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Abstract

The computing infrastructures of the modern high-energy physics experi-
ments need to address an unprecedented set of requirements. The collabo-
rations consist of hundreds of members from dozens of institutions around
the world and the computing power necessary to analyze the data produced
surpasses already the capabilities of any single computing center. A software
infrastructure capable of seamlessly integrating dozens of computing centers
around the world, enabling computing for a large and dynamical group of
users, is of fundamental importance for the production of scientific results.
Such a computing infrastructure is called a computational grid.
The SAM-Grid offers a solution to these problems for CDF and DZero, two of
the largest high-energy physics experiments in the world, running at Fermi-
lab. The SAM-Grid integrates standard grid middleware, such as Condor-G
and the Globus Toolkit, with software developed at Fermilab, organizing
the system in three major components: data handling, job handling, and
information management. This dissertation presents the challenges and the
solutions provided in such a computing infrastructure.
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Chapter 1

Introduction

The collaborations of high-energy physics experiments are traditionally large
and geographically distributed. Only a few laboratories around the world
offer the facilities necessary to conduct innovative programs of research in
the field. Physicists from all over the world gather at these sites, building
particle detectors specifically designed to best exploit the unique character-
istics of these facilities. Nowadays, collaborations involving scientists from
dozens of different nationalities are becoming increasingly common. In ad-
dition, in the past decades, the complexity and the cost of these detectors
have increased dramatically, as new and more advanced physics questions
have become the focus of the community. To confront the unprecedented
budgets and the challenges posed by the research programs, the collabora-
tions have naturally increased in size, involving typically many hundreds of
scientists.

The complexity of the physics and the detectors does not only entail
larger numbers of collaborators. The amount of data to be gathered, cata-
logued, processed, and analyzed, in fact, is on the order of a Petabyte per
year per experiment. Various factors contribute to the exponential growth
of the data size. First, the observation of the physics of interest requires a
much greater spatial resolution than in the past: the typical number of data
channels of a modern detector reaches in the millions, an order of magnitude
larger than a decade ago. Second, high-energy physics studies phenomena
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2 CHAPTER 1. INTRODUCTION

statistical in nature and most of the particles studied in today’s research
programs have an extremely rare probability of occurring. The characteris-
tics of such rare particles can be studied with the required level of statistical
significance only if enough of them are observed during the data taking.
In the modern experiments, it is usual to gather data for many years and
observe a few dozen occurrences of a certain rare particle, while the total
number of background particles amounts to many billions.

In this scenario, addressing the computing needs of the modern high-
energy physics collaborations presents many challenges, and the amount of
data and large geographical scale are only the most evident. For most exper-
iments today, the processing power required to produce innovative scientific
results is already larger than what a single central computing facility can
provide. In the past, the multinational institutions participating in the ex-
periment generally financed the hosting laboratory to buy the computing
hardware and take the responsibility of managing it. Today, this trend is
reversing, and, typically, national funding agencies are willing to invest in
computing infrastructures as long as they are maintained locally and ded-
icated to more than one experiment or even discipline. This politics is
popular because it promotes the development of national computing cen-
ters and expertise, and, at the same time, it streamlines the maintenance of
the computing systems by promoting resource sharing. This trend leads to
the formation of computing centers very diverse with respect to hardware,
software systems, configurations, management policies, and availability. A
global software infrastructure capable of interfacing to each individual cen-
ter is therefore the key to enabling transparent access to the total pool of
computing resources.

Besides the diversity of the computing fabric, another important chal-
lenge is the dynamic nature of the membership to the collaborations. Typi-
cally, scientists join and leave the physics collaboration throughout the life-
time of the research program. This group of people, temporarily working
together to accomplish a common goal, is sometimes referred to as a “Vir-
tual Organization”. A successful distributed computing infrastructure must
preserve the efficiency and, at the same time, guarantee the security of the
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computing environment.

In summary, the broad question that this research addresses is:

How do we implement, deploy and operate a global software infrastruc-
ture that enables a Virtual Organization to handle Petabytes of data and to
access a Petaflop-scale pool of shared and distributively owned resources, in
a secure, accountable and transparent fashion?

This software infrastructure is called a “Computational Grid” [1], in
analogy to the Electrical Power Grid: in the same fashion as the power grid
provides electricity to the users irrespectively of where it is produced, anal-
ogously, the computational grid gives transparent access to geographically
distributed computing resources.

1.1 The Standard Grid Middleware

Astronomers and high-energy physicists have started moving toward grid
computing between five to ten years ago (as exemplified by current physics
projects such as BaBar [2], Belle [3], DZero [4], CDF [5], SDSS [6], and LIGO
[7]). Many groups of physicists and computer scientists are also building a
large grid for the next generation of experiments, which will start taking data
in 2007 at the Large Hadron Collider (LHC) at the European Laboratory
for Particle Physics (CERN) [8], Switzerland (see the collaborations of CMS
[9, 10], Alice [11, 12] , LHCb [13], and Atlas [14]). In this scenario, the
proliferation of distinct solutions to very similar problems risks to become
a big concern. Not only is this a duplication of effort in a time when the
budget for high-energy physics research grows by only one to two percent per
year, but this also implies in projection a cost to educate the scientists to use
many different computing infrastructures. At this point, there is clearly a
need for the scientific community to come together and define what services
a grid must provide and by what protocols and interfaces.

Since 2001, these matters are discussed by hundreds of people gathering
at the Global Grid Forum (GGF) Conferences [15]. The conferences are
organized around working groups, which provide documents to define the
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specific problems, to propose the standards and, sometimes, provide refer-
ence implementations. The leader in this effort is the Globus Alliance [16],
which provides open source technologies that are used as building blocks of
many grids for scientific communities and the industry. Their Globus Toolkit
[17] provides a de facto standard implementation of four major components
of a grid computing system:

1. Security: the Globus Security Infrastructure (GSI) is based on a Pub-
lic Key Infrastructure that uses X509 certificates. Certificates define
the identity of software services and people. They are generated by
users and administrators and certified (signed) by Certificate Authori-
ties, which, ultimately, define the trust relationship in the system. All
the software in the Toolkit is integrated with GSI.

2. Data Management: these components offer data movement via a
GSI-enabled FTP service called GridFTP, and replica location services
via the Globus Replica Catalog.

3. Information Services: the resources of a computing cluster and the
jobs running therein can be monitored using the Monitoring and Dis-
covery Service (MDS), a GSI-enabled version of an LDAP server. MDS
offers also an indexing service, which provides access to information
across multiple information servers.

4. Resource Management: provides a reference implementation of the
Globus Resource Allocation and Management (GRAM) protocol. The
GRAM server, called gatekeeper, offers simple interfaces to manage
jobs running on underlying batch systems.

Various other groups also provide similar or competing software compo-
nents, which are less popular than the Globus Toolkit within the high-energy
physics community (see Avaki [18], Platform Computing [19], Entropia [20],
Sun Grid Engine [21], United Devices [22], Parabon [23], ProcessTree [24],
Popular Power [25], Mojo Nation [26], and DataSynapse [27]).

Despite its wide acceptance, the components of the Globus Toolkit are
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too low-level to be usable “out of the box” as a complete grid solution. The
main limitations of the GRAM protocol are:

• The job instance is not persistent: in case of a crash of key remote
machines, the system looses the job request. The Globus Toolkit does
not implement reliable job management.

• There are no provisions for error recovery mechanisms: in case of fault
conditions in the infrastructure, the system is incapable of reacting.
The Globus Toolkit is not fault tolerant.

• The user interface is not user friendly: the Globus Resource Specifica-
tion Language (RSL) is arguably complex, verbose, and error prone.

The limitations of the Globus Toolkit’s reference implementations of the
GRAM protocol are discussed further in chapter 4.

The Monitoring and Discovery Service is well suited for gathering infor-
mation upon request, but:

• It does not allow information to be pushed into the system, a char-
acteristic needed to monitor event driven systems. MDS implements
only a pull-based monitoring paradigm.

• The reference implementation is generally considered low quality (sec.
2.2.2).

The Data management tools provide only a limited number of compo-
nents, most of which have been implemented only recently:

• The data movement component, called GridFTP, was the more robust
and mature service, being based on the WU FTP implementation of
the transfer protocol. In recent software releases, because of licensing
issues, the server has been completely reimplemented, including the
stable and trusted security module. The other components available
only in the more recent releases of the Globus Toolkit are the replica
location and the reliable file transfer components.
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• Real-life implementations of data management services, such as data
handling or storage systems, require components that are not available
in the toolkit. Examples of these components are space allocation,
data caching, and scratch space management systems.

Because of these limits, various groups have developed software that offer
higher-level services, building on top of the Globus Toolkit [28, 29, 30, 31]. A
leading such group is the Condor Team, the developers of the Condor batch
system [32]. For more than a decade, they have been developing software to
support high throughput computing, delivering large amounts of processing
capacity over long periods. In the past years, they have reused some of the
concepts of the Condor batch system to address the problem of job manage-
ment on the grid. Condor-G [33], the GRAM enabled extension to Condor,
provides reliable and robust job management via durable distributed trans-
actions and error recovery mechanisms as well as a user-friendly system
interface.

The Globus Toolkit and Condor are solutions so widely used together
that are often referred to as the standard middleware. They are the central
piece of various middleware distribution packages [34, 35] and are the basic
components of many grid projects throughout the world [36, 37, 38, 39, 40,
41, 42, 43, 44, 45].

The general question that is the focus this research can therefore be
rephrased as

How do we integrate the standard middleware to achieve a complete
Job, Data and Information management infrastructure for the distribution,
processing, and storage of physics experiment data?

and the corollary questions

What parts of the standard middleware need to be enhanced to address
the typical huge scales of High-Energy Physics? What parts are currently
not sufficiently mature and must be replaced with in-house development?

We have been addressing these questions at Fermilab during the past 4
years in the context of the SAM-Grid project.
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1.2 The SAM-Grid System

The SAM-Grid [46, 47, 48, 49, 50, 51] is a computing project started at
the Fermi National Accelerator Laboratory [52] in January 2002 and it is
one of the first grids deployed for the high-energy physics community. The
Laboratory, in Batavia, Illinois, operates the particle accelerator with the
highest energy in the world, the Tevatron. The accelerator is used by two of
the largest particle physics experiments currently taking data: CDF (Cen-
tral Detector at Fermilab) [5] and DZero [4]. The project is conducted as
a collaborative effort between physicists and computer scientists and it is
financed in part by Fermilab, the Particle Physics Data Grid (PPDG) [53],
in the US, and GridPP [54], in the UK. The goal of SAM-Grid is to enable
fully distributed computing for the DZero and CDF experiments, integrating
standard grid tools with in-house solutions and software when the standards
do not provide an appropriate solution.

The SAM-Grid architecture is composed of three major components: the
data handling, the job and the information management systems. This di-
vision is mostly natural as it closely follows the organization of the standard
middleware and best capitalizes on the software already developed at Fer-
milab for the experiments. The most notable of this in-house software is the
Sequential Access via Metadata (SAM) [55, 50, 56, 57, 58, 59, 60, 61, 62], the
data handling system that we have developed for the experiments. Figure
1.1 and 1.2 shows two architectural diagrams of the SAM-Grid.

We now introduce the three major components of the SAM-Grid together
with its division to global and local services. We also introduce the larger
questions that have arisen during the phase of design, implementation, and
deployment of each component. This dissertation will then address the ques-
tions related to the job management (chap. 3) and information management
(chap. 2) components. We will also describe the interface between Grid ser-
vices and the Fabric i.e. the ensemble of local resources and services at a
site (chap. 4). In section 1.3 we summarize the solutions to the questions
related to the data handling component, SAM, which we developed in an
earlier project. We include this summary for completeness and because the
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Figure 1.1: The SAM-Grid is divided into three major components: data
handling, job handling and information management. All three components
are integrated with strong security mechanisms. Each orange bubble repre-
sents an abstract aggregated service, whose implementation appears in the
blue label next to it. The major challenge of the project was integrating
all the services to enable globally distributed computing for the DZero and
CDF experiments at Fermilab.
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Figure 1.2: The SAM-Grid architecture can be decomposed in Fabric and
Global services. Fabric services, local in nature, are shown in the pink boxes
labeled “Site”. Global services are represented by the remaining boxes. The
diagram also shows the division of the SAM-Grid in three components. The
Job Management, in green, is composed of a Local Job Handling service
per site, a central Resource Selector, dozens of Submission services, and
hundreds of User Interfaces. The Data Handling component, in blue, has
Data Handling services at each site, and semi-central Global Data Handling
Services. The Information Management, in yellow, is mainly constituted
by Fabric services, interacting with information visualization mechanisms.
Different types of arrows show the flow of jobs, data, and meta-data, tieing
together services and components.
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SAM system is of fundamental importance for both of job and information
management.

As the SAM-Grid is expanding in size and usage, we are gathering useful
first hand information on the challenges of deploying and operating a grid for
high-energy physics. In addition to describing the system, the dissertation
presents such challenges and reports on the “lessons learned” for this first
generation of grid systems.

1.2.1 Data Handling

The main problems that a Data Handling System should solve are summa-
rized by the following four questions:

How do we provide reliable data storage? Whether coming out of
a detector or out of a computing cluster after days of computation, data is
ultimately the most import resource of all (carbon-based resources apart).
A data handling system must provide a high probability of securing high-
profile data to permanent storage.

How do we enable global data distribution? With hundreds of
people at hundreds of collaborating institutions, a data handling system
must provide reasonably easy and efficient access to the data throughout
the globe, in order not to be the limiting factor to scientific discovery.

How do we catalogue the data? Organizing the data is a funda-
mental pre-requisite to data processing. This problem is non-trivial because
the amount of data taken throughout the lifetime of a modern high-energy
physics experiment ranges between ten and twenty Petabytes, generally or-
ganized in tens of millions of files.

How do we manage data handling resources? With such a large
amount of data, distributed throughout the world to increase accessibility,
the data handling system controls dozens to hundreds of millions of dollars
worth of equipment. Thus, the system represent an opportunity for the
global coordination of hardware and software resources, in order to accom-
plish the goals of the physics program.
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Figure 1.3: The amount of data consumed by DZero applications using SAM
surpasses 300 Terabytes per month.

In the SAM-Grid, these questions are addressed by the SAM data han-
dling system. The SAM project was started at Fermilab in 1997 to address
the data handling challenge that the DZero experiment was going to face
throughout the following decade. As the system grew more configurable and
operationally stable, in 2001 CDF opted to adopt SAM for its data handling
needs. Today the system manages a throughput of Terabytes of data per
day throughout dozens of sites in America, Europe and Asia (fig. 1.3).

Other groups have developed systems that address some of the questions
listed above (SRB [63], GDMP [64, 65], Giggle [66], NeST [67], Magda [68],
DataCutter [69], and the Global Grid Forum [70]). As of today, SAM is still
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arguably the most comprehensive data handling solution for the high-energy
physics domain.

The flexibility and stability of the SAM system is of central importance
for the job and information management infrastructure of the SAM-Grid.
Both services rely heavily on the maturity of SAM, in order to provide
solutions to classical grid problems, such as data pre-staging and job/data
co-location (sec. 3.4.1). For these reasons, the SAM system solutions are
summarized in this dissertation (sec. 1.3), even if the focus of this research
is the job and information management components.

1.2.2 Job Management

In high-energy physics, as in other fields, a computational task can be de-
composed in one or more units of computation, called jobs. During the
process of design and development of the job management component, we
have encountered a series of problems that a job management infrastructure
must address. These problems are introduced hereby and discussed in detail
in chapter 3.

How do we enforce security? A secure and accountable access to ser-
vices and resources is the fundamental requirement to enforce any agreement
between the experiments and the associated institutions.

How do we handle the jobs reliably? A grid is a dynamic environ-
ment in which resources and services do not have 100% availability. A job
management infrastructure must treat the job instance persistently, han-
dling the job to completion irrespectively of service and resource availability
(sec. 3.3). It should be noted that job completion does not mean job success.
In other words, job reliability does not entail fault tolerance.

How do we avoid continuous network connectivity of the client?

The job management infrastructure should not require high availability of
the machine where the user develops his/her applications. The client ma-
chines are, in fact, often laptops. This requirement naturally introduces a
multi-tiered approach to job management(sec. 3.3).
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How do we automatically select resources? The job management
infrastructure should provide a service responsible for the selection of the
resources on behalf of the users (sec. 3.4). This service should shield the
user from the knowledge of: (1) the details of the grid resources; (2) the
“best” resource to run a job.

How do we run “structured” jobs? Jobs can be composed of multi-
ple processing stages. We call a job “structured” if it exposes to the grid the
details of its processing stages. Since structured jobs for high-energy physics
run for days or weeks, the ability of processing them automatically reduces
the possibility of human errors and the time to completion (sec. 3.2.4).

How do we run generic applications? Ideally, a grid should offer
a set of services with standard interfaces that the jobs and the services
themselves could use to accomplish the computational task. In practice,
most high-energy physics jobs today are hardly portable and very seldom
grid-aware. In order to compensate for this, it is the middleware that needs
to be specialized to deal with such jobs, for example by triggering collective
services on behalf of grid-unaware jobs. The specific services involved and
their optimization depend on the “type” of job i.e. on the user application
(sec. 3.2).

How can we be fault tolerant? A reliable job management infras-
tructure handles the jobs to completion even in case of unavailability of key
services. Because of services outages, though, a potentially successful job
can fail. A fault tolerant system reacts to the infrastructure-related job
failures, increasing the probability of success for the job (sec. 3.3).

How do we meet the performance requirements? Grid infrastruc-
tures are naturally less efficient than job management systems specialized
for local hardware and software configurations. On the other hand, the
advantages of a grid infrastructure, such as software standardization and
transparent access to the resources, make the grid system convenient and
cost effective. In addition, the inefficiencies typical of a grid system can be
mitigated by giving grid services knowledge of the applications that use the
resources (sec. 3.2).
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How do we scale with the number of jobs, users, resources,

services? The SAM-Grid infrastructure has proven to scale up to dozens
of execution and submission sites and thousands of machines. We can run
hundreds of concurrent jobs at a site and hundreds to thousands overall (sec.
5.1). Our current user-base is in the dozens of users and we envision the
need to scale up to the hundreds.

The Condor and the SAM-Grid teams decided in 2001 to address the
computational requirements of large high-energy physics experiments by en-
hancing the Condor-G framework [71]. The advantages of such approach
consist mainly in promoting the standards and ease the maintenance of the
infrastructure by encapsulating the domain specific software to a series of
modular, lightweight plug-ins.

We have found that the first three of the problems mentioned above were
addressed in the standard middleware or could be addressed with minor
modifications to the infrastructure. In order to enforce security, in fact, the
SAM-Grid adopts the Globus Security Infrastructure as the basis of its secu-
rity model. Reliability of job handling, instead, is inherent in the SAM-Grid
via the reliability mechanisms that the Condor-G framework implements on
top of the Globus Resource Allocation and Management (GRAM) protocol.
Finally, continuous network connectivity is not required as the SAM-Grid
implements a lightweight client environment based on the Condor-G client
software. On the other hand, for the last problem, the current implemen-
tation addresses the needs of our community and we are investing minimal
resources in investigating the problems further. The solution to the prob-
lems introduced by the remaining questions form the basis of this research
for what concerns job management.

The job handling component of the SAM-Grid is designed to provide
robust and efficient management of jobs on the grid. In addition, it provides
a user interface specifically designed for high-energy physics applications.
Various groups address this problem in the context of other grid infrastruc-
tures. The European Data Grid (EDG) [36] software has provided a solution
with the development of a large, arguably monolithic code base, based on
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the standard middleware. LCG [37] is extending the infrastructure of EDG
to address the needs of the LHC experiments. The GriPhyN (Grid Physics
Network) [42] project uses the standard middleware for the low level job
management, and introduces the concept of virtual data to organize job
dependencies. See also the DIRAC [72] and GANGA [73] projects.

1.2.3 Information Management

The main problems that an information management infrastructure must
address are:

How do we do the bookkeeping of the data processing activity?

For high-energy physics in particular, a solution to this problem enables the
reproducibility of the physics results. Such reproducibility is fundamental
for the accountability of the scientific discovery (sec. 1.3).

How do we monitor jobs, services, and resource usage? An
infrastructure capable of gathering the status and history of main entities of
the grid is useful for both users and other grid services. It is useful for users
because it helps tracking the progress of their jobs and the status of the
resources. It is useful for other services, such as resource selectors, for the
discovery of the resources and the propagation of the resource characteristics
(sec. 2.2).

How do we configure distributed resources and services at a

site? A uniform framework to address configuration management is the
key to the consistency of the information propagated through the grid (sec.
2.1).

The SAM-Grid relies on the SAM data handling system for data process-
ing bookkeeping (sec. 1.3). For the problem of resource discovery, instead,
the SAM-Grid resource selection service is based on the information collec-
tion mechanisms of the Condor match making service (sec. 3.4.2). Other
grids also base their resource selection mechanisms on their information ser-
vices. The resource selection service of LCG, also called the broker [74] relies



16 CHAPTER 1. INTRODUCTION

on the R-GMA (Relational Grid Monitoring Architecture) [75] information
service to function.

The SAM-Grid information management infrastructure is discussed in
chapter 2. In the SAM-Grid, the information management is organized into
three categories:

1. The static or semi-static information, which deals with the configura-
tion of the grid products, services and resources (sec. 2.1).

2. The dynamic information, which is mostly used for monitoring (sec.
2.2).

3. The historical view of the previous information, which consists of the
logging and bookkeeping services (sections 2.2 and 1.3).

Each category of information, when considered in the context of a grid
system, presents a different set of challenges.

1.2.4 Fabric Services

In order to reliably execute jobs, the job management component of every
grid depends on a set of services local to the computing site. In addition
to standard services, such as a local scheduler, the grid needs services that
manage the grid jobs and the resources at the site. These services are some-
times called the fabric services. Typically, they provide local batch system
adaptation for the incoming grid jobs, dynamic product installation, intra
cluster transport of the job and its output, etc. For most of these services,
standard and mature technologies are not available to the community, and
they thus need to be developed.

The main fabric-level problems of a global computing infrastructure are:

How do we foster site autonomy? “Classical” distributed systems
are designed using an architecture that assumes that the system has full con-
trol over the resources. Distributed components typically communicate us-
ing proprietary interfaces. Even if there is general consensus over the choice
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of the transport protocols, historically there is little effort in defining “stan-
dards” for the interfaces themselves. What sets apart the paradigms of grid
and peer-to-peer distributed systems is the sharing of distributively owned
resources. A grid site instantiates distributed components that offer services
adhering to standard protocols and interfaces. Within this paradigm, a grid
infrastructure must allow a site the freedom to choose the architecture of its
resources, the implementation of its services, the definition of its policies,
etc.

