 287.796 428.873 423.606
151632.4 49.6589 51.1637 358.899 529.697 555.277
206388.5 51.9162 101.575 395.767 671.9 662.119
269568.6 62.4499 115.118 442.792 731.735 838.279
341172.8 80.9779 124.147 495.084 897.179 1018.53

421201 83.5173 128.662 511.261 1001.71 1150.54
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509653.2 110.228 138.819 533.834 1060.73 1332.13
606529.4 117.752 141.077 561.673 1138.48 1530.48

 
Table 7.  Measured strain in hybrid micro/nano magnetostrictive composites as a function of field 

and prestress.  This composite contained 20% microparticles and 9% nanoparticles by volume. 

 

Field2 (Oe2) 
 

0.28 psi 
prestress 

1.25 psi 
prestress 

3.38 psi 
prestress 

7.35 psi 
prestress 

13.70 psi 
prestress 

4212.01 18.3964 15.8006 25.5819 31.6011 22.9484
16848.04 38.3728 49.2827 105.337 119.633 87.6555
37908.09 65.0833 81.6363 170.42 239.266 196.755
67392.16 86.5269 115.495 257.324 382.223 292.687
105300.3 116.247 143.334 345.355 509.004 443.921
151632.4 139.948 167.035 405.172 646.319 598.917
206388.5 152.739 187.35 486.056 832.248 873.793
269568.6 186.973 209.169 543.239 956.214 983.687
341172.8 208.417 226.475 586.502 1055.39 1153.22

421201 232.118 237.761 621.489 1157.91 1358.27
509653.2 259.957 257.324 652.338 1255.07 1489.6
606529.4 299.082 266.352 694.473 1454.09 1717.43

 

 
Table 8.  Measured strain in hybrid micro/nano magnetostrictive composites as a function of field 

and prestress.  This composite, prepared as a control,  contained 0% microparticles and 9% 

nanoparticles by volume. 

 

Field2 (Oe2) 
 

0.28 psi 
prestress 

1.25 psi 
prestress 

3.38 psi 
prestress 

7.35 psi 
prestress 

13.70 psi 
prestress 

4212.01 3.11 7.44884 11.9633 3.38584 10.1575
16848.04 9.03 10.533 14.2205 8.27645 15.42
37908.09 12.41 10.533 15.4246 12.4147 19.56
67392.16 15.8 14.672 19.1864 18.3964 24.07
105300.3 15.8 19.525 24.378 21.4436 31.6
151632.4 17.61 20.315 22.9108 21.8198 35.36
206388.5 22.57 23.2494 30.0211 25.2053 41
269568.6 18.9 24.378 27.7639 28.2153 40.63
341172.8 28.55 24.8295 33.0683 34.2342 48.8689

421201 30.02 30.0888 29.3439 36.4914 49.6589
509653.2 30.47 26.2967 29.7197 39.84 57.1078
606529.4 35.33 27.8383 30.4725 43.2258 62.7508
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CONCLUSIONS 

 

 We have shown that the magnetostriction of field-structured magnetoelastomers is 

extremely dependent upon the structure of the particle agglomerates.  In increasing order 

of response are biaxial composites, random composites, uniaxial composites, and triaxial 

composites formed by heterodyning with a field bias.  Magnetostrictions of up to 10,000 

ppm have been demonstrated, as have modulus enhancements of 2000 kPa. We have 

shown that even for high aspect ratio samples demagnetizing field corrections can be 

important, and have identified a torque instability in samples formed in biaxial fields.  

Finally, we have shown that there is a possibility of particle clumping transitions in these 

composites, and have shown how this transition depends on field, gel modulus, and 

sample strain.  A future challenge is to understand precisely why the observed sample 

contraction increases linearly with sample prestrain. 
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