How do we run on non-dedicated resources? The software devel-
oped for resources dedicated to accomplish a certain task is generally highly
tailored to the specific configuration of the system e.g. network topology,
organization of the local storage, software environment, etc. A grid infras-
tructure, on the other hand, must be able to interface to a variety of system
configurations, ideally imposing minimal constraints on such configurations
(chap. 4).

How do we coordinate fabric services to execute complex jobs?

Offering a set of services to a job is not enough to achieve the quality of
service necessary to successfully execute complex jobs. Services need notifi-
cation and coordination before a job attempts to access them (chap. 4).

How can we overcome temporary failures of fabric services?

Robustness in the access to local services is necessary to achieve quality
of service. Transient failures that are acceptable for interactive usage of a
system have dire consequences in the job success rate, when the same system
is accessed via the grid (sec. 4.2).

How do we overcome the lack of fabric services at a site? Some
sites do not implement services that are important for the grid. Typical
examples are scratch space management or ubiquitous access to storage.
In each case we have implemented software to mitigate the lack of these
services. Yet, we believe that our “mitigators” do not provide a solution
general enough and we consider this still an open problem.

The SAM-Grid runs on non-dedicated resources by encapsulating the pe-
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culiarity of each site in the configuration of a single gateway node. At this
node, the use of an “active” grid-to-fabric interface achieves the coordina-
tion of the fabric services at the site. The main advantage of this approach
is the optimization of information access, such as job and data co-location
or aggregation of database queries. Transient failures of the fabric services
are overcome by retrials in the communications with the services. For ex-
ample, the introduction of retrials upon denial of service have increased
the job success rate of the SAM-Grid from 60% to 95%. A discussion of
the design and the implementation of the SAM-Grid fabric services can be
found in chapter 4. Throughout the entire dissertation we will argue how
the SAM-Grid fosters site autonomy, one of the fundamental paradigms of
grid computing. We will also argue throughout the dissertation that making
the grid aware of details of the applications enables the implementation of
resource optimizations not easily achievable otherwise.

1.3 The SAM Data Handling System

The SAM (Sequential Access via Metadata) data handling system [55, 50,
56, 57, 58, 59, 60, 61, 62] was designed and implemented with four principal
goals in mind:

1. Provide reliable data storage, either directly from the detector or from
data processing facilities around the world.

2. Enable data distribution to and from all of the collaborating institu-
tions, today on the order of 70 per experiment.

3. Thoroughly catalogue the data for content, provenance, status, loca-
tion, processing history, user-defined datasets, etc.

4. Manage the distributed resources to optimize their usage and, ulti-
mately, the data throughput, enforcing, at the same time, the policies
of the experiments.

The SAM system achieves these goals via a global network of cooperating
software services, some of which are centralized in nature, like, for exam-
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ple, the metadata catalogue, while some are fully distributed. Among the
distributed services, the principal and foremost is the SAM station, whose
role is pooling together a set of resources at a site, such as storage, com-
puting, and network systems, for the sake of data management. Storage
systems resources are either mass storage systems (MSS) or volatile stor-
age systems. An example of mass storage system particularly important
to both experiments is Enstore, a grid-enabled robotic tape-based storage,
located at Fermilab, where all of the primary and most of the derived data
are permanently stored. The Enstore system presents the data as a vir-
tual file system and can cooperate with a Disk Cache (DCache) front layer,
thus enabling efficient network data access. In addition, the DCache sys-
tem optimizes tape management, a responsibility that in the past was left
to the data handling, mainly because of its ability to efficiently buffer data
requests. However, that responsibility requires a very detailed knowledge
of the organization of the MSS tape library. Thanks to the DCache layer,
Enstore moves several Terabytes of data daily in and out of the storage.
Volatile storage systems, on the other hand, are present at almost every
site in the form of disks. These disk resources can be optionally managed
directly by the SAM system, with various caching algorithms and allocation
policies, such as, for example, fair share utilization policies of storage space
for all physics groups.

The system achieves data storage and distribution by coordinating the
access of the globally distributed SAM stations to globally distributed stor-
age systems. In this regard, the primary and foremost service offered by
the data handling system is data replication. The service is automatically
triggered by clients unable to directly access the data, due to topological
constraints. Using delegation among stations, SAM transfers the data to a
storage system accessible by the client, cataloguing, at the same time, the
intermediate data locations. The route decided for the transfer depends on
the selection criteria of the initial replica and on the topology of the sta-
tions, parameters that can both be tuned to shape the network traffic. In
order to achieve replication, SAM implicitly relies on its data movement ser-
vice. For this service, data transfer is a layer of abstraction independent of
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the protocols, which are implemented, in the end, through a plug-in mech-
anism. In addition, to overcome possible errors during data transfer, SAM
implements reliability in the form of data integrity checks, automatic retrial
mechanisms, and, most importantly, alternative replica selections.

To catalogue the data, it was decided in 1997 to rely on a central, well-
maintained relational database, managed at Fermilab. Despite the fact that
a central service represents a potential single point of failure, the SAM
database has turned out to be year after year a very reliable component.
The information stored in the database ranges from system configuration,
such as available resources and users, to data description (raw detector data,
derived data, binaries, etc.). A particular effort has been put into the de-
sign of a meta-data schema flexible enough to allow the usage of SAM by
more than one experiment, by enabling custom defined parameters. In this
framework, users can define datasets giving logical names to queries in the
meta-data parameter space. In addition, custom defined parameters have
the advantage of limiting the necessity of schema evolutions. Neverthe-
less, in order to further isolate the client code from possible changes in the
schema and, at the same time, hide the complexity of the internal data rep-
resentation, SAM maintains multiple instances of a middle-tier server, which
mediates the accesses to the database. Another fundamental aspect of the
schema is the data processing history, which, combined with the meta-data
catalogue, provides a record of the data provenance, an aspect crucial for
the reproducibility of the physics results.



Chapter 2

The Information

Management Component

A software environment designed to support the computing of a modern
high energy physics experiment needs to address the challenges associated
with handling large amounts of data, processed by jobs that run on a dis-
tributively owned, shared and dynamic resource infrastructure. Information
management can benefit from a classification of the information in three
categories, treated in practice with different software tools:

1. the information that is static or semi-static in nature, such as the
global parameters of the grid or the setup of services and resources at
a site. Changing this information generally involves a human interven-
tion, typically by a system or service administrator. We refer to this
category of information with the generic name of grid configuration
and we talk more about it in section 2.1;

2. the information associated with the behavior of the entities in the grid,
such as resources, services, jobs, et cetera. This information is dynamic
in nature and it is captured in various degrees and representations by
the monitoring infrastructure of the grid (sec. 2.2);

3. the historical view of the previous two categories, with the appropriate
level of synthesis: this category is useful mainly for bookkeeping. This

21
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activity is of fundamental importance for the reproducibility of scien-
tific results. A reproducible data analysis, in fact, is indispensable to
convince peer reviewers of the soundness of the scientific publication
and, in the end, the credibility of the collaboration. Bookkeeping is
also useful for statistical studies of the grid. These studies are inter-
esting for comparing theoretical models with physical systems and for
optimizing the usage of services and resource. We discuss this last
category of information in section 2.2.4.

The work and literature on monitoring systems is conspicuous [93, 94, 95,
91, 75, 100, 102, 101, 104, 106]. These and other references are discussed and
compared with the SAM-Grid solution in section 2.2. On the other hand,
the work on configuration management is not at the same level of maturity.
In section 2.1, we present the problem and the SAM-Grid solution.

2.1 The Configuration Infrastructure

This section discusses the problem of configuring distributed resources and
services at a site (sec. 1.2.3). To analyze the problem, we need to clarify
in what context we talk about configuration. In particular, we focus on the
configuration of those parameters that define the behavior of grid services.
We do not attempt to offer tools to administer the whole grid infrastructure,
such as operating system components (e.g. libraries and devices) or standard
system applications (e.g. batch and file systems). This latter problem is ad-
dressed on the Grid by a few emerging software infrastructures [77, 78, 79, 80]
that extend the classical software distribution mechanisms for local clusters.
These tools address configuration at the level of the operating system and
of a few standard applications. The configuration of high-level software ser-
vices is in general more complex in nature and not necessarily configurable
automatically. We describe the problem in more detail in section 2.1.1. The
subsequent sections describe the SAM-Grid solution.
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2.1.1 Problems in Configuration Management

There are various challenges that a grid configuration infrastructure must
address, first of all the large number of parameters. This factor has two
main impacts. The first is the high likelihood of name conflicts. In or-
der to prevent name conflicts, the framework will have to use some form
of name spacing for the parameters. The second impact is the potential
for inefficient management of information. The framework must thus use
a technology that optimizes access to the parameters. Another challenge
is that the configuration should be distributed to foster site autonomy and
maintainability, but, on the other hand, should be easy to manage from
anywhere within the grid and resilient to concurrent management attempts.
For example, in order to describe the configuration of different groups of
resources and services at a site, the system should allow the organization of
the information into a single repository, central to the site, as well as into
multiple repositories managed by different administrators, with different ac-
cess policies, et cetera. In any case, the specific organization strategy should
be transparent to the information management mechanisms. In addition, it
is crucial to present a consistent view of the configuration throughout the
system, a task not trivial considering the distributed nature of the services
and the fact that different services need to represent the configuration in
different formats. For example, the resource advertisement service (see sec.
3.4.2) and the monitoring service must provide the same information regard-
ing the resource characteristics of a certain site, even if they are physically
instantiated on different machines. Figure 2.1 illustrates this concept with
a diagram: a site provides a logically unique repository of information. Dif-
ferent services use this repository to give a consistent view of the site to the
grid.

The requirements defined so far are useful to guide our design decisions,
but, by themselves, are not enough to build a software system. In order to
achieve this goal, the question of how to configure services and resources at
a site must be better qualified to address real-life problems, such as (1) how
the information is gathered and (2) how it is organized.
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Figure 2.1: Services instantiated on different machines have access to a logi-
cally unique site information repository. The services propagate a consistent
view of the site to the grid.
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1. To gather the configuration, the SAM-Grid has given preference to the
knowledge that the administrators have of the system. In other words,
the configuration of the SAM-Grid services and products, as well as
their hierarchy and relationship with the physical resources at a site,
are mainly gathered through interviews with the system administra-
tors. For this reason, a dedicated software tool to drive the interviews
is of central importance in the configuration process. A dedicated tool
guarantees a consistent integration with the configuration framework.
On the other hand, in order for this tool to be usable, it should be
easily configurable and flexible enough to fit the logic of all the most
relevant interviews. A way to achieve this is for each product to come
with a template that drives the tool through the interview. Inciden-
tally, it should be noted that this template could be thought of as
a meta-configuration, alluding to the fact that it would be the con-
figuration of how to gather a product or service configuration. The
meta-configuration language should address specifically the problem
of driving interviews, offering the developers characteristics that could
be preferable to a generic language, such as Perl, Python or UNIX
shell. Such a tool should satisfy the following requirements:

(a) it should allow the expression of simple logic, such as loops and
branches in the questions

(b) it should provide facilities to determine the best default to a ques-
tion, considering previous answers as well as the configuration of
other services and resources.

(c) the structure of the template should reflect the final configuration
of the given product, a characteristic useful to ease maintenance
and generally difficult to achieve with generic scripting languages.

Figure 2.2 shows a diagram of the configuration process. Section 2.1.3
describes in detail a tool that uses a meta-configuration language to
drive the configuration interview.

2. The SAM-Grid organizes the configuration of its services and resources,
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Figure 2.2: Developers provide meta-configuration templates with every grid
product. These templates are used as input to the meta-configurator, which
drives the configuration interview with the site administrator. The output
of the interview is the configuration document, which is stored to a logi-
cally unique site repository. Both the meta-configuration template and the
configuration are represented in XML. This mechanisms is used for product
and site configuration.
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as well as their mutual relationships, breaking it down in sub-domains,
corresponding approximately to the participating sites and institu-
tions. Although other breakdown structures are, in principle, also
possible, ranging from a configuration model where each service and
resource is independent to a completely central model, the site-centric
approach follows naturally considering the importance of site auton-
omy. Hence, in this context, the boundaries of a site correspond to the
ownership boundaries of the resources. On the other hand, defining all
the configuration parameters of a site in a single document becomes
verbose and soon difficult to manage. Therefore, a modular approach
is preferable, since many parameters are only meaningful to the service
that uses them. In other words, it is beneficial to organize the informa-
tion in a single site description that outlines the relationships between
services and resources, while the internal details of their configuration
are deferred to different units. As it is possible to organize the con-
figuration of the whole grid in different sub-domains, similarly there
are multiple ways of defining such units. Possible models range from
grouping the information relative to a service in a single document, to
producing a configuration structure for every tool and program that
composes the service. Then again, software is typically organized in
products, which group together tools and programs that cooperate to
accomplish a well defined set of tasks. Thus, the configuration of the
SAM-Grid services is organized according to their natural breakdown
in software products. Examples of SAM-Grid products are jim client
(job management client, sec. 3.2), jim broker client (job management
submission service, sec. 3.3), jim broker (job management resource se-
lector, sec. 3.4), xmldb server (the Xindice XML database sec. 2.1.2),
etc. The organization of products and site configuration are described
in sections 2.1.5 and 2.1.6 respectively.

In order to promote the maintainability of the system, both site and
product configuration should be manageable using a single set of tools.
This toolkit should provide an interface to the configuration framework,
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which other programs, such as the meta-configurator, could use. Moreover,
although it should be able to access remote configuration repositories, it
should also provide robustness in case of occasional network access prob-
lems, in order for the SAM-Grid not to trade accessibility for reliability. In
other words, it should provide some form of local data caching. On the
other hand, such a system faces the problem of maintaining the synchrony
between local and remote data.

Section 2.1.4 describes the tool that manages the configuration of the
SAM-Grid. This tool is used to manage both the product configuration
(sec. 2.1.5) and the site configuration (sec. 2.1.6).

2.1.2 Basic Configuration System Architecture

The SAM-Grid configuration infrastructure represents configurations in XML
format, which addresses the requirements outlined at the beginning of sec-
tion 2.1.1 as follows. It addresses the concerns relative to the large parameter
space, since XML naturally expresses context-based structures and, there-
fore, easily allows the definition of name spaces for the parameters. At the
same time, available to the community are a set of querying and transforma-
tion languages, such as XPath, XUpdate, XSLT and XQuery, which address
the problem of efficiently accessing and manipulating XML documents. The
challenge of allowing remote and concurrent access to the configuration is
addressed by storing the XML configuration in XML databases. All of
the XML databases available today support remote data management via
transport mechanisms such as CORBA, XMLRPC and SOAP. Furthermore,
they provide database semantics for concurrent client accesses via the use of
emerging standards such as XUpdate. For the SAM-Grid deployment, the
database that we have chosen is Xindice [81], a software developed within the
XML project of the Apache Software Foundation. Xindice is implemented
as a java servlet, that we generally run using the Tomcat Servlet Engine.

In the SAM-Grid deployment scheme, every site makes available at least
one XML database. The SAM-Grid products and services installed locally
are configured with the URL of the site database from which they can read
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their own configuration as well as the portion of the site configuration that
is relevant to them. Thus, the remote accessibility of the configuration
repository allows the distribution of the services within the site. In addition,
through the use of the SAM-Grid advertisement service (sec. 3.4.2), the
URL of each database is registered with a central information collector,
hence allowing the traversal of all the grid configuration repositories from
anywhere within the grid (sec. 2.2.3).

We conclude this section by discussing the motivations that led us to
choose Xindice for the implementation of the SAM-Grid XML databases.
Xindice was chosen at the beginning of 2003 as the result of a comparison
with other XML database technologies. Xindice provided flexible access by a
command line interface and by a remote API via protocols such as CORBA
and XML-RPC. This was important because it potentially allowed natural
access from both the SAM data handling system and the SAM-Grid moni-
toring web site. The former, in fact, is built around CORBA and the latter
is developed in PHP, which supports XML-RPC. Xindice also provided a
client Python API to access the XML-RPC remote interface. This feature
was of particular interest as Python is the main scripting language for the
SAM-Grid software. Xindice is open source and at the time had an active
development community, which had an extensive plan of feature enhance-
ments, most notably support for the XQuery querying language. It already
implemented most of the specifications from standards such as XPath, for
document querying, and XUpdate, for document updating. Today we can
say that the product meets our expectations in terms of performance and
ease of access. On the other hand, in the past two years it was not actively
developed and there is a lack of stable releases. In addition some limitations
of the software were not clearly documented and this required the redesign
of some features. For example, Xindice supports the concept of “collection”
of documents. A collection is a database container optimized to provide
efficient access to information from multiple document with a single XPath
query. In order to provide efficient management of redundant data for nested
collections, feature that minimizes the probability of database corruptions,
Xindice opens a file descriptor for every collection in the database. On the
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other hand, on Unix this implementation limits the total number of collec-
tions to the total number of file descriptors, typically 1024 for Linux. We
hit this limit using the database for the push model monitoring (sec. 2.2.3),
as we initially created a collection for every grid job that we ran at a site.

2.1.3 The Configuration Process

In this section, we describe mechanisms adopted by the SAM-Grid to gather
the configuration of products and of resources and services at a site. As
discussed, the SAM-Grid favors gathering the configuration of the system
through interviews with the administrators. Developers provide template
interviews in a meta-configuration language, discussed in detail hereby.

While the literature on system configuration languages is abundant [82,
83, 84], the study of meta-configuration languages is far from being fully
explored. The SAM-Grid configuration framework uses a prototype tool
developed by the team, called the meta-configurator, which is a first attempt
to address the requirements outlined in section 2.1. The template consists
of an XML document, where the tags and attributes define the name of
the configuration parameters. The logic of the interview is defined at each
tag with special attributes, which are interpreted as directives to the meta-
configurator.

Figure 2.3 shows an example from a real template, shortened from the
real version for the sake of clarity. As the outermost “site configuration” tag
hints, this is the meta-configuration used to gather the information relative
to the services and resources at a site. The nesting of the tags represents
the hierarchy of the corresponding parameters in the final configuration,
while the attributes that begin with “cardinality” define the minimum and
maximum number allowed of each parameter. In the example above, a site
configuration is composed of a unique schema version and site name, and
at least one cluster, characterized by a name and architecture. In turn,
each cluster can have zero or more gatekeepers, characterized by a certain
location, and zero or more SAM stations, each with a name and belonging
to a certain experiment. The value of the “element-description” attribute
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<?xml version="1.0"?>
<site_configuration cardinalityMin="1" cardinalityMax="1">

<schema cardinalityMin="1" cardinalityMax="1" version="1_0"/>

<site cardinalityMin="1" cardinalityMax="1"
element-description="Enter the name of the site"
name="inquire-default,FNAL"/>

<cluster cardinalityMin="1"
element-description="Enter the name and architecture of each cluster."
name="inquire-default,SamGrid"
architecture="inquire-default,Linux+2.4">

<gatekeeper cardinalityMin="0"
element-description="Does this cluster run a gatekeeper?"
location="inquire-default,cat,hostname,:2119"/>

<station cardinalityMin="0"
element-description="Enter the station name and experiment."
name="inquire-default,fnal-farm"
experiment="inquire-default,d0"/>

</cluster>

</site_configuration>

Figure 2.3: The meta-configuration template used to configure a SAM-Grid
site (simplified)
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is the question asked when “inquiring” the value of the particular parame-
ter. Default values are determined by analyzing the comma-separated list
of operators and values right after the “inquire-default” keyword, as a stack
in inverse polish notation. Typically used operators include “hostname”, to
determine the fully qualified host name of the machine, “cat”, to concate-
nate two strings, “exec”, to run generic UNIX shell commands, “set” and
“get” to manage internal variables. When the minimum cardinality of a
tag is zero, the meta-configurator asks whether the user wants to define the
corresponding parameter or not, thus creating a branch in the interview.
In the affirmative case, nested tags are inquired about recursively. The
same question is then repeated as many times as indicated by the maximum
cardinality of the tag, thus creating a loop in the interview.

Figure 2.4 shows an interview derived from the template of figure 2.3.
The configuration resulting from this particular interview is the following:

<?xml version="1.0" encoding="UTF-8"?>

<site_configuration>

<schema version="1_0"/>

<site name="FNAL"/>

<cluster architecture="Linux+2.4" name="SamGrid">

<gatekeeper location="samadams.fnal.gov:2119"/>

<station experiment="d0" name="fnal-farm"/>

<station experiment="cdf" name="samgrid-test"/>

</cluster>

</site_configuration>

Comparing this configuration and its relative meta-configuration (fig.
2.3), their structure looks similar in terms of tag names and hierarchy. More-
over, we have found that we could use this tool for all the interviews of the
SAM-Grid services, generally implementing reasonably short and readable
templates.

We believe that this prototype is a step in the right direction, although
the tool could be improved by implementing at least two additional features.

1. New operators: it would be interesting to extend the number and the
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----------------------- site_configuration -----------------------

----------------------- schema -----------------------

What is the value of ’version’ of ’schema’ ?

The value of ’version’ is set to ’1_0’

----------------------- site -----------------------

Enter the name of the site

What is the value of ’name’ of ’site’ ? [FNAL]:

The value of ’name’ is set to ’FNAL’

----------------------- cluster -----------------------

Enter the name and architecture of each cluster.

What is the value of ’architecture’ of ’cluster’ ? [Linux+2.4]:

The value of ’architecture’ is set to ’Linux+2.4’

What is the value of ’name’ of ’cluster’ ? [SamGrid]:

The value of ’name’ is set to ’SamGrid’

----------------------- gatekeeper -----------------------

Does this cluster run a gatekeeper

Do you want to configure gatekeeper ? : [no]yes

What is the value of ’location’ of ’gatekeeper’ ? [samadams.fnal.gov:2119]:

The value of ’location’ is set to ’samadams.fnal.gov:2119’

----------------------- gatekeeper -----------------------

Does this cluster run a gatekeeper

Do you want to configure another gatekeeper ? : [no]

----------------------- station -----------------------

Enter the station name and experiment.

Do you want to configure station ? : [no]yes

What is the value of ’name’ of ’station’ ? [fnal-farm]:

The value of ’name’ is set to ’fnal-farm’

What is the value of ’experiment’ of ’station’ ? [d0]:

The value of ’experiment’ is set to ’d0’

----------------------- station -----------------------

Enter the station name and experiment.

Do you want to configure another station ? : [no]yes

What is the value of ’name’ of ’station’ ? [fnal-farm]: samgrid-test

The value of ’name’ is set to ’samgrid-test’

What is the value of ’experiment’ of ’station’ ? [d0]: cdf

The value of ’experiment’ is set to ’cdf’

----------------------- station -----------------------

Enter the station name and experiment.

Do you want to configure another station ? : [no]

----------------------- cluster -----------------------

Enter the name and architecture of each cluster.

Do you want to configure another cluster ? : [no]

Figure 2.4: An interview derived from the template of figure 2.3.
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behavior of the operators available to determine the default answer to
a certain question. The following are examples of possible extensions.

• Context-sensitive commands: the exec operator allows the ex-
ecution of shell commands, but passing the current context to
the shell can be done only with the complicated and error prone
process of building the command by concatenating strings, using
the meta-configurator operators themselves. A typical use of this
feature is executing a certain script with arguments that depend
on the answers given to previous questions.

• “If-Then-Else” construct : today this construct is generally imple-
mented using the “exec” operator and the underlying shell “if”
statement, but, as noted in the example above, it is difficult to
make it work with the meta-configurator context.

• Easy access to the configuration of other products: today this also
can be done with the “exec” operator. As in the examples above,
though, this mechanism is convoluted.

In summary, we believe that even if the flexibility of the “exec” opera-
tor makes it possible to deal with most of the cases of interest, it would
be beneficial to implement more specialized operators to address, at a
minimum, the three issues stated above.

2. “If-Then-Else” semantics: it would be interesting to extend the
meta-configurator to include “If-Then-Else” semantics in the creation
of the configuration. As discussed, the prototype allows loops, to re-
peat a nested set of questions, and simple branches, asking the user
whether to inquire about a nested set of questions. In some cases,
it would be useful to ask different questions depending on previews
answers. For example, in the interview described above, without re-
structuring the schema, it is not possible to ask different questions
depending on whether the SAM station is part of a CDF or a DZero
installation.
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2.1.4 The Configuration Management Tools

In section 2.1.1, we have investigated how to organize configuration infor-
mation for grid services and resources. We discussed how the SAM-Grid
organizes the configuration in two broad categories. The “product” config-
uration gathers parameters that ultimately characterize the services of the
SAM-Grid. The “site” configuration describes the relationship between ser-
vices and resources at a site. To promote ease of maintenance of the system,
both categories of configuration are managed via a single tool, described
hereby.

The SAM-Grid configuration tool is packaged in a software product
(jim config) that provides a command line interface and a python API to
manage configurations. The tool implements two primitives for the interac-
tion with the configuration repository: “store” and “get”.

A typical “store” interface accepts as input the configuration document
as a file in XML format. The consistency of the XML document is automat-
ically checked by the XML database. The tool stores the document in the
XML database as well as on the file system. This second copy was initially
introduced for fault tolerance: in case of failures of the Xindice database,
we wanted to provide minimal functionalities of the grid services. The abil-
ity of reading configurations from the file system, though, turned out to be
convenient when establishing the job environment (4.3). The environment
preparation service provided scalable file transfer mechanisms, which we
could use to propagate configuration information. This optional transport
mechanism was an alternative to accessing the XML database and allowed
the control of the load of the database. The current implementation of the
configuration tool does not provide mechanisms to check the synchrony of
the database and file system copies. When the database is up, its copy is
used when a retrieve request is made. The design of the next version of the
tool includes an automatic synchronization mechanism based on the time of
last update of the documents. In practice, in the past two years, we’ve been
affected by synchronization problems only about three times, which justifies
the low priority in the implementation of the synchronization mechanism.
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The “get” primitive is implemented by two interfaces. The first allows
the retrieval of a complete configuration document. The second accepts as
input an XPath statement and provides access to single attributes within
the document. This latter interface is the one that is mostly used within
the SAM-Grid software, as it allows direct access to single configuration
parameters.

Despite the benefits of treating site and product configurations sym-
metrically, their differing usage by the rest of the system poses different
constraints on each of them and their management infrastructure. The first
difference is the organization of the configuration parameters. For the site
configuration, it is crucial to have unambiguous parameter names, organized
in a well thought out schema that directly represents the grid view of the re-
lationship among services and resources. Clarity of the organization of these
parameters is of fundamental importance because many different services,
developed by different people, need to access them. On the other hand, for
the configuration of a software product, such care is not always necessary,
as generally its parameters are used almost exclusively by the product it-
self. The second difference between product and site configurations is that
products are typically maintained on a system via a product management
system, while a site configuration is not. This means that a generic tool
that manages product configurations needs to be able to interface to differ-
ent product management systems, a requirement that simply does not apply
to a site configurator. These differences are discussed in more detail in the
next two sections.

2.1.5 Product configuration

The role of a configuration system is the management of the parameters
that influence the behavior of the product. On the other hand, products
are generally maintained on a machine via a product management system.
The responsibility of a product management system is assisting with the
process of installation, upgrade, deletion, etc., and maintaining the metadata
associated with each product, such as version, building platform, etc.
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The information relative to the product configuration should be orga-
nized according to the relevant metadata associated with the product by
the product management system. This does not mean that the configura-
tion infrastructure should duplicate these metadata in the configuration of
the product. Rather, it should interface to it, being able to deal with con-
cepts like product version, installation machine, building platform, and so
on. In fact, information relevant to the product management system may
not be relevant to the product configuration. For example, the physical
location on the file system of the programs, or the name of the installer,
or yet the date of installation, should not affect the software behavior and,
therefore, the values of its configuration parameters. On the other hand,
this metadata is in general included in almost every product management
database.

Another important aspect is the management of the configuration during
a product upgrade or downgrade. The installer, in fact, should not be
required to go through the configuration procedure, if it is reasonable to
assume that the values of the configuration parameters did not change. Of
course, there are cases where this assumption does not hold, for example,
when the configuration parameters or their semantics changed due to some
software development in the product.

The SAM-Grid configuration manager organizes the product configura-
tions according to the product name, version, a generic qualifier, and the
machine where the service runs. This last parameter, in fact, is especially
relevant for the sites that run multiple instances of the same service and use
a single XML database. Software upgrades and downgrades are managed
by introducing a versioning system in the configuration template, which is
the document that defines the product configuration schema (sec. 2.1.3).
Subsequent product releases with compatible configurations are given the
same template version, and, in case of upgrade or downgrade, the system
clones the previous configuration to define the new one. Conversely, if the
template versions are different, the installer is prompted to reconfigure the
product. The current product configuration manager is interfaced only with
one product management system, the Unix Product Support (UPS) [85].
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This system is widely available at Fermilab and collaborating institution and
today there is not a high incentive in the integration with other systems,
such as RPM or Pacman [86], despite our interest in testing the flexibility
of the configuration framework.

2.1.6 Site configuration

The site configuration describes services and resources, as well their rela-
tionship, within a certain ownership boundary. This configuration is used
by other services to represent and interact with the sites and affects the de-
sign of grid services, such as monitoring or brokering, as well as other basic
infrastructures, such as the job description language. As of today, the grid
community has not yet defined a standard for the description of the site
configuration. One of the most interesting ongoing studies of the subject is
represented by the GLUE (Grid Laboratory Uniform Environment) schema
[87], which will be adopted by the Large Hadron Collider (CERN, Geneva,
Switzerland) Computing Grid Project (LCG) [37], the Open Science Grid
[88], and others. The GLUE schema describes the entities at a site at a very
fine-grain level, using UML notation to represent the relationship among
them. For each category, the entities considered not only include high-level
grid services and standard resources, such as gateway nodes, storage el-
ements or computing clusters, but also traditionally lower-level resources
and their characteristics, such as single nodes in a cluster, their memory,
local disk size, processor speed, etc. Figure 2.5 shows a simplified diagram
of the GLUE schema version 1.1 for the computing services. This diagram
is described later in this section.

While the studies related to the GLUE schema are of extreme practi-
cal interest, we argue in this research that its level of detail may not be
necessary to describe a grid site. We believe, in fact, that the most interest-
ing information for users and other grid services is of aggregate nature. Of
course, there is a minimal level of detail that the grid infrastructure must
be able to provide, especially when dealing with characteristics of principal
importance to the user, such as job status or cluster utilization. Despite
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Figure 2.5: The UML diagram of the GLUE Schema v1.1 for the “Comput-
ing Element” (partial diagram)
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the arguable usefulness of these local details, we believe that there is little
incentive today for the system administrators to keep this information up
to date. In fact, maintenance and trouble shooting are generally operated
using site-specific tools, which today give a variety of diverse views of the
services and resources, views not necessarily compatible with the details
sought by these grid schemas. Also, automating the collection of this type
of information implies the installation of servers at the worker nodes of a
cluster, a practice that in general is contrary to the paradigm of distributed
ownership of the resources. Then again, studies of the type of the GLUE
schema may lead to the definition of standard quantities of interest, which
eventually could be gathered with site-specific implementation adhering to
the standards agreed upon by the community.

The site description of the SAM-Grid is aggregate in nature and the
entities considered are organized in a simple hierarchical structure, with the
following relationships:

• a site can have multiple computing clusters

• a cluster can have multiple grid gateways, implemented via Globus
gatekeepers (sec. 1.1)

• a gateway can have multiple grid interfaces to local resource managers,
implemented via the Globus job-managers

• a ”job-manager” can interact with multiple SAM stations (sec. 1.3)

• a cluster can also provide multiple SAM stations not accessible via the
grid i.e. data handling services dedicated to users with the privilege
of using directly the local site resources

• a cluster, in addition, can provide local data storages, optionally ac-
cessible via SAM

Figure 2.6 provide an example of a real site configuration.
Particularly relevant services that access the site description are the Ad-

vertising Framework (sec. 3.4.2), the Monitoring Infrastructure (sec. 2.2.2)
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<?xml version="1.0" ?>
<site_configuration>
<schema version="1_1" />
<site name="Wisconsin" />
<cluster architecture="Linux+2.4" name="D0PPDG-Cluster">

<gatekeeper location="apex.cs.wisc.edu:2119">
<jobmanager name="jobmanager-samgrid">

<station name="d0ppdg" experiment="d0" universe="prd" />
</jobmanager>
<jobmanager name="jobmanager-runjob">

<station name="d0ppdg" experiment="d0" universe="prd" />
</jobmanager>

</gatekeeper>
</cluster>
<local_storage path="/sam/disk" node="apex.cs.wisc.edu" />
</site_configuration>

Figure 2.6: The XML representation of a SAM-Grid site, with a cluster,
a gatekeeper and two different job-managers interfacing to the same SAM
station.
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and the Local Sandbox Management Service (sec. 4.3). The reader is refer-
enced to the relative chapters for more details.

The GLUE schema and the SAM-Grid are two different ways of de-
scribing resources at a site. The GLUE schema is organized into two main
sections for Computational and Storage services. The diagram correspond-
ing to the Computational services is the most interesting to compare with
the SAM-Grid. In fact, in the SAM-Grid, storage services are handled by
the SAM data handling system in a uniform and aggregated way. The SAM
clients generally require little knowledge of the storage systems themselves,
as the data handling services are accessed through the SAM interfaces. On
the other hand, the GLUE schema for the “Storage Element” [89] focuses
on the characteristics of the storage systems on the grid, with no emphasis
on higher-level data handling services.

The Computational Services are described as follows (fig. 2.5). The
Computing Element is the entry point to a batch queuing system, which is
characterized/composed by a set of policies, a certain status (e.g. number
of jobs currently running), certain access rights, and so on. The Computing
Element provides access to one or more computing Clusters, which, in turn,
can be served by one or more Computing Elements. A cluster is the aggre-
gation of multiple Hosts, which can be organized in homogeneous disjoint
partitions, or Sub-Clusters, within the cluster. In turn, a host can be de-
scribed by many different characteristics, which include detailed information
such as the architecture, the operating system, hardware characteristics and
so on. This part of the diagram is not presented in fig. 2.5 and can be found
in [89].

It should be noted that both the SAM-Grid and the GLUE schemas
are hierarchical in nature. They both separate services from physical re-
sources, using the Cluster as the main element of the physical system. To
this regard, the SAM-Grid presents a more aggregated view with respect
to GLUE, as it does not attempt to describe the elements composing the
cluster. On the other hand, one of the main differences is that the GLUE
schema emphasizes the concept of batch queue as the main way to access the
cluster. Via a queue, the cluster offers different services to the jobs, such as
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queuing and batch policies. The SAM-Grid, instead, substitutes the concept
of queue with the concept of “smart” Grid-Fabric interfaces (chap. 4), or
job-managers. For the SAM-Grid, a job-manager represents a strategy of
coordination of fabric services to best serve classes of applications at the site.
To the core of this decision lies the fact that the typical applications that
run on the SAM-Grid are generally not grid-aware. Therefore, the “smart”
interfaces need to interact with the grid on behalf of the applications. This
is not a problem for the LCG or the Open Science Grid, and, therefore,
for the GLUE schema, as they provide service by design to more mature
applications.

2.2 The Monitoring and Logging Infrastructures

The monitoring, logging and configuration infrastructures are the three as-
pects of the SAM-Grid information management component. The monitor-
ing infrastructure captures mostly dynamical information relative to main
entities of the grid. Such infrastructure addresses the problem that was
introduced in section 1.2.3 of how to monitor jobs, services, and resource
usage (sections 2.2.2 and 2.2.3). On the other hand, the historical informa-
tion relative to the same entities is recorded by the logging infrastructure
(sec. 2.2.4). For the domain of high-energy physics, the most relevant use
of such infrastructure consists in the reproducibility of the scientific results.
Data analyses in high-energy physics sift through Petabytes of data in or-
der to identify rare particles described by few Kilobytes. The infrastructure
must assist the scientists in locating this tiny piece of information after it
has been found. This concept was also introduced in section 1.2.3 as the
problem of bookkeeping of the data processing activity. In the SAM-Grid
system, such bookkeeping is responsibility of the SAM data handling system
and it is discussed in section 1.3.
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2.2.1 Basic Monitoring System Architecture

Most of the interactions with a grid system require knowledge of the system
status. Users need to know the status of their jobs and of the resources
and services that they (hope to) utilize. Administrators need to check that
the services and resources they are responsible for are stable and secure.
Developers need to check that the service that they have just implemented
behaves according to specifications. The list is long, but in general, any
stakeholders rely on their ability to monitor the system in order to use it.

The monitoring system becomes therefore the heart of the system. But
even assuming that the information to monitor is somehow available, how
should this information be provided or accessed? In other words, should
relevant entities on the grid expose monitoring interfaces, available to be
queried by the consumer of the information? Or should the same entities
send their status to the consumers proactively? In other words, what should
be the streaming model of the monitoring information?

Two approaches exist. In the first approach, events relevant to the enti-
ties of the grid are published to the information repositories, hence adopting
a push streaming model. This approach is best suitable to record a change
of state of these entities, independently from the external interest on the
information at the time. The information gathered with this model is gen-
erally maintained persistently, as it is always significant with respect to some
entity, and it is often used by the logging infrastructure as well. A typical
example of information monitored with a push model is the change of status
of running applications. Applications can be instrumented to report to the
system relevant events, such as when input files are staged, when they are
processed, when the output is stored, and so on.

The second approach consists in gathering information upon request,
adopting a pull streaming model. In this model, the monitoring services
maintain the information in transient caches, where the knowledge is built
incrementally when needed. This information is generally not maintained
persistently, since its gathering is prompted by the interest in the status of
the entity at the time and not by some relevant event occurring within the
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entity itself. Examples of information monitored with a pull model is the
status of running servers, such as the SAM data handling servers. These
servers generally expose multiple interfaces, which can be located using al-
ready available naming infrastructures. In this context, implementing an
additional querying interface and make it available to the pull-model moni-
toring system is the natural thing to do.

Some requirements apply to both push and pull models. The informa-
tion repositories must be distributed, as they hold information from entities
(services, application, etc.) that are located at different sites. Distributing
the repositories promotes the site autonomy. On the other hand, it should
also easy to compose information coming from different repositories, since
the same consumer is often interested in information held at more than one
site/repository.

The SAM-Grid implements both pull and push models for its monitoring
infrastructure. For historical reasons, though, they are not built as a uniform
system. At the beginning, the monitoring system of the SAM-Grid was
designed favoring the pull streaming model. The SAM data handling servers
were the most mature part of the system and its core, as most of the high-
energy physics applications are data intensive. These servers implemented
already status interfaces. Also, at the time, pull-based systems, such as
the Meta Directory Service (MDS) [92, 93, 94, 95, 96, 97, 98], were very
popular in our community. MDS in particular was readily available, as it
was distributed with the Globus Toolkit. Using MDS to monitor SAM was
the first goal for the SAM-Grid monitoring system (sec. 2.2.2). As the
SAM-Grid became more used, though, the need to monitor applications
became more pressing. Instrumenting applications to report on relevant
events became a user requirement. For an application running on the worker
node of a cluster, it is much easier reporting proactively internal events
rather than opening and listening to querying interfaces. Hence, we designed
and implemented a push-based monitoring architecture based on a network
of XML databases (sec. 2.2.3).

It should be noted that other information gathering models are also pos-
sible, for example most notably the “heart beat”. In this model, information
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is gathered periodically and recorded persistently. The drawbacks of this
model are that, for logging, it does not necessarily record relevant statuses
of the system, and, for monitoring, it shows by design stale information.
On the other hand, this model is ideal to take a series of measurements for
quantities that vary slowly with respect to the sampling rate. It is also easy
to implement and the SAM-Grid uses it to monitor the stability of the data
handling services, using a tool called SAM TV [90].

The community is looking with growing interest to a simple but powerful
architecture for monitoring distributed systems. The Grid Monitoring Ar-
chitecture (GMA) [91] of the GGF consists of three components: consumers,
producers, and a directory service, or registry. Producers of information reg-
ister the information that they provide with the registry. Consumers of
information query the registry and locate the producers they seek. Con-
sumers then contact directly the producers in order to gather the relevant
data. It should be noted that the GMA can be applied irrespectively of the
information streaming model. Sections 2.2.2 and 2.2.3 describe how the pull
and push based infrastructures of the SAM-Grid adhere to the GMA or to
some variation of the same idea.

Various other technologies have been developed to address the problem
of monitoring on the grid. The European Data Grid and, now, LCG use R-
GMA [75, 99], which we describe in more detail in section 2.2.3. The Condor
team has developed a product called Hawkeye [100]. Zhang, Freschk and
Schopf compare these two technologies and MDS for scalability and perfor-
mance [101]. Another popular monitoring system in the grid community is
MonALISA [102], based on Java and Jini [103] technologies. Plale, Dinda,
and Laszewski compare the performance of hierarchical versus flat table or-
ganization of the information [104]. Plale also compares the performance of
a MySQL relational database [105] versus the Xindice XML Database [81]
for a set of standard database operations [106]. Incidentally, Xindice is the
technology chosen by the SAM-Grid for its XML Databases (sec. 2.1.2).
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2.2.2 Pull-model Monitoring

The SAM-Grid was built around the SAM data handling system. The SAM
system consists logically of two parts: first, a set servers collectively called
the station, which are installed at the site and manage local data handling
resources, such as disks, mass storage systems, the network etc. Second
a central large database, which implements the replica and metadata cat-
alogues, records the processing history and the user-defined datasets, etc.
(sec. 1.3). When we started designing the Job and Information Management
components, DZero had already deployed a couple of dozen SAM stations
at collaborating institutions around the world. In order to coordinate the
operations and maintenance of such a system, DZero had organized a team
of shifters based in different time zones, so that user inquiries could be dealt
with almost 24 × 7. It was important for SAM to provide a scalable mon-
itoring solution that could allow retrieving the status of the SAM servers
and resources from any locations. Since the SAM station already exposed
internal status interfaces, we designed a system that could pull such statuses
upon request [107]. This system was based upon the Globus Meta Directory
Service (MDS) [108]. This was a popular implementation at the time and
readily available to us, as the Globus Toolkit was part of the middleware that
the SAM-Grid deployed. In actuality at later times, the community started
criticizing MDS for lack of scalability and flexibility in the description of the
data monitored. Neither problem affects our monitoring infrastructure, as
we discuss in this section after presenting the details of the system.

The core of MDS is a Lightweight Directory Access Protocol (LDAP)
server [109, 110]. The information is gathered by information repositories
(GRIS) and it is organized in trees, where each node has a unique identity
code (figure 2.7). The uniqueness of the nodes facilitates the composition
of information trees coming from different repositories. In other words,
subtrees stemming from nodes with the same id are composed as subtrees
of the same node. The composition of information is also facilitated by a
registration service (GIIS). The architecture of MDS adheres to the Grid
Monitoring Architecture of GGF (sec. 2.2.1), where the GRIS component
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acts as the information producer and the GIIS as the registry.

The organization in a tree structure is well suited for a monitoring sys-
tem where knowledge is built incrementally, a typical pattern when the
information is explored by a human being. The information for each node
is gathered by launching executables called information providers. The in-
formation providers are launched when MDS is queried for the information
contained in a certain node. The information in the node is then maintained
in transient caches in order to optimize access time and server load [101].

Despite the clean design, the implementation of MDS is nowadays gen-
erally considered low quality. In particular, when MDS is organized in
a multi-layered hierarchical configuration, people lament problems in the
availability of the registration server [111]: typical queries cause the server
to hang, while the time out mechanisms do not work properly. MDS has also
problems scaling to more than three servers for queries as frequent as 3 Hz.
These scalability problems do not affect our infrastructure because we adopt
a shallow hierarchical configuration, as we explain later in this section. In
addition, in our case, the information that we monitor with MDS typically
varies significantly on the time scale of the minute, far slower than the 3 Hz
limit reported in [111].

Besides the quality of the implementation of MDS, the LDAP model has
been the target of various criticism when used to monitor large distributed
systems. First, the data model is considered too inflexible to satisfy the
requirements of a large and dynamical environment such as the grid. In fact,
the organization of the information tree, or schema, is configured statically
before starting the server. In reality, we have found that this problem can
be in part mitigated by implementing information providers that return
dynamic subtrees of information. This technique is described in detail later
in this section. Second, LDAP is optimized to retrieve the information of
the schema rapidly, but complex queries can be expensive to run. The query
language, in fact, is procedural in nature and does not allow the retrieval
of information based on more than one node of the schema at the time.
In terms of relational database algebra, this means that join operations
are not supported. In other words, a query like “retrieve the information
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on node X, where X is the value of node Y” cannot be submitted to the
system. This is why LDAP is considered best suited for those systems where
monitoring data should be gathered incrementally. The LDAP approach to
the query above, in fact, consists of an initial query to find X, like “retrieve
the value of node Y”, and a subsequent query like “retrieve the value of
node X”. Again, this limitation does not affect the SAM-Grid because MDS
is used for human-driven monitoring, where knowledge is typically sought
incrementally. In addition, this limitation does not exist for the push model
monitoring infrastructure (sec. 2.2.2). This infrastructure is based on a
network of XML databases that support the XPath query language. Using
this technology, a query to an XML document can be based on the content
of other documents in the same database.

The SAM-Grid deploys an MDS per site. The information monitored is
aggregate in nature and reflects the status of services distributed throughout
the site. The way SAM-Grid uses MDS to monitor remote services is not
common. In some grid systems [36, 39], in fact, multiple GRIS are deployed
at a site and register with a hierarchy of GIIS. Each GRIS is configured to
run the same set of information providers. The information providers re-
port to their GRIS measurements that are local to the machine where they
run, such as available memory, file system status, etc. As noted above, this
multi-layered configuration lead to potential scalability problems. On the
other hand, the information providers of the SAM-Grid use remote access
protocols, such as CORBA, to gather the status of non-local services. Be-
cause of this, the SAM-Grid generally can deploy a single GRIS and a single
GIIS at a site, therefore facilitating the deployment and maintenance of the
monitoring infrastructure.

This type of information providers is used for the monitoring of the
SAM station. The use of MDS for monitoring the SAM station offers a
couple of advantages as compared to the direct monitoring of the station
servers. First, it allows uniform access to all the servers of the station. That
is, MDS presents the status of the station as a whole, as opposed to the
status of its individual components. Second, it decreases the frequency of
the status inquiries to each server, thanks to its information caching service.
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The caching time has been configured to be shorter than the typical time
for which any relevant variation occurs in the station.

Some of the status information of a SAM station is dynamic in nature.
Typical examples include the list of data transfer requests and their sta-
tus, the list of storage resources managed by the station, the list of physics
groups allowed to use storage resources, etc. Using MDS to monitor these
quantities was inconvenient, as the basic MDS configuration consists of a
static information tree, or schema, programmed in the LDAP Data Inter-
change Format (LDIF) [112]. Each node of the tree is filled upon request
by launching an information provider, which, typically, returns single mea-
surement values. Since the lists we have mentioned are dynamic, they could
not be programmed into a static information schema. In order to overcome
this lack of flexibility, we had to develop information providers that generate
dynamic information trees in the form of LDIF statement.

Figure 2.7 shows a sample output of the SAM-Grid information provider
that returns information on the SAM disks at a site. The number of disks
and their sizes varies from site to site and it is provided dynamically.

The schema is derived from the SAM-Grid site configuration, by trans-
forming the XML representation of the site resources to LDIF. This transla-
tion mechanism provides for a consistent view of the resources and services
at the site, irrespectively of the service that publishes the information (sec.
2.1.2).

2.2.3 Push-model Monitoring

The monitoring system of the SAM-Grid had to be able to provide two main
categories of information:

1. the status of the services and resources on the Grid. This information
was monitored for stability almost 24 × 7 by a group of DZero shifters,
responsible for the smooth operations of the system.

2. the change of status on relevant entities on the grid, typically user
jobs.
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dn: Sam-View-Name=1327,Sam-View-Group-Name=disks,Sam-View-Group-Name=
configuration,Mds-Software-deployment=SamStation-prd-d0karlsruhe,
Sam-View-Group-Name=details,Mds-Software-deployment=Sam,Jim-Cluster=
Gridka,Jim-Site=Gridka,Mds-Vo-name=d0,o=samgrid
objectClass: SamConfigurationDisks
Sam-Disk-Id: 1327
Sam-Disk-Location: d0.fzk.de:/grid/fzk.de/d0/d0-3
Sam-Disk-FreeMB: 5.2
Sam-Disk-SizeMB: 4194304.0
Sam-Disk-Status: Active

dn: Sam-View-Name=1348,Sam-View-Group-Name=disks,Sam-View-Group-Name=
configuration,Mds-Software-deployment=SamStation-prd-d0karlsruhe,
Sam-View-Group-Name=details,Mds-Software-deployment=Sam,Jim-Cluster=
Gridka,Jim-Site=Gridka,Mds-Vo-name=d0,o=samgrid
objectClass: SamConfigurationDisks
Sam-Disk-Id: 1348
Sam-Disk-Location: d0.fzk.de:/grid/fzk.de/d0/d0-1
Sam-Disk-FreeMB: 1479150.1
Sam-Disk-SizeMB: 4194304.0
Sam-Disk-Status: Active

dn: Sam-View-Group-Name=disks,Sam-View-Group-Name=configuration,
Mds-Software-deployment=SamStation-prd-d0karlsruhe,Sam-View-Group-Name=
details,Mds-Software-deployment=Sam,Jim-Cluster=Gridka,Jim-Site=Gridka,
Mds-Vo-name=d0,o=samgrid
objectClass: SamConfigurationDisksViewGroup
Sam-Disk-Total: 2
Sam-Disk-FreeMB-Total: 1479155.3
Sam-Disk-SizeMB-Total: 8388608.0
Sam-Disk-Search-Status-Code: 0

Figure 2.7: The output of a SAM-Grid information provider in LDIF for-
mat. The monitoring information refers to the site disks managed by SAM.
This output generates three monitoring nodes: two are of type “SamCon-
figurationDisks”, which provides the details of a SAM disk, and one is of
type “SamConfigurationDisksViewGroup”, which gives a summary of all the
disks managed by the SAM station. The position of each node in the whole
information tree is determined by the “dn” attribute. The part of the “dn”
that is common to all three nodes is determined by the MDS schema.
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In principle, the two approaches seem equivalent. The approach that
the SAM-Grid uses to monitor servers is pull-based i.e. servers provide
their internal status upon request. One may argue that the server could be
monitored also using a push-based approach i.e. the server sends its sta-
tus to some repository whenever the status changes; the monitoring system
uses this repository to show the server status. In reality, using one approach
or the other is determined by various practical considerations. First, the
push-based approach generates network traffic. Monitoring may become a
resource intensive rather than a non-invasive activity. Second, what deter-
mines a change of status? Some quantities are for every practical purpose
not discrete, for example the amount of space available on a disk. The gran-
ularity of the thresholds to determine the “reasonable” change of a quantity
should be weighted against the amount of messages it generates. Third, not
all the information has historical value. Pushing changes of status is conve-
nient because the information can be stored, at least temporarily. Sometimes
this is simply not a requirement. Considering these points, the SAM-Grid
was designed to monitor servers only upon request.

On the other hand, the SAM-Grid uses a push-based model to record the
internal statuses of the applications. Again, following the points above, one
may argue that inquiring the status of an application when the users feel the
need is a valid approach. In our case, though, first, applications go through
a very limited and well defined set of statuses (many are, in fact, state
machines). Every time the status changes, it is feasible sending a message:
typical applications send a couple of messages every hour. Second, we use
these messages to determine important actions, such as the recovery strategy
in case of application failure. As such, the messages are stored persistently
and the whole history of every application is available to consumers of the
information. These are typically users or other applications, such as scripts
that help with the operations. In summary, using a push-based approach
for the SAM-Grid monitoring application is the adequate solution.

The push-based monitoring system was designed to offer a high level
of flexibility in the format of the messages. This was important since we
wanted to be able to modify the monitoring events as our understanding of
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the system and its metrics evolved over time. In particular for monitoring
applications, the events had to be as general as possible, since we could not
foresee every possible use of the infrastructure. The XML syntax seemed
therefore a good candidate, as we discuss later. In addition the system had
to be fully distributed to preserve site independence. In other words, we
wanted sites to be able to deploy the system and not to depend on the
availability of central servers to use it. We describe the details of the push-
based monitoring system hereby.

In general, a push-model monitoring infrastructure has two main respon-
sibilities:

• accepting monitoring events coming from the system

• publishing the events to consumers of the information

The SAM-Grid push-model monitoring infrastructure is based on a vari-
ation of the Grid Monitoring Architecture (GMA) (sec. 2.2.1). In the GMA,
each producer of information is an independent entity that can be queried
by any consumer. In other words, the producers are also publishers of in-
formation. The SAM-Grid, instead, distinguishes between these two roles.
Information producers store the produced information on a repository, which,
in turn, is responsible for the publication. The SAM-Grid deploys multiple
repositories, each aggregating the information from a different set of pro-
ducers. Another difference is that in the GMA, each producer registers with
the registry. In the SAM-Grid, the repositories register themselves and the
characteristics of the producers relevant for the look up of stored informa-
tion.

The system has been implemented as follows. The information repos-
itories are implemented by a network of XML databases. The choice of
using XML trees to represent monitoring events stems naturally from the
requirement on the flexibility of the event format. Producers store events
to the repository by creating or updating XML documents. The details of
the organization in documents depends on the type of producers. We de-
scribe the use case of job monitoring later in this section. We provide an
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API to assist with the storage of monitoring events. The API accepts XUp-
date statements to define the content and internal database location of the
events.

The publishing interface supports the retrieval of full documents as well
as of set of XML nodes. The set of XML nodes can span multiple docu-
ments. The querying language that our repositories support today is XPath.
Using XPath, it is possible to retrieve a different set of nodes depending on
the content of the database itself. In terms of relational logic, considering
the logical equivalence between tables and XML documents, this means that
the repositories support the join operator. In other words, a consumer of
information can express queries such as “retrieve the nodes from any docu-
ment that satisfy condition X, where X is a function of the value of node Y
from a given document”.

Incidentally, the network of databases used by the pull-based monitoring
is also used by the configuration infrastructure (sec. 2.1.2). This improves
our ability to maintain and support the overall system.

The registration service is implemented by the condor information col-
lector (sec. 3.4.2). Information repositories register attributes about them-
selves, such as remote access point and site location, and about the producers
of information, such as cluster or data handling names and their character-
istics. Because the XML databases do not implement a native registration
mechanism, the repositories rely on the SAM-Grid site advertisement ser-
vice. Since the condor collector is central, it is a natural entry point to the
whole monitoring information in the system. The collector has resulted in
a stable and highly available service, and so far we have not experienced
problems related to the scalability and reliability of the registry.

In most grid infrastructures, the monitoring system is the core of the
resource selection process. For the SAM-Grid, since grid job management is
based on the Condor framework, it is easy to base the resource selection on
the information contained in the collector, rather than querying the whole
monitoring infrastructure. This practice is more of a convenience, rather
than a necessity. The condor match making service, in fact, has mechanisms
to call external algorithms during the phase of resource/job matching. Such
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mechanisms are used by the SAM-Grid to query the status of the data
handling services and can be extended to access the whole pull and push
based monitoring infrastructure.

An interesting monitoring system that implements the GMA is R-GMA
[75, 99]. Developed for LCG, R-GMA is a distributed system that uses
the relational model to handle information. Producers make information
available to consumers as relations (tables) and use relations to handle the
registration process. The consumers see the system as a global database
that can be queried using SQL. Internally, the information is partitioned at
the granularity of the producers. The registry pulls the system together by
holding the description of such partition.

The registry holds an identifier for each type of table that can be pro-
duced. Each producer registers two types of information: the identifier of
the table for which it generates information and a logical condition that
defines to what rows of the table the information refers. Let us use a sim-
plified version of the information relative to an LCG computing element to
explain this concept. The table for a computing element has columns such
as country, site, operating system, free CPUs, information update time. A
producer for a computing element at the Rutherford Appleton Laboratory
(RAL) in the UK will register the identifier for the computing element table
and the condition “country = UK and site = RAL”. Every consumer that
queries the system for informations about the computing element at RAL,
UK, will be put in direct contact with the RAL producer by the registry.
Despite the fact that the registry is programmed with a static schema that
defines the identifiers for each table, there are provisions in the system to
handle dynamic information.

The R-GMA and SAM-Grid systems are similar as they are based re-
spectively on the GMA and on a variation of the GMA. On the other hand
they differ in a few points.

1. The organization of the information is based on two different models:
for R-GMA is relational, for the SAM-Gird is hierarchical. Both use
declarative languages to query the information, such as SQL, for R-
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GMA, and XPath, for SAM-Grid. Plale, Dinda, and Laszewski [104]
argue that writing queries for a hierarchical model requires a deeper
knowledge of the organization of the information.

2. In R-GMA each producer implements both the producer and publish-
ing interfaces. In SAM-Grid, instead, the two roles are delegated to
the producer and the repository components respectively. Because in
R-GMA the information is not aggregated, the system needs a compo-
nent, the mediator, responsible for aggregating on behalf of the con-
sumer the information coming from multiple producers. This task
needs particular care for join operations. In SAM-Grid, the informa-
tion is aggregated at the repository and join operations are handled
naturally within the same repository. In our experience, the informa-
tion at a repository is sufficient for most typical queries. For non-
typical queries, the responsibility of aggregating information across
repositories has been left, so far, to the consumers.

3. R-GMA do not put emphasis on the pull vs push streaming models.
In R-GMA, the streaming model is negotiated when a consumer con-
tacts a producer. The consumer may ask the producer to retrieve the
information upon request (pull-model) or to publish it when new data
is available (push-model). This difference on emphasis probably stems
from the fact that the SAM-Grid has historically concentrated more
on integration rather than development, while LCG did the contrary.
While SAM-Grid had to integrate different solutions to implement its
monitoring infrastructure, LCG had the resources to develop an inte-
grated monitoring system.

4. For R-GMA, the presence of repositories has less relevance than for
the SAM-Grid. R-GMA implements the persistency of the information
via a special producer, the DataBaseProducer, which stores to a back
end database monitoring events. On the other hand, these repositories
do not act as information aggregators, as it happens in the SAM-Grid
architecture, instead.
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<?xml version="1.0"?>
<global_job Id="sam_hep.westgrid.ca_121506_11389"

owner="864762865" created="Jan 31 2005 20:16:22"
created_epoch="1107202582.22">

<cluster_job Id="14705.1107202528" cluster="Westgrid"
created="Jan 31 2005 20:16:22"

created_epoch="1107202582.24">
<local_job Id="955355" />
<local_job Id="955356" />
...

</cluster_job>
</global_job>

Figure 2.8: In the SAM-Grid a grid job is split in multiple cluster jobs,
submitted at different execution sites. Cluster jobs are then split in multiple
local jobs. The grid/fabric interface stores the monitoring event describing
this hierarchy.

In the rest of this section we describe in detail how the information
for monitoring jobs is organized [113]. The hierarchical model naturally
represents the hierarchy of job-related monitoring events. In the SAM-Grid,
in fact, jobs submitted to the grid are decomposed into multiple instances
of cluster jobs, each submitted to a different execution site. The cluster
jobs are then in turn decomposed into multiple batch jobs, submitted to
the local batch scheduler (sec. 4.2). The grid-to-fabric interface generates
a monitoring events that encodes this hierarchy, when the job enters the
site. This event is stored in the repository as an XML document. Figure
2.8 shows a real-life example of such an event.

At the time of local job submission, the grid/fabric interface produces
also another monitoring event, with information relative to the local job.
This is stored at the repository as a separate XML document. Further mon-
itoring events related to this job are stored here. This document contains
information about the context of the job in terms of the originating global
and cluster jobs. In the current schema, the SAM-Grid monitoring API
allows the production of four types of events, represented by the “Status”,
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“Progress”, “Output”, and “Usage” tags. The Status tag reports the status
of the job in the queue. The representation of this status is independent
from the underlying batch system. The translation between batch system
specific and abstract statuses occurs in the batch system adaptation layer
(sec. 4.2). These messages are accompanied by time stamps, both in hu-
man and machine readable format. The Progress tag is used mainly by the
applications to report messages relative to their internal status. These mes-
sages are typically used in monitoring web pages and are thought for human
consumption. Since the SAM-Grid deals mostly with data intensive appli-
cations, the storage of output data has a special relevance. For this reason
these monitoring events are produced with the dedicated tag Output. The
possible statuses of the output storage varies depending on whether the ap-
plication is storing physical or “virtual” files. Virtual files are logic entities
that are recorded with the SAM database for bookkeeping purposes only
and correspond to an intermediate phase of the data processing. Finally,
the Usage tag reports parameters related to the CPU consumption of the
job process. Figure 2.9 shows an example of a local job XML document.

The organization of the monitoring information in separate documents
is the result of direct experience. Two different types of organizations, in
fact, have been considered in earlier versions of the system and abandoned.
Initially, all the information was stored in a single document. This often
resulted in large documents (hundreds of KB), which caused the degrada-
tion of the querying performance. We also considered the organization of
each grid job in a separate collection of documents. Xindice, though, has a
limitation on the number of collections supported. This consists in the to-
tal number of file descriptors available to the system, which is always small
compared to the number of jobs in the system. In addition, Xindice does
not support queries that gather data across collections. The current orga-
nization is the result of the “lessons learned” from the deployment of the
SAM-Grid for real applications.
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<?xml version="1.0"?>
<local_job Id="955356" created="Jan 31 2005 20:16:25"

created_epoch="1107202585.57">
<global_job>sam_hep.westgrid.ca_121506_11389</global_job>
<cluster_job>14705.1107202528</cluster_job>
<status time="Jan 31 2005 20:16:25" time_epoch="1107202585.62"
code="submitted" />
<status time="Jan 31 2005 20:16:45" time_epoch="1107202605.26"

code="pending" />
<progress created="Jan 31 2005 12:18:22">

Launching user executable on ice30_5
</progress>
<progress created="Jan 31 2005 12:20:19">

Finished staging job files
</progress>
<status time="Jan 31 2005 20:21:50" time_epoch="1107202910.63"

code="active" />
<progress created="Jan 31 2005 12:30:42">

Finished staging input file all_0000176852_005.raw
</progress>
<progress created="Jan 31 2005 12:33:51">

Finished setup, launching mc_runjob
</progress>
<output_file
name="/scratch/95...westgrid.ca_121506_11389_WestGrid_NumEv-10"
time="Jan 31 2005 20:41:21" time_epoch="1107204081.53"
state="stored" />
<progress created="Jan 31 2005 12:41:26">

User executable exited with code 0
</progress>
<usage elapsed_time="23:03.33" kernel_cpu="33.22 sec"

user_cpu="39.39 sec" per_cpu="5%" />
<status time="Jan 31 2005 20:42:22" time_epoch="1107204142.35"

code="done" />
</local_job>

Figure 2.9: The monitoring information associated with a local job. The
system organizes it in a separate XML document.
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2.2.4 The Logging Infrastructure

The information saved in the SAM-Grid logging infrastructure can be de-
composed in three major categories. First, the data processing history,
which consists of information of fundamental importance for the repro-
ducibility of the scientific results. This information is recorded in the SAM
relational database as a side effect of using the data handling services (sec.
1.3). It includes an identifier of the processing application, as well as the
dataset processed with all its relevant metadata. Second, the history of the
statuses of main entities of the grid, such as services and jobs. This in-
formation can be used to study the system, but do not participate in the
accounting of the scientific discoveries. The job status monitoring informa-
tion (2.2.3) is part of this category as are a series of SAM tools [114, 90].
Third, the debugging messages logged by each service on the grid. This
information is of interest to developers only and in case some error con-
dition occurs. The infrastructure consists of a set of distributed logging
servers, capable of logging unstructured messages. The information transfer
is unreliable but not blocking by design, using the UDP network protocol.
This system could be improved by making the logging servers more easily
distributed and allowing the handling of structured method [115].

The SAM-Grid did not adopt a uniform solution to address all the cat-
egories of information, mainly for historical reasons. On the other hand,
the system allows a semi-uniform access to the information for the users by
the use of various web interfaces. For the SAM-Grid monitoring system,
the web site [116] uses a set of PHP [117] scripts that present a consistent
hierarchical extensible view of the whole system. This development is the re-
sult of a collaboration with NorduGrid [39], who shared with us their initial
implementation of their web monitoring pages.



Chapter 3

The Job Management

Component

At the end of 2001, the DZero experiment was doing about 80% of its com-
puting at Fermilab and 20% at the collaborating institutions. This im-
balance was not uncommon for High-Energy Physics experiments and the
reasons behind it were mostly historical (chap 1). The growing needs for
computing together with this disproportionate repartition of the computing
load, caused the Fermilab resources to become over-subscribed.

The problem was addressed following two complementary strategies. The
first consisted in decommissioning high-cost and hardly-extensible systems
in favor of cheaper and more scalable solutions. At the time, most of the
user analysis was run on the “d0mino” super-computer, an SGI Challenge
with 176 processors and about a dozen Terabytes of disk attached. The
experiment was happy with the performance of this machine, but it was
costly in terms of maintenance fees and hardware upgrades. In 2002, DZero
built “CAB”, a cluster of commodity computers based at Fermilab. This
solution was an initial attempt to offload the d0mino super-computing and to
promote the extensibility of the infrastructure. In the same years, in fact, the
CDF experiment had already adopted a similar computing infrastructure,
the Central Analysis Facility (CAF) [118], and their experience was positive.

The second strategy consisted in developing a global computing infras-
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tructure with the goal of lowering the dependence of the experiment on the
Fermilab facilities. At the time, DZero had already deployed about a dozen
SAM stations (sec. 1.3), the agents that, among other things, were capable
of distributing the data stored at Fermilab to remote sites. The SAM system
was actively maintained and and user support was a very high priority. This
system enabled the use of remote computing resources, but did not solve the
problem of presenting to the users a uniform computing environment. The
user had to know and consider the resource configuration at the sites where
s/he worked. For example, managing jobs was done differently when using
the Fermilab or the remote facilities. In summary, the users lacked a layer
of abstraction on top of the resources that allowed seamless access to them
via a common interface.

The Job and Information Management (JIM) project was started in
late 2001 to achieve globally distributed computing for DZero and CDF,
integrating standard middleware with the SAM data handling system and
developing new grid technologies, when needed. The whole suite of compo-
nents for job, data and information management was called the SAM-Grid.
The job management component of JIM is the subject of this chapter.

The following is the list of the requirements on the job management
infrastructure.

1. Site Autonomy: the infrastructure must foster site autonomy, as to
satisfy the grid paradigm of distributed ownership of the resources.
This means that the grid must not impose any specific choice of local
fabric management systems, such as local schedulers, intra-cluster data
distribution mechanisms, or monitoring tools. In particular, the grid
should not impose the presence of any software or running processes
at the worker nodes of the local cluster. Maintaining this software on
hundreds of nodes, in fact, is a burden that few site administrators
are willing to carry. First, every new process running on the cluster
increases the probability of bug exploits and security breaches. Denial
of service attacks launched to high profile targets by a large facility
is on of the worst case scenarios of most administrators. Only very
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stable, widely distributed, highly tested software generally is consid-
ered low-risk enough to be acceptable. Second, some versions of the
software may turn out to have side effects on the system or to be in-
trusive, that is resource intensive. This may lead to instabilities of the
system and node crashes. Any new piece of grid software is generally
looked at suspiciously for bugs or inefficiencies that may lead to such
system instabilities. Third, there would be the extra work of updat-
ing regularly the software as new releases come out. In reality, this
turns out to be the least of the concerns, as several tools are available
to accomplish this task. In addition, this is considered a standard
responsibility of site administrators. For these reasons, the grid has
grown acceptance in the community maintaining the paradigm of dis-
tributed ownership of the resources. In other words, the grid should
interface to site resources through a few well-identified machines.

2. No Continuous Network Connectivity: the system should not
require continuous network connectivity with the machine from which
the user manages the job. In other words, the user should not need
to have login access to special job management machines, but rather
the system should provide some lightweight user interface to a core of
highly available job management services. This user interface software,
in principle, should be able to run on the user’s laptop. Section 3.3
describe the solution implemented by the SAM-Grid.

3. Reliability: the job management infrastructure should be reliable,
handling the job instance persistently, and guaranteeing the retrieval
of any output and/or errors of the application and the middleware.
Incidentally, error retrieval is also of fundamental importance during
the development of the infrastructure itself. This is in fact the time
when errors and log files are studied with particular care in order to
discover and fix software defects. Section 3.3 addresses the requirement
of reliability on the SAM-Grid.

4. Automatic Resource Selection: the system should provide an au-
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tomatic resource selection service. This service, sometimes called “bro-
ker”, should analyze the job requirements and select the best resource
available for the job, according to some dynamically configurable al-
gorithm. This service should include the possibility for the user to
reference site resource attributes in the description of the job, for ex-
ample to enhance the job environment. Given the complexity and
dynamic nature of a grid the job management system should be able
to react to suboptimal decisions of the broker and consider the re-
source selection process mainly as a “recommendation”. Section 3.4
and its relative subsections present the SAM-Grid solution to resource
selection.

5. Fault Tolerance: The system should implement some form of fault
tolerance, especially to temporary disruption of service. During job
submission, for example, there should be a mechanism for automatic
resubmission to the same resource, with capabilities of asking the bro-
ker to select a different one in case of prolonged unavailability. Sections
3.3 and 3.2.4 discuss fault tolerance for the SAM-Grid.

6. Structured Job Management: it should be possible to automati-
cally execute jobs that expose to the grid their internal interdependen-
cies. We call this type of jobs “structured”, as opposed to “unstruc-
tured” jobs, which are treated as atomic processing units. The job
management infrastructure should execute the atomic jobs composing
a structured job in the right order, possibly relying on the data han-
dling system to handle input and output. It should also provide some
mechanism to check the success of each atomic job not only by its exit
status, but also in the context of the whole structure. In addition, in
case of failure, it should allow the resubmission of the jobs that failed
or had not yet run. Section 3.2.4 presents structured job management
on the SAM-Grid.

7. Application Diversity: The job infrastructure should be able to
handle the major high-energy physics applications, despite their dif-
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ferent requirements on the services and resources of the grid (sec. 3.1).
Because of this wide range of application requirements, a general-
purpose grid tends to be inefficient in handling resources. Section
3.2 and its relative subsections explore the problem of how much
application-specific knowledge the middleware should have to optimize
the use of resources.

8. Performance: The system should comply with minimum perfor-
mance requirements for metrics such as the number of jobs that can
be submitted per unit time or the “cost” of job submission. In this
regard, we want to stress that for CDF and DZero, the former is not
a concern in the case of reconstruction and montecarlo jobs (sec. 3.1).
In fact, as previously discussed, these jobs run for hours or dozens of
hours and are submitted by a small number of experts in a coordi-
nated fashion. Thus, this community is willing to wait minutes for
every single job submission, if this means running more consistency
checks over the job request, and therefore increasing the probability
of terminating the job successfully. Chapter 4 presents major bottle-
necks in the performance of the SAM-Grid system and the solutions
implemented to overcome them.

The SAM-Grid addresses these requirements with an infrastructure com-
posed of four major components, organized in a three-tier architecture, as
shown in figure 3.1.

The first tier consists of a thin layer of software that interfaces the user
to the system. For job submission, this user interface should accept two
pieces of information: first, the description of the job, specified in a high-
level language meaningful to the physicists; second, and optionally, the set
of all the files necessary to run the application i.e. executables, libraries,
configurations, etc. After submission, the user interface should assign the
job a unique identifier, usable as a handle for any further management.
Aside from when managing the jobs, the user interface should not mandate
network connectivity in order to comply with the above requirements. The
envisioned multiplicity of this tier is up to one per user i.e. up to hundreds
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of instances. The functionalities and implementation of this software layer
is described in detail in section 3.2.

The second tier maintains a persistent queue of grid jobs and, being
interfaced with the first tier, acts as a mediator between the user and the
job instance. Because this tier acts on behalf of the user, submitting the job
to a resource capable of executing it, it is also called the “submission” tier.
The envisioned multiplicity of this tier is of a few instances per nation, or,
in other words, a few dozens throughout the grid. The submission tier is
described in detail in section 3.3.

The third tier consists of the sites that ultimately run the jobs. These
sites must provide computing and storage resources, tied together by a set of
local and grid services. In jargon, these local resources are sometimes called
the grid “fabric”. The fabric management and execution site grid services
are described in chapter 4. Execution sites advertise their characteristics to
a Resource Selector service, including such information as computing cluster
availability and their gateway entry point, the reference to the local data
handling services, the local monitoring system URL, etc. The Resource Se-
lector acts as the glue of the job-handling infrastructure, recommending to
the submission sites what resource best matches the requirements of each
job. Today this service is centralized. Nevertheless, should scalability prob-
lems arise, the service could be easily decentralized. The resource selector
is described in section 3.4.

3.1 Typical High-Energy Physics Applications

Modern high-energy physics experiments, such as DZero and CDF, typically
acquire more than one TB of data per day and move even ten times as much.
To give an example, during the past year the SAM system has stored 400 TB
of data for DZero alone. Aside from the stream of data from the detector,
various other computing activities contribute to the one TB of data stored
per day. While the data handling system is responsible for the manage-
ment of the large data volume, the job management infrastructure provides
facilities to assist with the execution of the computation activities. The
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Figure 3.1: The SAM-Grid job submission management infrastructure is
based on a three-tier architecture. The first tier is the user interface (top),
a thin layer of software used to manage the jobs. The second tier is the
submission site, a suite of services that maintain the queue of grid jobs,
mediate the interaction between the users and the remote resources and
schedule jobs on behalf of the user. The third tier is the execution site
(bottom), where the jobs are run on the available resources (the figure shows
only local job handling resources and services, for clarity). The resource
selector collects the resource characteristics advertised by each execution
site, and assists the submission site in deciding where to run each job.
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characteristics of these activities impose a wide variety of requirements on
the resources and services that handle the jobs. Understanding such require-
ments was a fundamental step to implement the JIM infrastructure. This
section discusses these requirements for three typical computing activities
of high-energy physics.

The activities discussed are data filtering, also called data “reconstruc-
tion”, the production of simulated events, and data analysis. This third
activity broadly consists of the selection and the statistical study of parti-
cles with certain characteristics, with the goal of achieving physics measure-
ments. It should be noted that the first two activities are indispensable for
the third one. During data reconstruction, the binary format of events from
the detector is transformed into a format that more easily maps to abstract
physics concepts, such as particle tracks, charge, spin, et cetera. The origi-
nal format, called in jargon “raw”, is instead very closely dependent on the
hardware layout of the detector, in order to guarantee the performance of
the data acquisition system, and is not suitable for data analysis. On the
other hand, the production of simulated events, also called “montecarlo”
production, is necessary to understand the characteristics of the detector
either related to the hardware, such as the particle detection efficiency, or
to physics phenomena, such as signal to background discrimination.

These three typical activities, which ultimately correspond to software
application families, differ among themselves principally, but not uniquely,
by the usage of the computing resources. The communities that run the
software range from a handful of almost dedicated experts in the case of
reconstruction and montecarlo activities, to potentially the whole physics
community in the case of data analysis. The typical duration of a single
reconstruction or montecarlo job is dozens of hours, while data analysis
ranges from a few minutes to days, depending on the problem studied. All
the activities are CPU intensive, but while both reconstruction and analysis
are highly I/O intensive, montecarlo is not. In fact, montecarlo almost never
requires any input data, while for reconstruction and, especially, analysis the
input ranges from a GB to hundreds of GB. In addition, while the data access
pattern of reconstruction is highly predictable, since all the “raw” data have
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Activity Description Community Load time/job
Reconstruction data filtering Small CPU & I/O 10 hours
Montecarlo data simulation Small CPU 10 hours
Analysis data mining Large CPU & I/O hours to days

Activity Input/Job Output/Job Input/Year Output/Year
Reconstruction GB GB 100 TB 100 TB
Montecarlo None 10 GB None TB
Analysis 100 GB GB varies varies

Table 3.1: Comparison of different characteristics among three typical com-
putation activities of the DZero experiment. The bottom table focuses on
the input/output data size. The numbers represent the order of magnitude.

to be filtered a few times throughout the lifetime of the experiment, the
data access patterns of data analysis varies widely, as a few datasets can
be accessed over and over again, while others may be almost neglected. All
three activities can be run trivially in parallel because of the independent
nature of particle physics events. On the other hand, while montecarlo
and reconstruction are purely “batch” activities, analysis is run in both
interactive and “batch” modes.

These characteristics of high-energy physics applications have been used
to develop our grid system. Table 3.1 summarizes the order of magnitudes
of different characteristics of reconstruction, montecarlo and data analysis
for the DZero experiment.

3.2 The SAM-Grid Client

The development of a job management infrastructure for the SAM-Grid
started as a way to offload the computing of the DZero experiment from
the Fermilab computing facilities. In order for this infrastructure to be
appealing to the users, at a minimum it had to handle most of the applica-
tions commonly used by the community. Instead of developing a framework
that would fit generic applications, the SAM-Grid team was pressured to
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implement initial prototypes that could be put to use as soon as possible.
Priority was given to “production” applications, such as montecarlo gen-
eration or data reconstruction, because of their restricted community and
predictable data access patterns.

3.2.1 A Case for Application-Aware Middleware

Even restricting our system to manage montecarlo generation and data re-
construction only, it was still a challenge to run efficiently jobs with such
different characteristics (table 3.1). In order to let the grid organize the
usage of the resources efficiently, we had to expose details of the applica-
tions to the grid. We present below a few examples, used throughout these
sections, where the knowledge of the application helps the grid optimize the
resource utilization. We use these examples to address the question of how
much application-specific knowledge the grid should have a priori to run
efficiently.

1. Database Access: grid jobs submitted to an execution site are split
into multiple parallel instances of the same application by the grid-to-
fabric interface (chap. 4). This typically results in dozens to hundreds
of jobs starting approximately at the same time and, therefore, ac-
cessing key resources essentially concurrently. In practice, not all the
services have the same degree of accessibility. In particular for mon-
tecarlo generation, the parameters describing what type of physics to
generate were accessed from a central database, which initially re-
sponded with a “denial of service” to 40% of the jobs. Introducing
retrial with randomized exponential back off reduced the final job fail-
ure rate to 5%. Despite the reduced failure rate, grid jobs and their
retrials increased the load of the database to a point where interactive
access was extremely inconvenient (minutes per query). This prob-
lem was properly solved by informing the grid of the database access
characteristics of the montecarlo application. All the hundreds of jobs
submitted by the grid, in fact, were parallel replicas of a single grid
job and, therefore, required access to the same input parameters from
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the database. The grid-to-fabric interface was enhanced to perform a
single database access per grid job, when the job entered the site. The
information was saved and reditributed to the parallel jobs by inter-
nal cluster transport mechanisms. This solution reduced the “denial of
service” failure rate to essentially 0% and still maintained a high avail-
ability for interactive database accesses. In conclusion, access to a grid
resource (the database) was optimized by instructing grid components
(the grid-to-fabric interface) of the characteristics of the application
(parallel jobs requiring the same input parameters).

2. Data Storage Access: different applications have different typical
input data access patterns. Data reconstruction applications begin
data processing when a single input file, typically 1 Gigabyte in size, is
delivered to the worker node. Instead, data merging applications, used
in production operations to concatenate files typically 200 Megabytes
in size (sec. 3.2.4), begin processing when multiple “small” input files
are delivered to the worker node. Optimizing access to the storage
resources with such different regimes is a concern. In the SAM-Grid,
applications transfer files from storage services that maintain queues
of data access requests. The storage services, in fact, control their load
by granting access to the data transfer servers a few requests at the
time (sec. 4.3.2.2). Access to a transfer server is granted in the order
in which the access request is submitted. When reconstruction and
merging applications use the same data queue to access their input,
transfer requests for the various input files are interleaved. This leads
to inefficiencies, because in real life, on a cluster, reconstruction jobs
are one or two order of magnitude more abundant than merging jobs.
This means that requests for each input file of a merging application
is interleaved with a dozen input files of reconstruction applications.
Therefore, before starting processing data, a merging application of-
ten needs to wait for these multiple reconstruction transfers to occur,
thus substantially increasing its idle time. For a cluster of 900 CPU,
this idle time is between one and two hours. This inefficiency can be
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reduced by instructing the grid of the input data access characteris-
tics of the application. Knowing the number of required input data
files, the data storage service can organize requests from reconstruc-
tion applications in a queue different from the requests from merging
applications. Thus, a few merging applications only compete amongst
themselves for file access, drastically reducing their idle time. Figure
3.2 shows a diagram that illustrates this concepts. In conclusion, as
in example 1, access to grid resources (data files) was optimized by in-
structing grid components (the storage service) of the characteristics
of the application (multiple or single input data requirement).

3. Worker Nodes Allocation: The grid-to-fabric interface of the SAM-
Grid submits multiple batch jobs for every grid job entering the site.
How many worker nodes should be allocated for a given application? In
general, the fewer batch jobs are submitted, the longer each job runs,
and vice versa. There is an acceptable range for the running time of
a job. Batch jobs should not run too long to minimize the probability
of termination before completion. Jobs are typically terminated be-
cause they run beyond the maximum wall-clock time allowed by the
local scheduler, or because they are evicted due to a higher-priority
job entering the scheduler, or because of hardware failures. On the
other hand, batch jobs should not run too short in order to maximize
the ratio between running time and setup time i.e. the time needed to
prepare the job environment (in the SAM-Grid typically around half
an hour). The “suitable” expected running time is managed by the
grid controlling the number of worker nodes allocated for running the
application. It should be noted that applications may have additional
constraints on the number of jobs. These constraints are dictated by
considerations on ease of bookkeeping and of recovery after failures.
In any case, the number of worker nodes to allocate depends on the
type of application. For reconstruction applications, the grid-to-fabric
interface allocates a worker node for every file in the dataset specified
for the grid job. Given the computational requirements of the recon-
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Figure 3.2: A diagram representing queues of requests for file access. On the
left, a single queue manages requests from reprocessing jobs (straight lines),
and merging jobs (dashed and dashed-dotted lines). Reprocessing jobs are
two orders of magnitude more abundant than merging jobs. Merging job
1 needs to access five input files before it can start running (dashed lines,
bold for clarity). On the right, requests from merging and reprocessing jobs
are managed by two different queues. If access requests are granted one at
the time, the queue depth for merging job 1 is much shorter than in the
case of the single queue (left diagram). If the data storage server knows the
typical data access pattern of the jobs, it can optimize access to the data.
The SAM-Grid storage elements have knowledge of the typical data access
patterns of each application.
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struction application, this approach gives an acceptable running time
of a few hours on a modern CPU and eases bookkeeping and recovery
operations. For montecarlo applications, the interface computes the
number of worker nodes to be allocated by dividing the total number
of events to be produced as specified for the grid job by the “optimal”
number of events per job. The “optimal” number of events is a pa-
rameter configured at the site, considering the speed of the average
CPU at the site, the computational requirements of the montecarlo
application, and other scheduler constraints (maximum allowed wall-
clock time, etc.). In conclusion, as in the previous examples, alloca-
tion of grid resources (worker nodes) is optimized by instructing grid
components (the grid-to-fabric interface) of the characteristics of the
application (computational requirements of the application and other
constraints).

4. Minimal Resource Idle Time: Grid jobs are often internally com-
posed of interdependent tasks. We call “structured” a job that ex-
poses to the grid its internal structure and let the grid manage the
order of execution of each internal task/job automatically (sec 3.2.4).
This automation minimizes the idle time between job submissions,
thus minimizing the idle time of the resources. In order to decide
whether to submit a job, the grid must be able to determine whether
the jobs on which it depends were successfully executed. In general,
determining the success of a job is a difficult task. In case of complex
computational activities, success is generally never defined only by the
exit status of the job. To determine whether a montecarlo generation
job was successful, for example, the grid has to check the number of
events produced by the job by querying a bookkeeping database and
compare this number with the number of events originally requested.
Success is determined by policy: typically, if more than 90% of the
events have been produced, the job is successful. For reconstruction
applications the success policy is defined differently: typically a job is
successful only if it has reconstructed all the input files, unless subse-



3.2. THE SAM-GRID CLIENT 75

quent recovery jobs fail twice on the same event with the same error,
thus exposing a corrupted input file. At any rate, having the grid
determine the success of a job is an application-specific task. In con-
clusion, as in the previous examples, the idle time of grid resources is
minimized by instructing grid components (the job management com-
ponent) of the characteristics of the application (policy defining the
success condition).

These examples show how important application-specific knowledge is
in the optimization of grid resources. It should be noted, though, that this
knowledge must be utilized in concert with resource/service-specific knowl-
edge. For example, only the grid knows in example 1 what database the site
should contact, or in example 2 what data queues are available at the cer-
tain storage element, or in example 3 how fast the local CPUs are, therefore
what the “optimal” number of montecarlo events per job is. In other words,
applications should be able to communicate their requirements/preferences
to the grid and the grid should be able to communicate its constraints to
the application. It turns out that the design of well defined interfaces for
such bidirectional communication is a complex problem.

3.2.2 A Solution to the Resource Optimization Problem

An approach to define such interfaces is requiring that the applications
and the users express requirements and preferences in terms of abstract
resource/service-specific quantities. In example 1, the grid could expose to
the application an interface that allows the definition of the query to the
database. Depending on the application multiplicity, the grid could then
decide whether to pool the access to the database or to let the jobs each
access it independently. In example 2, the grid could expose an interface
to the application that allows the definition of an application name and a
number of input files required to start data processing. Depending on these
two parameters, the grid could organize data accesses among the available
queues. In example 3, the grid could expose to the application an interface
that allows the definition of the preferred application multiplicity and its
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computational requirements. The grid should then decide whether the pre-
ferred multiplicity violates local constraints (e.g. expected execution time
beyond wall-clock time limits) and interact with the application to negotiate
the final multiplicity. In example 4, the grid should develop an interface to
learn how to define the success of the application.

It should be noted that this approach assumes maximum knowledge of
the resource/service interfaces from the users and the applications, while
the grid does not have any knowledge a priori of the applications. This is
an ideal assumption for the grid designers that, in practice, may be difficult
to maintain. This approach also requires a high level of maturity for the
grid interfaces, so that applications could express their requirements to the
grid in abstract terms. Until such level of maturity is reached, many opti-
mizations cannot be implemented. Some grids, such as LCG, are taking this
incremental approach. Since their operations start in 2007, when the LHC
physics program begins, LCG has still a few years to educate its users and
to refine its interfaces. In our case, we could not take this approach and we
had to program into key grid services some knowledge of the applications. In
particular, we had to develop application-specific modules for grid services,
in order to encapsulate the knowledge on the supported applications. These
are the main reasons for this approach:

• User Base Expectations: when we started developing the SAM-
Grid, users had to be convinced of the necessity to switch from the
central Fermilab system to a distributed computing system. Users
were asked to modify their usual way of working and to learn new
commands, a new environment, new concepts, etc. For the average
user, “learning the way of the grid” was seen as an unavoidable nui-
sance. If switching to a distributed model had to be done because of
financial constraints, the expectation was that at least the transition
should be made as easy as possible. This meant that the grid had to
expose to the users/applications interfaces as user-friendly as possible.
Since the SAM-Grid users think in terms of physical quantities and
physics application parameters, the grid interfaces had to be designed
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with an application-specific context in mind. In practice, for example
1, this meant to let the users specify a montecarlo request number i.e.
an index in a database that holds the physics parameters for a given
job, instead of asking them to specify a generic query to the database
to retrieve the same parameters. In other words, the concept of “re-
quest system”, the tool used by the montecarlo user community, had to
be implemented in the grid-to-fabric interface for the montecarlo ap-
plication module. For example 2, the site administrators pre-configure
the grid locally with the number of data queues available and with
the policies to associate typical application types with these queues.
The users only specify the application type for their job and the grid
services automatically use the local configuration to organize input re-
trieval. The concept of application type had to be implemented in the
data transport interface. For example 3, the optimal number of mon-
tecarlo events per job is configured at the site by the administrators,
considering the average computational requirement of the montecarlo
application. The users are not required to specify such requirements
and only need to declare that the application is of montecarlo type.
The concept of physics event had to be implemented in the grid-to-
fabric interface for the montecarlo application module. For example
4, success policies had to be pre-loaded in the job management com-
ponents. In conclusion, application knowledge has been implemented
in key grid services. This knowledge is used by the grid to optimize
resources for a given type of application. Users configure these opti-
mizations using both application-specific and resource/service-specific
characteristics for the job. The SAM-Grid shields its user community
from the complexity of purely resource/service-specific interfaces.

• Incremental Experience Building: the SAM-Grid optimizes re-
source usage exposing interfaces that are both application-specific and
resource/service-specific. The optimizations are the results of years of
experience running a grid production system. Our understanding of
the required optimizations has been incremental and came always as



78 CHAPTER 3. THE JOB MANAGEMENT COMPONENT

the result of the study of a particular use case in running a specific ap-
plication. It was natural for us to organize the optimization strategies
according to application types. Subsequent iterative refinements of
the optimization strategies were also simplified using an application-
oriented organization of the grid architecture. In addition, in order
to eliminate any application-specific knowledge from the grid, a big
effort of abstraction on the application use cases and optimizations is
necessary. For new applications, an understanding of the necessary
optimizations is generally missing, which makes it difficult to abstract
the purely resource/service-specific interfaces. In other words, this ap-
proach would make it more difficult to introduce new applications and
their optimizations. Such generalizations would also require a higher
level of understanding of the grid technologies and interfaces from the
users, which, at the moment, is a disincentive to use the grid.

• Interface Definition Process: high-energy physics applications gen-
erally require a careful preparation of the job environment before run-
ning. This preparation includes the definition of dozens of environment
variables, the creation of complicated file system directory structures,
the placement of execution, configuration, and input files in them, the
instantiation of monitoring processes that reduce the impact of rare
bugs that lead to infinite loops, etc. The environment preparation is
such a complicated process that application management middlewares
have been written to help with it, for example Runjob [119]. It is often
the case that the application management middleware interacts with
the grid on behalf of the application. Every time a grid interface is
modified, the developers of the application management middleware
have to update the software. Conversely, the grid interacts with appli-
cation through the application management layer. In case these inter-
faces change, the grid software needs to be updated. Because different
groups of people work on the two projects, the process of changing
interfaces must be thought through carefully and modifications must
be planned and negotiated. Moving from application-specific grid in-
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terfaces to purely resource/service-specific interfaces requires a long
process for which there is currently little incentive.

3.2.3 The SAM-Grid Job Description Language

The SAM-Grid components know a priori the applications supported. These
components expose application-specific interfaces in addition to resource/service-
specific interfaces. This approach allows the optimization of grid resources
to efficiently execute jobs.

Users describe the characteristics of a job using a Job Description Lan-
guage (JDL). The JDL contains terms typical of the various applications as
well as of resources and services. The characteristics of the job described in
the JDL are translated in directives to the appropriate services on the grid.
We believe that the language is defined through an appropriate balance of
terms specific to applications and to resources/services. A description of the
SAM-Grid JDL and of the underlying directives to the grid services follow.

The SAM-Grid JDL is a list of attribute/value pairs. The terms specific
to resources/services, application-neutral, include, for example, the name of
the local directory where the user software is (input sandbox ); the name of
the SAM station to be used (sam station); the generic set of requirements
expressed in terms of advertised site characteristics (requirements). The
terms specific to applications change depending on the application type.
When running a montecarlo application, for example, real detector events,
called in this context “minimum bias”, are used in the process; the at-
tribute minimum bias dataset identifies the name of the set of files to be
used for minimum bias. Again for montecarlo, DZero users submit their re-
quests for production of events to a request system; the id of the request is
processed by Runjob, the application management middleware of the exper-
iment, to organize the appropriate execution sequence for the applications
(runjob requestid). The full list of attributes and their semantics can be
found in the SAM-Grid manual [120].

The SAM-Grid client software is designed in two distinct layers. The top
layer, closest to the user, exposes the interface specific to the high-energy
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physics domain. The bottom layer, which consists of standard middleware
from the Condor-G system, implements the low-level job management mech-
anisms. In particular, for job submission, the top layer corresponds to
the SAM-Grid Job Description Language (JDL) interpreter and the bot-
tom layer to the native Condor-G submission client. This section focuses
only on the JDL interpreter.

The main responsibility of the JDL interpreter is to translate the de-
scription of the job provided by the user into a low-level set of directives
to the services of the grid. These directives can be application-specific or
resource/service-specific. The directives can be categorized based on what
grid services they affect:

• Directives sent to the interpreter itself: these have an effect in partic-
ular on the creation of the software archive containing the user exe-
cutable, libraries and configuration files. Directives for this purpose
are application-neutral. In jargon, this archive is called the “user input
sandbox”. It should be noted that in the SAM-Grid model the user
sandbox is, in principle, only part of the software required to run the
overall application. The rest of the software is retrieved via the data
handling system and dynamically deployed by the sandboxing fabric
services (sec. 4.3). Another example of this type of directives instructs
the interpreter to run consistency checks of the job description. This
example is an application-specific directive, because different applica-
tions require different checks for consistency. For montecarlo, the in-
formation in the request system is compared with information specified
by the user. This type of check, for example, simply does not apply for
reconstruction. These checks are important because the typical laten-
cies of a grid imply that trivial mistakes in the value of the parameters
are detected by the infrastructure hours after the job submission and
they generally result in unrecoverable failures. The consistency checks
are essential to implement a fast fail submission mechanism.

• Directives sent to the Resource Selection Service: these affect the logic
used by the resource selector to associate a job with an execution site.
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An example of a typical logic used for our prototypical implementation
of data analysis applications gives priority to those sites that have
already cached the highest percentage of the data requested by the
job. Another typical logic is random site selection (sec. 3.4.3).

• Directives sent to the submission site services: directives in this cat-
egory affect the algorithms that manage structured job. A typical
example configures the behavior of structured jobs composed of a mon-
tecarlo and file merging applications (fig. 3.7). One directive sets the
maximum number of times the montecarlo application should be re-
submitted in case of failures. Another directive defines the percentage
of events that the montecarlo job should produce in order to consider
it successful. These directives are useful to address the optimization
problem raised in example 4 sec. 3.2.2. Structured jobs are discussed
extensively in section 3.2.4. Another directive in this category is the
configuration of the email address to which notification should be sent
after job completion. Also, directives in this category can configure
the logic for resubmitting/rematching jobs in case of failure (sec. 3.3).

• Directives affecting the fabric services at the execution site: an ex-
ample of application-neutral directives in this category are aimed at
recreating the job execution environment. In particular, they can pro-
gram the dynamic product installation mechanism, declaring specific
products as necessary to the job (sec. 4.3). Application-specific direc-
tives include the montecarlo request id. This is used to run a single
query to the database at the site in order to gather the application
input parameters (example 1 sec. 3.2.2). It should be noted that gath-
ering these input parameters at the client may slow down significantly
the user interface. Directives to the fabric services are often used in
conjunction with site-specific configuration to coordinate and optimize
resources/services when running specific applications (examples 2 and
3 sec. 3.2.2).

• Directives to the data handling system: these include, for example,
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job_type = dzero_reconstruction

station_name = imperial-prd
sam_experiment = d0
sam_universe = prd
group = dzero

input_dataset = dayset-2004-08-18-196489-0
jobfiles_dataset = d0repro_jobfiles_p17.02.00_2
d0_release_version = p17.02.00

check_consistency = true
instances = 1

Figure 3.3: A SAM-Grid job description file for the reconstruction appli-
cation (job type). The second group of attributes from the top defines the
remote cluster where to run the job, identifying a specific SAM station.
The third group defines the input file dataset (input dataset), the applica-
tion binaries (jobfiles dataset), deployed to the worker node via SAM, and
the application version (d0 release version). The fourth group instructs the
interpreter to submit a single instance of the job (instances) and to check
the consistency of the job description (check consistency) e.g. by checking
that the files in the binary dataset (jobfiles dataset) include the code for the
application version specified.

what dataset the job requests (sec. 1.3) or what physics group is
accountable for the “cost” of the data caching.

• Directives to the application itself: these are passed as arguments to
the application or to wrappers around the application.

Figure 3.3, 3.4, 3.5, and 3.7 show examples of job description files. The
types of jobs supported are montecarlo production, data reconstruction,
data merging and “structured” jobs.

Other groups have developed job description languages [121, 122], simi-
lar in many aspects to the SAM-Grid JDL. One of the most mature JDLs
is the one developed for the European DataGrid [122]. The most substan-
tial difference with the SAM-Grid JDL is that the DataGrid language is
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job_type = dzero_monte_carlo

station_name = samgfarm
sam_experiment = d0
sam_universe = prd
group = dzero

runjob_requestid = 20214
jobfiles_dataset = hynek_jes_group_15400
d0_release_version = p14.07.00
runjob_numevts = 12750
events_per_file = 250

minbias_dataset = overlapset_mcp14_cteq5l-tuneA_simulated
phase_dataset = CKKW_Rand_1.W+4run4.1.io
phase_skip_num_events = 12250

check_consistency = true
instances = 1

Figure 3.4: A SAM-Grid job description file for the montecarlo applica-
tion (job type). The application gathers the processing details from the re-
quest database (runjob requestid). Some of the parameters expressed in the
database, such as the software version (d0 release version) or the number
of output events (runjob numevts), can be overridden with the appropriate
JDL attributes. The number of events per output file (events per file) is a
site-specific value that can be overridden. The fourth group of attributes
define the input to the application in terms of SAM dataset names (min-
bias dataset and phase dataset) and how to seek the relevant events within
these files (phase skip num events). The other attributes have been dis-
cussed in figure 3.3
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job_type = dzero_merge

station_name = d0karlsruhe
sam_experiment = d0
sam_universe = prd
group = dzero

#merge_dataset_name = tmb_output_12403_2
merge_dimension_query = global.requestid=12403 and data_tier=thumbnail

jobfiles_dataset = copyd0om_jobfiles_merge_p14.05.01_1
d0_release_version=p14.05.01

check_consistency = true
instances = 1

Figure 3.5: A SAM-Grid job description file for the merging application
(job type). The files to merge can be expressed as a set of constraints in the
metadata catalog of SAM (merge dimension query) or as a SAM dataset
name (merge dataset name). The # sign is a comment. The other attributes
have been discussed in figure 3.3
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completely resource/service-oriented. In other words, it does not provide
facilities to assist with any specific families of applications. The DataGrid
infrastructure is scheduled to go in production in 2007, when the LHC ex-
periments will start taking data. Most of the applications that will run
on the DataGrid are not finalized and the community is not yet worried
about resource optimization. As noted, in our experience, knowledge of the
application is required to achieve an acceptable job efficiency.

Other relevant differences depend on the different service architectures
of the two grids. For example, the SAM-Grid JDL relies on SAM to ex-
press data handling needs. In particular, the SAM system transparently
moves required data to a location close to the user. Instead, the DataGrid
JDL refers directly to EDG Storage Elements and transfer protocols. An-
other example is the EDG attributes that invoke services not available or
not directly programmable by the user in SAM-Grid, such as accounting,
credential management, and checkpointing.

Despite the differences, many attributes are common between the two
languages, if not syntactically at least semantically. Both JDL have at-
tributes to identify the Virtual Organization of the user. Both can express
job requirements and rank sites in terms of advertised resource characteris-
tics. In particular for ranking resources, both grids have developed mech-
anisms to involve the cost of input data transfer in the selection criterion
(GetAccessCost function for EDG, sam rank data overlap function for SAM-
Grid).

Other attributes simply apply to one grid and not to the other. For
example, in EDG a job can be classified as one of the following four types:
normal (batch), interactive, checkpointable, MPI. The SAM-Grid, instead,
always runs jobs in batch mode and reserves the JDL keyword job type to
identify application families. Running jobs on the grid in interactive mode
is a problem that the SAM-Grid has not investigated yet.
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3.2.4 Structured Jobs

High-energy physics computations are often the result of multiple applica-
tions run in a specific order. The input of one application, in fact, is often the
output of another. This relationship determines a hierarchy of dependencies
among applications. Thain et al. call these types of job “batch-pipelined
workloads” and analyze six use cases, including high-energy physics, in [123].

A typical pipeline for the DZero experiment is the production of monte-
carlo events. The internal structure of the pipeline is a “chain”, that is, the
output of an application is the input of the next application in the chain,
and so on. More specifically, particle events are first randomly generated
by an application; a second application simulates how the detector would
see these events; a third one refines the simulation, adding trigger and data
acquisition efficiencies and other physical effects, such as pile up; finally
the events are “reconstructed” i.e. translated into a format convenient for
the analysis framework. Only the final output of the computation is worth
keeping. The intermediate results are only recorded with the data handling
system as “virtual” data i.e. files that do not exists physically in the system,
but whose meta-data are saved for bookkeeping purposes.

We concentrate on the problem of running this type of applications on
the grid [124]. Even before the grid era, DZero relied on an application man-
agement middleware, Runjob [119], to manage the workflow of pipelines such
as montecarlo production. Runjob prepares the environment of each task
in the chain, feeding the output of an application as the input of the next.
For montecarlo production, Runjob executes all the tasks in the pipeline on
the same node. This approach is most efficient, as the workflow of the data
is contained within the processing node and there is no latency for data
stage-in/stage-out.

On the other hand, the typical montecarlo request from the users consist
of the production of 20000 simulated events. If all the events were to be
produced on a single CPU, the task would take, on average, forty days
(figure 3.6A). This is too long for most clusters to guarantee a reasonable
chance of success: a job is considered “long” if it runs for a few days. To
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be on the safe side, ideally we would not want to run a job for more than a
day.

Running each of the four tasks of the pipeline separately and saving the
output at the end of each task would not help with this problem either. The
average running time per task would be, in fact, ten days (figure 3.6B). The
solution is running the whole chain completely producing a subset of the
events each time. This approach is also immediately parallelizable (figure
3.6C). But what is the “optimal” number of events that a single job should
produce? It turns out that this number is the result of a trade-off between
the job running time, which should be ideally around a day, and the size of
its output, which should be around one Gigabyte.

The reasons for the one Gigabyte output size are the following. From a
data handling point of view, it is more efficient to handle a few large files,
than a lot of small files. In particular, accessing a mass storage system causes
large latencies if a dataset is fragmented into too many files. Another cause
of inefficiency in the data handling is the interaction with the metadata
catalog. A dataset organized in a lot of small files requires a large number
of database accesses as compared to the same dataset organized in a few
large files. On the other hand, files must be smaller than 2 Gigabytes,
the maximum file size for most operating systems. CDF and DZero have
determined independently that a good trade-off between size and access
efficiency is 1 Gigabyte.

On the other hand, a job that produces an output of 1 Gigabyte may need
to run for much longer than the canonical one day. A montecarlo pipeline
produces on average an output of 70 Megabytes in twelve hours. In order
to produce a 1 Gigabyte file, the application should run on a single node for
one week, again too long. These two conflicting requirements (job running
time and output size) do not affect only montecarlo production. Data re-
construction applications are very CPU intensive and produce small output
files even for large input files. For ease of bookkeeping and recovery from
failures, each job is given a single file to reconstruct. Yet, reconstructing a
1 Gigabyte file takes about a day and produces on average 200 Megabytes
of output, again much smaller than the canonical 1 Gigabyte.
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Figure 3.6: (A) A montecarlo request, consisting of four applications repre-
sented by the gray bars, form a pipeline job. The typical montecarlo request
would run for forty days on a single commodity CPU: this is too long for
most clusters to guarantee a reasonable chance of success. (B) The same
pipeline is run as four separate jobs. Each job would run on average for ten
days: this is still too long. (C) The request is parallelized into hundreds
of “small” pipelines, each running for less than a day. The running time is
“right”, but the output of each job is too small for efficient data handling
(much less than one Gigabyte). The output files from all the jobs must be
merged together.
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To reconcile the data handling needs with the ideal running time of less
than a day, we have developed an application whose only task is to merge
files. Montecarlo production and data reconstruction jobs are run in parallel
at the worker nodes of the cluster. These jobs are all part of the same
computational request, for example, the production of 20,000 montecarlo
events or the reconstruction of an input dataset of one hundred files. The
jobs are run in parallel for one day and their “small” output is stored from
each worker node on a temporary data storage (typically a disk), considering
it as an intermediate result. Once all the jobs are finished, the merging job
is run on a worker node. The job gathers all the “small” input from the
same computational request and produces output files of 1 Gigabyte in size.
These files, which have the “right” size, are permanently stored on a mass
storage system.

This task is greatly facilitated by storing the intermediate results in the
SAM system. Since all the files are thoroughly catalogued, the process of
selecting what files to merge simply consists of creating a dataset definition
i.e. a query in the SAM metadata catalogue. The files are stored physi-
cally on a storage system close to the cluster. Ideally, this storage system
should provide some standard data handling interface, such as SRM [125].
In practice, it is almost always a disk on a machine that provides some data
movement service. We call such storage system a durable location, to hint
that it holds files that are not used for scratch, since they survive the life time
of jobs that produced them, but are not stored there permanently. Storing
the intermediate results in the SAM system also enables the transparency
of data access. In other words, the merging job can be run anywhere on the
grid, as SAM will take care of the transport on behalf of the application.

It should be noted that this processing model is another pipeline con-
sisting of two applications: the production job (the parent) and the merging
job (the daughter). In contrast to the montecarlo production pipeline de-
scribed above, this pipeline is executed on the grid. In other words, in order
to execute the new pipeline, the grid needs to know its internal structure.
We call a job that exposes to the grid its internal structure a “structured”
job. It should be noted that the montecarlo production pipeline is not a
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structured job, as it is treated by the grid as an atomic task.
More generally, the relationship between jobs can be conveniently mod-

eled as a Directed Acyclic Graph. Cycles can be introduced in case of failure,
by automatically rerunning the failed job. Even with the simple production
and merging pipeline described above, we have observed two operational
problems in the manual handling of structured jobs:

1. Operational mistakes: production jobs tend to run for many hours
or days. In addition, system crashes, such as software or hardware
failures, require operational intervention for recovery. The long pro-
cessing time, together with the recovery procedures, leads to human
errors.

2. Low production efficiency: since a job stays in the grid system for
days, it sometimes finishes at times when operators are not available
to check its success and to submit the dependent jobs. These dead
times contribute to lower overall production efficiency.

The solution to these problems is the development of an infrastructure
that handles automatically structured jobs (requirement 6 chap. 3). The
user interface should allow an operator to declare the following characteris-
tics of the job at the time of submission: (1) all the phases of the job and
their relationship; (2) the checks to determine the success of each jobs and
the policy for the resubmission of failed jobs. A typical example of such
policies is the number of times that the job should be resubmitted before
considering the failure un-recoverable without human intervention.

This automatic system is in practice difficult to implement. In order to
run a computation as a structured job, in fact, the details of the operations
must be completely sorted out. The operational checks that are normally
run after every job in the structure must be so clear that they can be auto-
mated. This automation is often difficult to achieve in some cases, typically
because of the high number of possible error conditions. In addition, every
application generally requires a different type of check. This means that it
is sometimes difficult to generalize the checks without having a grid with a
priori knowledge of the application (sec. 3.2).
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Various groups interested in high-energy physics make also use of struc-
tured jobs [42, 126]. It is interesting to note that these groups, as well as
the SAM-Grid, have implemented structured jobs using the same middle-
ware, the Direct Acyclic Graph job Manager (DAGMan) [127]. DAGMan is
a workflow management layer on top of the Condor middleware. An input
file to DAGMan defines the dependencies among the jobs. This file is used
by DAGMan to compute the order of job execution. Each job is described
by a condor job description file, which specifies the job executable, argu-
ments, input and output, etc. In addition, the execution of each job can
be preceded and followed by custom pre/post-processing scripts. Typically,
pre-processing scripts are used to stage the job input files. Such scripts are
not used by the SAM-Grid, as jobs use the SAM data handling system for
their data handling needs. Post-processing scripts can be used to determine
whether the job was successful or not. These are heavily used by the SAM-
Grid, as they are the key for the automation of the structured job execution.
The number of times a job should be resubmitted before considering the job
failed is expressed in the DAGMan input file. It should be noted that the
ability of resubmitting jobs upon failure increases the overall fault tolerance
of the system.

Internally, DAGMan implements job scheduling running a “master” job
at the submission tier. The master job has knowledge of the dependencies of
the jobs in the DAG and has access to all information necessary to submit
each job. The master job enforces job dependencies by submitting the jobs
of the DAG to the scheduler at the appropriate time. Pre/post-processing
scripts are also run at the submission tier by the master job.

Being a general tool, DAGMan offers features that are not currently
used by the SAM-Grid. On the other hand, the SAM-Grid could benefit
from features that are not yet implemented in the tool. The most notable of
the features currently not used by the SAM-Grid is the automatic recovery
of DAG jobs. In case some jobs fail, this feature allows the re-submission
of only the failed jobs and its dependencies. This is mostly of interest for
complicated structures and it is not currently necessary for the types of
structured jobs run on the SAM-Grid. On the other hand, the SAM-Grid
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would benefit if DAGMan were integrated with a multi-tiered submission
system, a feature that is not available yet. In more detail, DAGMan cur-
rently requires that the submission tier, i.e. the server that submits jobs
to the remote resource, and the client tier be on the same machine. This
limitation stems from the fact that the client cannot currently gather and
ship all necessary information to the submission server. This information in-
cludes all descriptions, executables, and input files of the jobs in the DAG,
as well as the DAG description itself. A multi-tiered architecture for the
management of DAG jobs would be in line with the overall architecture of
the SAM-Grid. In order to run structured jobs, the SAM-Grid accept the
limitation of running some client and submission tiers on the same machine.

The SAM-Grid client provides a level of abstraction on top of DAGMan.
Users declare structured jobs using a single SAM-Grid job description file
that includes the relevant attributes for the jobs in the SAM-Grid JDL.
Currently, only chains of applications are supported by the SAM-Grid client.
Structured jobs are typically used to run montecarlo production and output
merging applications. Figure 3.7 shows a real example of such a job.

3.3 The Job Submission Service

When we started working on the job management infrastructure of the SAM-
Grid, the size of our user community was a parameter important in our
design. The DZero experiment had around 700 members and CDF around
800. For DZero, every active user had an account at Fermilab on the d0mino
super-computer, which was deemed expensive to maintain and operate. The
effort to administrate such a large system for a growing number of active
members was not negligible. On the other hand, most users already had
personal desktops at their home institution, or laptops. If the client soft-
ware of the job management infrastructure could be operated from these
computers, the effort of administering the central system could be, at least
in part, relieved.

As the number of client machines grew in our architecture, the probabil-
ity that one of them was down during the life time of a job was also growing.
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job_type = structured
job_structure = dzero_monte_carlo, dzero_merge

station_name = samgfarm
sam_experiment = d0
sam_universe = prd
group = dzero

runjob_requestid = 12446
d0_release_version= p14.05.01
jobfiles_dataset = adi_jobfiles13

minbias_dataset = ccin2p3_minbias_dataset

monte_carlo_efficiency = 90
monte_carlo_retries = 3

instances = 1

Figure 3.7: A SAM-Grid job description file for a structured job
(job type), consisting of a chain of montecarlo production and merging
jobs (job structure). The last group of attributes are parameters passed
to the post-processing script of the production job. This defines the
success of the production job if 90% of the requested events have been
produced (monte carlo efficiency). The job can be resubmitted 3 times
(monte carlo retries) to reach this “quorum”, before considering the whole
job failed. It should be noted that none of the typical attributes for merg-
ing jobs are present (see figure 3.5). The dataset to be merged, in fact, is
determined using the global job id of the production jobs. The other typical
attributes are common with the montecarlo job. The second, third, fourth
groups of attributes have been described already in figure 3.4.
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Yet, the architecture had to provide the same level of reliability as a central
system. In other words, the jobs submitted through this system should not
require the availability of the client machines in order to succeed. If this
were achieved, we could also support the installation of the client software
on a laptop. Therefore, a question that the SAM-Grid had to address was
how to manage jobs without requiring continuous network connectivity for
the client software. The solution that we adopted was an agent, called the
submission service, that would act on behalf of the user for the management
of grid jobs. The clients would interact with this service when necessary,
and then they could disappear from the network.

It is important that the submission service is reliable, since multiple
clients depend on it for the successful management of their job. The service
has to treat each request persistently, so that temporary down time of the
service does not jeopardize the running jobs. In addition, it is necessary to
clarify the authority that the service has over the jobs. For example, could
the service resubmit failed jobs? Should the service receive the output of
the jobs and keep it for the user? If so, for how long?

The submission service is the second tier of the job management com-
ponent, interacting with both the client software at the first tier and the
execution site services at the third tier. The designed multiplicity of the
submission service is about one per nation. As figure 3.1 shows, multiple
clients interact with an instance of a submission service1.

This component has four main responsibilities

1. It maintains the queue of grid jobs submitted there, holding the job
description as well as the user input sandbox. The information is
stored persistently and the status of the service and of the jobs can be
recovered after a service shutdown (requirement 3, chap. 3).

2. It interacts with the Resource Selection service, providing upon request
the description of the pending jobs and receiving a recommendation

1In the SAM-Grid deployment of August 2005, the nations that offer a submission ser-
vice are the United States (at Fermilab and at Langston University, Oklahoma), Canada,
France, and the Czech Republic. Clients in the UK and Germany typically interact with
the Fermilab’s submission site.
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on where each job should be submitted (sec. 3.4).

3. It schedules the job at the site recommended by the Resource Selection
service. The main protocol used for the interaction with the remote re-
sources is the Globus Resource Allocation and Management (GRAM)
protocol (sec. 1.1).

4. It is a mediator of the interactions between the user and the remote
resources for the management of the jobs, when the user is online.
Conversely, it acts on behalf of the user, when the user is offline (re-
quirement 2, chap. 3). In particular, the submission service maintains
up to date the status of the job, can in principle resubmit the job to
the grid resources in case of failure (requirement 5), and receives the
output sandbox from the job upon completion (requirement 3).

The submission service has been implemented using the “schedd” dae-
mon of the Condor-G infrastructure. The Condor software had to be mod-
ified to allow the separation between client software and the schedd. In
addition, the daemon had to be appropriately configured to meet the poli-
cies of the experiment, as described hereby.

The handling of the job output, or, more precisely, of the output sand-
box, was a problem that required custom configuration. In the SAM-Grid
model, the output sandbox consists of “small” user files and meta-processing
information, such as the standard output and error streams and the appli-
cation log files. In other words, the output that is of little interest to the
community as a whole and does not need to be catalogued. We make this
distinction because the main results of the computation, often many GB
in size, are catalogued and handed over to the data handling system. The
information in the output sandbox is of fundamental importance for trou-
bleshooting the system as well as the application, despite the fact that it is
not permanently stored nor catalogued.

We decided that the submission service would be responsible for keeping
the output sandbox upon job completion. The user can download the sand-
box from the submission site via the web. If the output is not retrieved, the
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submission service can delete it, according to specific policies. Typically,
the output is held for a week, before disposing of it. Such policies are pro-
grammed in the job description and can, therefore, be on a per-job basis or
global.

Other grids adopt different approaches for dealing with the job output.
A popular model requires that the users specify a location to store the out-
put. This model is adopted with some variations by LCG as well as by the
CDF distributed Analysis Farms (CAF) [118]. In the case of CAF, the user
is responsible to check that the chosen storage accepts the user credentials
and that it has enough space to store the output. If these conditions are not
true, generally the system buffers the output for some time at the execution
site. In practice, today the CAF system is fully integrated only with ker-
beros, instead of more common grid standards, such as the Globus Security
Infrastructure, and the storage system of choice is usually the user’s home
area. Within these restrictions, though, most users consider that the con-
venience of finding the output directly in the user’s home area overcomes
the responsibilities that the model imposes to them. On the other hand,
we believe that the SAM-Grid model offers a reasonable trade off between
user convenience and responsibilities, as it requires the user to download the
output, but does not require the users to be responsible for the availability
of the storage system.

We conclude this section by introducing the problem of fault tolerance
on the SAM-Grid. In the context of the SAM-Grid, this problem is a topic
for future research. Fault tolerance has been studied in the context of other
grid systems by various groups [129, 130, 131]. These are general guidelines
of how it would be possible to implement fault tolerance within the SAM-
Grid framework. The submission service could increase the fault tolerance
of the infrastructure if it were granted the authority to resubmit failed jobs
on behalf of the user. On the other hand, the submission service should be
taught how to distinguish recoverable from non-recoverable failures.

We distinguish between three possible actions of the submission service:

1. resubmit the job selecting a different resource i.e. rematch the job
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2. resubmit the job to the same resource, optionally waiting a period of
time

3. consider the job failed

In general, if a job fails because the resource selector does not know of
local problems at the resources or has stale information, the job should be
resubmitted. Whether to resubmit or to rematch the job would depend on
the type of failure and on how permanent the failure is expected to be. For
example, if accessing gateway services fails because of a network timeout,
it is probably best trying to resubmit to the same resource. The gateway
node, in fact, may be busy processing other requests, but otherwise gener-
ally available. Instead, if submitting the job fails because the submission
service cannot establish the output streams with the gateway node, the job
should probably be rematched. Such failure, in fact, generally occurs when
a filter blocks the network (firewall configuration) and typically requires
administrative intervention to be solved.

On the other hand, a typical example for considering the job failed is
when the job credentials are expired. In this case, the submission service
should not try to resubmit the job, as it would only generate traffic without
any chance of success. Knowledge of application would also help deciding
on the resubmission strategy. Some applications, in fact, are non-reentrant
by design. This means that they cannot be submitted multiple times with-
out undergoing some operational recovery procedures. For example, this is
the case of reprocessing jobs. Before resubmitting a grid job, operational
scripts should analyze what files in the original dataset were not successfully
processed and create a recovery dataset containing them.

As of today, the SAM-Grid team has only experimented with some very
simple resubmission algorithms that do not clearly distinguish among failure
conditions. These algorithms penalize previously matched resources in case
of resource rematch, as the history of the matches are recorded in the job
description. This solution to increase the fault tolerance of the SAM-Grid
was never finalized. Categorizing the types of failures and teaching the
submission service how to distinguish them is still an open problem.
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3.4 The Resource Selection Service

When we started the design of the SAM-Grid job management component, a
principal goal was offloading the computing resources at Fermilab by making
remote resources accessible. The number of DZero collaborating institutions
was 78, of which only a few dozens provided computing clusters of a medium
to large size (dozens to hundreds of machines). Rather than considering each
machine individually, the target of the SAM-Grid scheduling was the cluster.
The grid, in fact, had no direct scheduling capability over resources at the
granularity of the single machine. In addition, the aggregation at the level of
the cluster could shield grid services from an excess of details, irrelevant for
most practical purposes (sec. 2.1.6). Maybe even more importantly, users
think in terms of sites or clusters, when deciding where to submit their jobs.

At a minimum, the job management component had to be capable of
submitting jobs to a cluster chosen by the user. Users, in fact, tend to
submit jobs to the cluster hosted by their home institution. The incentive
to do this is that the computing power utilized at the institution is counted
as a credit toward the yearly due to the experiment for operations. In order
for the submission site to submit jobs to a named cluster, various details of
the resource must be available, such as the “Globus URL”, the entry point of
a resource accessible via the GRAM protocol (sec. 1.1). In addition, in order
for the job to have a chance of success, other resource-specific characteristics
must be made available in the job environment, such as the name of data
handling services and their naming service, the entry point of the monitoring
service (XML database URL: section 2.2.3), etc. It is therefore necessary
that the grid provides an information service, where all these attributes
could be found.

Ideally, the job management infrastructure should be able to interface
directly to the information system. Some grids [88], for example, provide
the information on the resources via a web interface and leave to the user
the responsibility to fill in the relevant attributes by hand, for example by
cutting and pasting the information to the job description file, creating a
concrete job request. We believe that this is too demanding of the user and
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Concrete Representation
GatekeeperUrl = gateway.machine.fqdn:2119/jobmanager-DZeroLong
XMLDatabaseUrl = http://xmldb.machine.fqdn:7080/Xindice/
...

Abstract Representation
GatekeeperUrl = $$(GatekeeperURL)
XMLDatabaseUrl = $$(XMLDatabaseUrl)
Requirements = TARGET.Site == MySite AND

TARGET.SchedQueue == DZeroLong
...

Table 3.2: The Condor JDL representation of an abstract and a concrete job
descriptions. In the concrete description, the user must enter the exact value
of each attribute in the job description. In the abstract description, the user
expresses requirements using abstract resource attribute names (TARGET.
syntax, section 3.4.3), in order to select a resource. The concrete values are
substituted by the resource selection service using the information system
($$ syntax). The abstract representation is more user friendly.

that the grid should provide a service that would automatically fill in the
details, given a few mnemonic abstract attributes of the targeted cluster.
Table 3.2 shows an example of an abstract and a concrete job descriptions,
using the Condor job description language.

The problem that the SAM-Grid had to address was how to translate
an abstract job description into a concrete job description. This translation
service relieves the user from the tedious work of looking up static resource
details on the information system. But what about dynamic conditions,
such as the current load to the cluster or the data handling components at
the site, the network traffic, etc. ? More in general, the user may not care
on what cluster his/her jobs execute and would rather have the grid select
the “best” resource on his/her behalf (requirement 4 chap. 3). Clearly, the
“best” resource selection criterion depends on what metrics we want to op-
timize. In our experience, the most popular metric among users is time to
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completion of the job. On the other hand, administrators care about the op-
timization of site parameters, such as the minimization of network or storage
system bandwidth. Finally, it should be noted that the resource selection
mechanism depends on the application type. CPU intensive applications, for
example, may not need to care about the load of the data handling services
at a site, while data intensive applications do. In summary, the question
that we asked ourselves in the context of SAM-Grid was how to select the
optimal resource for a given application in order to optimize metrics relevant
to our stakeholders.

In the rest of this section we explore these questions further by presenting
relevant aspects of the literature on resource selection. In the next subsec-
tions, we analyze the problem of job and data co-location and we describe
the SAM-Grid framework, used to implement resource selection, answering
at least in part the questions introduced above. We also describe how the
SAM-Grid has prototypically implemented a mechanism for job and data
co-location to run analysis jobs.

Many groups have worked on the problem of resource selection on the
grid. Buyya, Chapin and DiNucci [132] study different architectures for re-
source management, comparing models that organize resources and services
in a hierarchy with models inspired by the economic principles. A more
comprehensive work is proposed by Krauter, Buyya and Maheswaran [133],
who present a taxonomy of the resource management systems using a dozen
characteristics. The three major types of Grids identified are Computational
Grids, Service Grids and Data Grids. In a Computational Grid, applications
are executed in parallel on multiple machines as if the aggregate system
were a supercomputer. Storage management is provided via specialized in-
frastructures. A Service Grid is a system that provides aggregate services
that are not provided by a single machine. Typical examples are systems
that connect users and applications into collaborative workgroups and in-
frastructures for realtime multimedia applications. A Data Grid integrates
grid level data management services with computing resource management
services. This makes data grids more complex than computational grids, a
reason why the research on data grids is not as advanced. The focus of a
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data grid is generating new information by processing data from distributed
repositories. The SAM-Grid is an example of a Data Grid.

For computational grids, the literature on resource selection and schedul-
ing algorithms is conspicuous [134, 135, 136, 137, 138]. Bruno, Coffman, and
Sethi study the finishing time properties of algorithms for scheduling n in-
dependent tasks on m nonidentical processors [139]. They show that the
simplified problem of scheduling a restricted set of tasks on identical proces-
sors is NP-complete. Fujimoto and Hagihara [140] measure the performance
of a few classical algorithms and compare their relative performance. Buyya,
Stockinger, Giddy, and Abramson [141] concentrate on economical schedul-
ing models.

In addition to the theoretical work, various groups have implemented re-
source selection middleware for computational grids [29, 32, 142, 143, 144],
and for hybrid computational and service grids [145, 146, 147, 28]. Buyya
compares these technologies in his Ph.D. thesis [148], investigating the ad-
vantages of an economical model using the NimrodG system.

In the case of the SAM-Grid, the resource selection service gives recom-
mendations to the submission sites on how to match jobs to execution sites.
In other words, in the architecture of the job management component, this
service multiplexes the jobs queued at the second tier to the third tier. As
for the submission and client site software, the SAM-Grid implementation
of the Resource Selection service is based on the condor middleware. In
particular, it makes use of the Condor match making service [149] to select
grid resources [150].

3.4.1 The Problem of Job and Data Co-location

The literature presents studies on different scheduling algorithms that ad-
dress the problem of job and data co-location. Adaptation to the dynamism
of the grid is the common denominator of four works that we discuss hereby.
Alhusaini, Prasanna, and Raghavendra [152] study different adaptive algo-
rithms to select computing, data, and network resources. They assume
complete central knowledge of the internal structure of the job dependen-
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cies, expressed in the form of a Directed Acyclic Graphs (DAG) (sec. 3.2.4).
The scheduler is also assumed to have enough information to estimate the
time to completion of each task. Different heuristics are applied, such as
either submitting the shorter task or the longer task first. These heuristics
are applied to a level-by-level or a greedy approach to job scheduling. In a
level-by-level approach, independent tasks of the DAG that are at the same
depth are compared then scheduled. In a greedy algorithm, tasks that are
deeper than the others, but ready to run, are also considered for scheduling.
The algorithms use resource reservation to achieve scheduling to a collective
set of job and data resources. It is shown that this collective scheduling
improved the time to completion of the jobs of 30% with respect to indi-
vidual resource selection. Shi, Jin, Qiang, and Zou [153] use also resource
reservation, introducing algorithms based on job completion deadlines. The
algorithm compares the estimated time to completion of a set of jobs ready
for scheduling. The estimate includes data movement and running time.
The algorithm submits first the job estimated to end closest to the deadline,
if the deadline can be met. If the deadline cannot be met, it uses resource
reservation for network and computing resources before submitting the job.
The algorithm has been tested on the campus grid of Huazhong University
of Science and Technology, Wuhan, China, on 5 clusters with less than 16
nodes. The algorithm was compared with a greedy algorithm for the num-
ber of missed deadlines and it performs up to 50% better. Park and Kim
[154] describe Chameleon, a system for job scheduling built on top of Globus
and based on a cost model. The model analyzed defines cost in terms of
time to completion of the job, similarly to the two papers discussed above.
Chameleon assumes full knowledge of the computing resources and use the
Network Weather service for information on the network conditions. When
scheduling a job, the system analyzes five different running scenarios, de-
pending on the locality of the data with respect to the computing resources.
The scenario with the lowest cost determines the scheduling strategy. The
performance of the system has been tested on a grid of 9 sites with two dif-
ferent applications. Casanova, Obertelli, Berman, and Wolski [155] present
AppLeS, a system capable of interfacing to different grids middlewares. Ap-
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pLeS specializes in the scheduling of parameter sweep applications, a cat-
egory of computations that include montecarlo generation. When jobs are
scheduled, the system places files strategically for maximum reuse.

Ranganathan and Foster discuss in [156] and later in [76] the effects of
asynchronous data replication on the scheduling problem. Unlike the four
works discussed above, they assume a complete distributed model. On the
other hand, each job is scheduled independently from the characteristics of
the others. The model is based on two main components: a global job sched-
uler and a data scheduler. The global job scheduler uses four algorithms to
submit jobs: randomly, always to the local site, to the least loaded site,
and to the site with most of the data required by the job present. The data
scheduler keeps track of the popularity distribution of the data and replicates
popular data to other sites. The algorithms investigated for data scheduling
are three: do not replicate data, asynchronously replicate data to a random
site or to the least loaded site. The authors use a simulator to compare the
twelve combinations of algorithms against three different metrics: response
time, cpu idle time, and bandwidth utilization. The study shows that asyn-
chronous data replication to the least loaded site typically increases the
efficiency on the metrics only of a few percentage: the two strategies seem
to be equivalent. Sending the jobs where the data are substantially improves
the figures on the metrics only if asynchronous data replication is used. If
the data is not replicated, in fact, the site with the most popular dataset
becomes busy processing jobs and its performance degrades. Their conclu-
sion is that coupling data and job scheduling is not necessary when using
this model.

A completely different approach to job and data co-location consists in
defining execution domains, where resources are bound together according
to different affinity criteria. Unlike the works on adaptive scheduling algo-
rithms, the two described hereby do not rely on a scheduler to select from
a global pool of computing and data resources, as the execution domains
define the possible resource associations. Both papers rely on classad and
the condor system to implement their solution. Thain, Bent, A. Arpaci-
Dusseau, R. Arpaci-Dusseau, and Livny [157] define execution domains as
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“communities”, where computation resources advertise the characteristics
of the storage to which they are associated. Jobs express their requirements
on storage, thus selecting computational sites. It should be noted that this
mechanism does not promise the storage to the job and that the storage
cannot impose any requirements on the jobs. The match making, in fact,
is carried between the job and the computing resources. The system was
used to run montecarlo generation for the CMS experiment. It is shown that
creating communities improves CPU consumption and completion time over
independent resource selection. Basney, Livny, and Mazzanti [158] extend
the same concept developing a framework that defines “execution domains”.
Agents, or domain managers, automatically place replicas, dynamically ex-
tend the domains, and ensure that applications run within the domains.
Replica placement policies are not discussed in the paper.

The classad technology is also at the basis of two studies related to job
and data co-location. Vazhkudai, Tuecke, and Foster [159] implement a
storage broker that uses match making between job and storage devices.
In this model, a replica catalog is first queried to find the location of the
required data, then match making selects the best storage from the device
list. The paper does not explore completely the interplay of storage selection
with computing resource selection, a possible topic of interest for further
investigations. Raman, Livny, and Solomon [160] describe an extension to
the classad technology, called gangmatching, that allows the evaluation of
multi-party policy expressions by multilateral match making. Unlike the
technique described above for [157], gangmatching allows multiple entities
to be exclusively promised to each other. The paper does not concentrate
on the problem of job / data co-scheduling, even if the technology could be
used to solve it.

Li, Groep, Templon, and Wolters [161] implement a solution to the load
balancing problem for LCG. The LCG resource broker queries each site for
an evaluation of how long the job would stay idle in the queue of the local
scheduler. A server running at each site uses a statistical model to produce
this estimate, using a simulator of the local scheduler and the status and
history of the job queue. This mechanism is similar to the SAM-Grid match
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making call-out to the SAM stations to determine the percentage of files
cached at the site for a given job (sec. 3.4.3).

The SAM-Grid provides a prototypical solution for the problem of job
and data co-location. This is achieved by configuring the resource selector to
call-out to the site-deployed SAM stations at the time of job/resource match
and by using SAM to pre-stage data as soon as the job enters the site. This
mechanism, described in section 3.4.3, can be improved in different ways.
First it is adaptive only with respect to the condition of the data handling
services. The conditions of the network bandwidth and of the job handling
services at the resource are not included. Second, resource utilization policies
are not currently part of the algorithm. Third, the algorithm minimizes data
transfers on a per-job basis, but does not attempt any global optimization on
the metrics relevant to the virtual organization, such as time to completion,
bandwidth utilization, etc. In other words, jobs are matched to resources
without considering the description of other jobs. These refinements to
the job/data co-location algorithm implemented by the SAM-Grid can be
addressed in the future if necessary.

3.4.2 The Information Service

The SAM-Grid architecture relies on a central information service, which
is used for resource selection as well as a component of the naming and
monitoring services. Resources and job-related services register with an in-
formation collector, exposing characteristics of their interfaces and internal
statuses. For example, submission site services advertise their current ad-
dress, so that other entities can manage jobs or acquire details on the job
queue. Execution sites, instead, advertise attributes such as their grid entry
point, the URL of the local XML database, the name of the local SAM data
handling services, the address of the SAM naming service, and other aggre-
gate information on the cluster (see also chap. 2). It is worth noting that
while the technology used to describe resources and services is the Condor
Classad [151], most of the syntax and the semantics of the description are
specific to the SAM-Grid. In order to adapt to the dynamism of a grid
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system, the collector treats the incoming information as a soft-registration.
This means that the registration is automatically discarded after a config-
urable amount of time, thus reducing the impact of stale information. It
should be noted that this does not prevent stale information from being in
the system. In fact, this is one of the reasons why the resource selection
should be considered as a “recommendation” only.

The collector acts effectively as an information system, populated by
resources and services advertising their characteristics. For the SAM-Grid,
such advertisement system presented the following problem. The Condor
framework and, therefore, the job management component of the SAM-
Grid are integrated with the Classad language. A classad is a “flat” list of
attribute/expression pairs 2 (figure 3.9 shows an example). On the other
hand, the SAM-Grid site configuration description uses a hierarchical rep-
resentation of the resources (sec. 2.1.6). Resources and services at a site,
in fact, are represented in XML and stored in the XML database at the
site (figure 2.6). The advertisement framework, therefore, had to provide
a mechanism to decompose the site configuration hierarchy in a set of flat
descriptions, represented in the form of Classads.

In order to do this, various algorithms can be applied. The site hier-
archy is composed of nested services and resources. To run a job, a set of
particularly important services and resources is always necessary, but, in
our case, never more than one at the time. For example, a job runs on one
cluster, accessed by one gatekeeper and one job-manager, and the job’s data
are handled by one sam station. The algorithm that we have implemented
to achieve the classad generation looks up for key resource and service at-
tributes. Each classad must contain a full set of the key attributes. The site
hierarchy is traversed depth-first, looking for the attributes in the expected
order of nesting. If a branch does not contain the full set, it is pruned and
will not generate any classad. For those branches that generate classads,
additional attributes in the hierarchy are also included for completion, such

2A newer version of Classad allows the nesting of classads. This enables the expression
of hierarchies within the Classad language. However, as of Condor 6.7, the new Classad
library is not yet integrated with the Condor framework.
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Idealized site configuration in XML format

<root>
<key_service_1 attribute=’A’>

<key_service_2 attribute=’B’>
<key_service_3 attribute=’C’/>

</key_service_2>
<key_service_3 attribute=’D’/>

</key_service_1>
<optional_service attribute=’E’/>

</root>

Idealized site configuration in classad format

key_service_1_attribute = A
key_service_2_attribute = B
key_service_3_attribute = C
optional_service_attribute = E

Figure 3.8: An idealized example of the conversion algorithm of a site con-
figuration in XML (top) to classad (bottom). The job needs key service 1,
2, and 3 in order to successfully run. The algorithm traverses the XML tree
depth-first finding 2 sets of key services: 1, 2, 3 AND 1,3. The complete set
of key services and their attributes are transformed in a classad, adding the
optional service at the root level.

as all the children of the document “root”. In addition, the advertisement
framework can include attributes with dynamic values in the classad, such
as the XML database entry point, the data handling system naming service,
or the amount of free storage space at the site. Figure 3.8 shows the idea
described above with an idealized example. Figure 3.9 shows a real example
based on the site configuration of figure 2.6.

In more detail, the advertisement server operates in cycles. At the end of
each cycle, a set of classads is sent to the information collector. New cycles
are started every few minutes. This time is appropriate, in the case of the
SAM-Grid, because the information useful for resource selection typically
changes on a longer time scale. Input to the advertisement server is the
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XML representation of the site configuration. Each cycle is composed of
three phases: pre-processing, processing, and post-processing.

The pre-processing phase can be used to prune the site hierarchy from
information irrelevant for resource selection. This phase is, in practice, not
used in the SAM-Grid.

The processing phase implements the rules to “flatten” the hierarchical
structure. These rules are expressed using an XQuery transformation script.
The script decomposes the site configuration tree in the set of all possible
branches. A branch is the set of all the nodes from leaf to root. It should
be noted that a branch is a linear structure that can be mapped to a “flat”
format. This property is used at the end of the cycle to transform the se-
lected branches in classads. Relevant branches are selected applying filters
to the set of all the branches. The filter used in the SAM-Grid requires that
each key attribute appear once and only once, with a certain relative posi-
tion in the hierarchy. For example, the typical transformation rule requires
that a station is a “descendant” of a gatekeeper and that a gatekeeper is a
“descendant” of a cluster (figure 2.6). The nodes of the remaining branches
are then decomposed into attribute/value pairs, which is the form used to
represent resources in classad format. We utilize the rule that decomposes
nodes of the form

<tag attr1=valA attr2=valB>

into XML nodes of the form

<attr name="tag_attr1_" value="valA">

<attr name="tag_attr2_" value="valB">

Since, ultimately, classad attributes must have a unique name, nodes of the
same branch that would be transformed into attributes with the same name
must be treated differently. For example, following the transformation rule
above, two nodes of the form

<tag attr1=valA>

<tag attr1=valB>
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would generate two attributes with the same name: tag attr1 . In these
cases, we decided to break the homonymy by generating attribute names of
the form tag attr1 valA and tag attr1 valA . The corresponding attribute
value required by the syntax of the classad format is, in reality, not meaning-
ful and is set to the default string “Present”. After the node transformation,
each branch is a linear structure made of nodes in attribute/value pairs for-
mat. Each branch contains static information about a set of site resources
needed by a job. In conclusion, at the end of the processing phase, the
branch is transformed into an XML representation of a classad.

The post-processing phase of the advertisement cycle adds attributes
with dynamic values to the classad. A set of sensors gather information
such as the amount of space available in the temporary local data storage
(“durable location”, sec. 3.2), the number of grid jobs currently running at
the site, etc. Figure 3.9 shows a real example of a classad generated from
the site description of figure 2.6.

3.4.3 The Match Making Service

So far we have talked about the SAM-Grid information service, or informa-
tion collector, and the system that populates it, the advertisement frame-
work. These are two fundamental components to implement abstract to
concrete job description and, more in general, resource selection. In the
condor framework and in the SAM-Grid, a third component, called negotia-
tor, is responsible for comparing this information with the characteristics of
the jobs in order to find a job / resource match. Within this framework, the
job description can refer to resource attributes using their names, as spec-
ified in the resource classads. These attributes can be used in expressions
that define the behavior of various services, such as resource selection, job
environment preparation, job submission service, etc.

Using this mechanism, a job can define its attributes in terms of abstract
resource characteristics, or attribute names, letting the framework derefer-
ence these names in concrete values for the job attributes (chap. 3.4).

The resource selection is processed in match making cycles and it is
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MyType "Machine"
TargetType "Job"
Requirements TRUE
gatekeeper_url_ "apex.cs.wisc.edu:2119/jobmanager-samgrid"
sam_nameservice_ "IOR:000000000000002a49444c3..."
Name "d0ppdg.d0.prd.apex.cs.wisc.edu:2119/jobmanager-samgrid"
DbURL "http://apex.cs.wisc.edu:7080/Xindice"
station_name_ "d0ppdg"
station_experiment_ "d0"
station_universe_ "prd"
jobmanager_name_ "jobmanager-samgrid"
gatekeeper_location_ "apex.cs.wisc.edu:2119"
cluster_architecture_ "Linux+2.4"
cluster_name_ "D0PPDG-Cluster"
schema_version_ "1_1"
site_name_ "Wisconsin"
local_storage_path_ "/sam/disk"
local_storage_node_ "apex.cs.wisc.edu"
StartdIpAddr "<198.51.254.108:36359>"
LastHeardFrom 1116988844

Figure 3.9: One of the two classads generated by the advertisement frame-
work from the site description of figure 2.6. The other classad (not
shown) only changes in the attributes Name, gatekeeper url , and jobman-
ager name , which all use the value of the job manager jobmanager-runjob
instead. The attributes sam nameservice and DbURL are dynamically gen-
erated and do not show up in the static site description of figure 2.6. The at-
tributes MyType, TargetType, Requirements, StartdIpAddr, and LastHeard-
From are required keywords used internally by the Condor framework. The
algorithm used to generate this classad was sensitive to the hierarchy of
resource/service attributes cluster, gatekeeper, and station.
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configured in the job description, by the use of requirements and rank at-
tributes. Periodically, every submission site is queried about the details of
the jobs queued therein. For every job, resources are initially skimmed by
looking at the job requirements. The requirements express constraints on
the value of the resource attributes. The remaining matching candidates are
then ranked according to various configurable algorithms. When the “best”
match is selected, the job description is enriched with information from the
resource.

Figure 3.10 shows an example of a condor job description file used by
the SAM-Grid. The condor JDF is translated by the framework into a
classad. The classad is used for the actual match making, while the con-
dor JDF expresses the same content in an easily readable format. The
condor JDF is also relevant in this context because it is the result of the
translation from the user-defined SAM-Grid JDF (sec. 3.2). The syntax
TARGET.attribute name allows the job description to refer to the name
of the resource attributes (see figure 3.9); $(attribute name) is substituted
with the value of the corresponding named attribute at any resource match-
ing attempt; $$(attribute name) is substituted with the value of the named
attributes after the match has been found; +attribute name is copied ver-
batim from the condor JDF to the job classad.

It is worth commenting a few characteristics of the example of figure
3.10. The value of the attribute globusscheduler is used by the submission
site to submit the job to the selected resource. In the SAM-Grid, the value of
the attribute is made concrete after the resource has been selected and it is
defined by the attribute gatekeeper url , as advertised by the resource. The
globusscheduler attribute is now a standard of the Condor middleware and
was one of the modifications introduced to the Condor match making service
as part of the collaboration of the Condor team with the SAM-Grid [150].
Other attributes are also made concrete after the resource has been selected.
In particular DbURL points to the entry point of the site monitoring XML
database. This is used by the user monitoring interface to locate detailed
information about the job, in case the information in the classad is too high-
level. Other attributes, such as station name and the name of the resource
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classad, are used to set the job environment variables, using the environment
job attribute. Some of the attributes of in the figure are used to program
the behavior of the submission service (sec. 3.3). In particular, they control
the rematch / resubmit policies, disabled in the example, and the clean
up policies after job submission (periodic remove). Finally, the attribute
arguments is used to program the behavior of the Grid/Fabric interface 4.

In this example, the resource is univocally selected by the requirements
attribute, as the name of the sam station, a binding condition, univocally
identifies a resource. In general, the system would also need to rank the set
of resources that satisfy the requirements. This is achieved by the use of the
rank attribute.

When we started designing the system, the rank could be a generic ex-
pression of attributes from both job and resource classads. At the time,
we were working with a prototypical implementation of analysis jobs and
we wanted to send the jobs to the resource that had already in its storage
elements most of the data requested by the job. A simple expression to de-
fine the rank was not enough to solve our problem. The amount of data at
every site, in fact, may easily reach tens of thousands of files, making thus
impractical sending the information to the match making service for every
execution site, and, in particular, sending it via a Classad. It is recommend-
able to limit the amount of information contained in the registration Classad
to a few dozen attributes. The use of this technology for much larger data
volumes, in fact, has not been fully investigated, but it is likely to lead to
an inefficient match making process.

To overcome this problem, the resource selector of Condor has been
modified to call externally provided functions when evaluating a match.
Both job and resource descriptions can define any attribute of their Classad
using these functions, passing to them as arguments any other attributes
of the two Classads. The implementation of the function is provided to
the negotiator in the form of a shared object. A configuration file maps the
name of the function, as specified in the classad, to the function symbol of the
shared object. Using this mechanism, the SAM-Grid team has developed a
function that queries the remote SAM stations at the time of matching. The
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universe = globus

+JobType = "dzero_monte_carlo"

+station_universe = "prd"

+station_experiment = "d0"

+jobmanager_name = "jobmanager-samgrid"

+DbURL = "$$(DbURL)"

+RequestId = "20214"

+NumEvents = 12750

globusscheduler = $$(gatekeeper_url_)

executable = /tmp/garzogli_samadams.fnal.gov_222357_20315.tar.gz

requirements = TARGET.station_name_ == "samgfarm" &&

TARGET.jobmanager_name_ == $(jobmanager_name) &&

TARGET.station_experiment_ == $(station_experiment) &&

TARGET.station_universe_ == $(station_universe)

environment = MATCH_RESOURCE_NAME=$$(name); SAMG_JID=$(ProjectIdVal);

SAM_STATION=$$(station_name_);SAM_QUALIFIER=prd;

SAMG_JOB_TYPE=dzero_monte_carlo;SAM_USER_NAME=garzogli

match_list_length = 1

globus_rematch = false

globus_resubmit = false

periodic_release = false

leave_in_queue = true

periodic_remove = ( (CurrentTime - EnteredCurrentStatus) > 1209600 &&

JobStatus == 4 )

ProjectIdVal = garzogli_samadams.fnal.gov_222357_20315

+ProjectId = "$(ProjectIdVal)"

arguments = \"dzero_monte_carlo\" \"--requestId=20214\"

\"--gridId=$(ProjectIdVal)\" \"-v\"

\"--numEvents=$(NumEvents)\" \"--d0ReleaseVersion=p14.07.00\"

\"--jobFileDataset=hynek_jes_group_15400 --jobFileDatasetId=228115\"

\"--phaseDataset=CKKW_Rand_1.W+4run4.1.io --phaseDatasetId=238056\"

\"--numEventsToSkip=12250\"

\"--minBiasDataset=overlapset_mcp14_cteq5l-tuneA_simulated

--minBiasDatasetId=223422\" \"--eventsPerFile=250\"

queue

Figure 3.10: The condor job description file (JDF) (shortened) resulting
from the SAM-Grid JDF of figure 3.4
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query returns the percentage of overlap between the job dataset, available
in the job classad, and the files cached at the remote station, available in
the resource classad. Therefore, the algorithm adapts to the conditions
of the grid with respect to the availability of the data handling services
and the placement of the replicas. Internal information caching was also
implemented to improve the matching time.



Chapter 4

The Execution Site

The mandate of the SAM-Grid project was making available widely dis-
tributed computational resources to the DZero and CDF communities. The
SAM-Grid was designed assuming that the participating resources where
shared and distributively owned. Since the resources were shared, the de-
ployment of the software had to be limited to a few machines. That is, no
software could be run at the worker nodes of a participating cluster. Since
the resources were distributively owned, the grid could not impose special
configurations of site services, such as the local scheduler or the intra-cluster
data transport mechanisms, in order to make them accessible through the
grid. In other words, when designing the SAM-Grid, we had to ask ourselves
how to run on non-dedicated resources and how to foster site autonomy.

4.1 Shortcomings of the Standard Middleware

Working on the development of the SAM-Grid, we soon realized that the
“standard” grid technologies were not flexible enough, out of the box, to sat-
isfy these requirements. Even in the simple case of interfacing grid jobs to
the local batch system, the grid software supported only very standard con-
figurations, which, in practice, we did not find in the three pilot sites of our
deployment. Understandably, the administrators were not willing to change
the configurations of their batch system. First, the configuration reflected
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the policies of the local site. Second, each cluster had already a user-base
used to the current site configuration. Third, wasn’t the grid supposed to
respect site autonomy? The adaptation of the grid to the configuration of
the local batch system became a priority for our project.

It turned out that adaptation to the local scheduler was only a task
within a complex project. Central to the SAM-Grid architecture was SAM,
the data handling system of the experiments. SAM is a mature infrastruc-
ture and the only accepted way for a physicist to access the experiment data.
DZero users commonly notified SAM when submitting data intensive jobs
to their local batch systems, in order to initiate data pre-staging while the
job was idle in the scheduler queue. It was expected that the SAM-Grid
could support data pre-staging on the grid as well. But when should SAM
be notified of a grid job entering the system?

• The time of job submission was clearly too early. The job was not yet
matched with a site, so it was impossible to know at what site to start
the data pre-staging.

• The time of job/resource matching was again arguably too early. If
stale information was in the system, in fact, the match maker could
initiate data pre-staging at a site that, in the end, was possibly not
accessible by the job management system. This would translate into
a waste of storage resources, given that SAM temporarily reserves a
portion of such resources for the data.

• The time of the job entering the site, instead, seemed the appropriate
approach: not only this was the same strategy that was used when
submitting jobs locally, but also this “lazy” approach overcame the
problems of the two methods above.

We soon realized, however, that the “standard” grid software could not
notify any local services, other than the local batch system, that a job en-
tered the site. More generally, the standard interface between the grid and
the local services and resources, commonly called the fabric, was not com-
prehensive enough. This was potentially a problem when running complex
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jobs, such as data-intensive jobs. In other words, we had to ask ourselves
how to coordinate fabric services to execute complex jobs.

During our research we observed another shortcoming of the standard
middleware. The standard middleware focuses mainly on the management
of resources. It provides interfaces to local job schedulers, to data storage
systems, to network management systems, to information catalogues, etc.
On the other hand, complex applications often rely on an application man-
agement system to assist with the preparation of the job environment, the
execution of the job, and the interaction with the resources. The standard
middleware lacked a set of interfaces to interact with application manage-
ment systems.

High-energy physics applications commonly use application management
systems, such as Runjob [119]. Typically, an application management sys-
tem provides facilities to manage the workflow of the application, running
tasks in the appropriate order and managing their input/output, so that the
output of a task is made available as the input of the appropriate subsequent
tasks. An application management system participates in the selection of
resources, interfacing to the resource management system and considering
the characteristic of the running application. For example, it can recom-
mend different local scheduler queues, which generally express local running
policies, depending on the type of application. As another example, it can
determine the ideal multiplicity of concurrent processes for running a job:
an application that processes a dataset of N files has typically a maximum
multiplicity of N processes, while an application that produces M monte-
carlo events has a multiplicity that depends on how long it takes to produce
an event, how many computational resources are available, the maximum
time a process can run on a resource, the subsequent processing steps for
the output, etc. Yet another example is the choice of a data access queue
depending on the type of application. Let’s suppose that there are N jobs
running a certain application on a cluster and that the application requires
multiple files before running. This is typical of merging applications, whose
function is concatenating small size files in larger ones (sec. 3.2.4). Let’s also
suppose that there are 100 × N jobs running a different application that re-
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quires one file to run. It is often not efficient to let both types of applications
access a single data queue to retrieve the files. If the data access requests are
interleaved, it can take a long time for the merging jobs to start. Organizing
the access requests on multiple queues depending on the application can be
more efficient. For a discussion of these examples, the reader is referenced to
section 3.2. All of these choices can be determined by the application man-
agement system, which knows the details of the job, and not by the resource
management system. Because of the lack of interfaces between the two lay-
ers, the SAM-Grid could not use directly the standard middleware and had
to integrate some application-specific knowledge of the common high-energy
physics applications with its resource management components.

Using the standard middleware, we also realized that the load to the
gateway machine imposed a scalability limit on the number of jobs running
at the cluster. The Globus Gatekeeper forks a process for every job entering
the cluster. This process, called the job manager, is the contact point for the
grid to manage the job. This limits the number of jobs that the cluster can
run to a couple of hundreds, which is the typical limit for the average com-
modity computer. Already in 2001, it was pretty common finding clusters
with hundreds of machines. In addition, since the Grid was a new concept
and its services not very exploited, the sites generally made available a few
cheap low-performance machines to act as gateways. In this scenario, we
clearly had a problem of scalability with the implementation of the stan-
dard middleware. The SAM-Grid addressed the problem by rewriting the
job manager, in order to submit multiple batch processes for a single grid
job entering the Gatekeeper. The statuses of the batch processes were ag-
gregated and returned to the grid as the status of the grid job. A single job
manager became the contact point for multiple related jobs. Other groups,
such as Condor, use the gatekeeper itself to kill and selectively restart the job
managers, in order to reduce the number of processes continuously running
at the gateway. We don’t like this solution because it achieves scalability by
altering the normal behavior of the standard middleware in an intrusive way
(killing components of the architecture), instead of finding a solution that
adhere to the accepted architectural standards. We believe that local job
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multiplicity management as developed by the SAM-Grid is a more general
solution.

More generally, we experienced that executing complex jobs, such as data
intensive jobs, required the ability to control the load of all the resources
participating to the computational activity. In addition to the aggregation
of batch processes at the gateway machine, the SAM-Grid implemented
queues for data access to the local storages, in order to control the load of
the data server machines. Using job aggregation, it was possible to pool
expensive database accesses to information common to all the aggregated
jobs. The standard middleware did not offer any support to address these
broader scalability concerns.

Another problem of the standard middleware was the lack of robustness
in case of failures of fabric services. In particular, when interacting with a
local scheduler, we observed that the standard middleware could not prop-
erly react to errors raised by the scheduler or to conditions of network time
out. We had to ask ourselves how to overcome temporary failures of fabric
services. The SAM-Grid addressed this issue by implementing the throt-
tling of the flow of grid jobs to the resources, in order to limit the load to
the services, by caching information such as the statuses of the jobs, and
by introducing retrials in the interaction with fabric services, including the
local scheduler.

In conclusion, we had to build an infrastructure that allowed running of
jobs on non-dedicated resources, fostering at the same time site autonomy.
The standard middleware lacked in comprehensiveness in interfacing to fab-
ric services, since the local scheduler was the only service integrated. It also
lacked flexibility in the adaptation to the batch system configurations and
it lacked robustness in the interactions with the fabric. It presented vari-
ous problems of scalability and limitations in its interfaces, especially in the
interactions with application management systems.

To overcome these problems, we reimplemented the interface between
the grid and the fabric within the framework of the Globus Toolkit. In the
following sections, we describe how this interface coordinates the interac-
tions with multiple fabric services, including the local scheduler (sec. 4.2),
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how it manages the job environment preparation (sec. 4.3) and how it in-
tegrates aspects of application management, including process splitting and
aggregation (sec. 4.3.2.2).

4.2 Local Batch System Adaptation

The SAM-Grid was designed to execute complex high-energy physics ap-
plications on a grid of resources. Such applications assume the availability
of several services at the fabric, including batch scheduling, data handling,
environment preparation, scratch management, and monitoring. The stan-
dard middleware provides implementations of grid-to-fabric interfaces that
interact with the local batch systems only. The reference implementations
of the standard middleware were not comprehensive enough for the use cases
that the SAM-Grid was addressing.

The SAM-Grid team used the framework of the Globus Toolkit to im-
plement a broader grid-to-fabric interface [162, 163, 164]. When a job enters
the site, the SAM-Grid interface notifies the local data handling system to
initiate data pre-staging (sec. 3.4.3), it interacts with the job environment
preparation service (sec. 4.3) and the configuration manager (sec. 2.1), it
notifies the monitoring system of an incoming job (sec. 2.2.3), and it gath-
ers information from the application in order to compute the appropriate
multiplicity of the batch processes. As a last step, it interfaces to the local
scheduler.

Because of the variety of batch systems available, it was necessary to
abstract the interaction with the batch system, in order to modularize the
implementation. This layer of abstraction was called the “batch system
adapter”. For a given site, the batch system adapter allows the definition
of multiple adapters, each defining a set of interfaces, or commands, to the
underlying scheduler. Using the standard middleware as a reference, we ini-
tially defined three basic interfaces to a batch system: “submit job”, “lookup
job status”, “cancel job”. The interfaces were later extended to implement
commands such as “collect output” and to gather general status informa-
tion, such as “display policies” and “display system load”. The interfaces
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could also be configured to interpret the output of the batch system com-
mands. This is used to parse relevant information, including the local job
id after submission, the status of the job after lookup or the error messages
after the invocation of any commands. Figure 4.1 shows the batch adapter
configuration of a site as an example.

For our implementation of the basic interfaces to the batch system, we
initially thought of reusing the code provided by the standard middleware.
Yet, after our first experience deploying the SAM-Grid, we concluded that
they were not flexible enough to include most of the resources of DZero
and CDF. Even at sites running the same batch system, we observed that
different administrators frequently configured the batch system differently
because of local constraints, thus requiring the local users to submit jobs
using slightly different commands. In some other cases, the terms of the
agreement to use the resources could be respected only by adding special
attributes to the job submission request. For example, when DZero submits
jobs to the condor cluster of the University of Wisconsin at Madison, the
job description file must include special attributes to prevent job eviction.
Another example is the CCIN2P3 computing facility in Lyon, France. Jobs
that access data from the HPSS mass storage system can be submitted with a
special flag. In case of downtime of HPSS, the batch system is programmed
to hold the jobs until the storage is back on line. These attributes and
submission options are all nonstandard and site specific. Other grids, such
as LCG [37], solve this problem by exposing to the grid information service
the interface of the local scheduler. After the resource is selected and the
grid job is scheduled, the local scheduler interface is passed to the grid-
to-fabric interface of the remote resource, so that the job can be properly
locally submitted. Incidentally, this mechanism is deemed to be not flexible
enough to encompass all possible configurations of local schedulers. It is
believed, in fact, that “modern batch systems are too complex and dynamic
to summarize their behavior in a few values in the Information Service” [165].
In any case, we concluded that we could not reuse the implementation of
the Globus Toolkit out of the box.

In addition to the lack of flexibility, the standard middleware was lacking
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Station: fnal-farm

Default Adapter: grid

Available Adapters: [’grid’]

Adapter: grid

Available Commands: [’job submit command’, ’job lookup command’,

’job kill command’, ]

Command: /bin/sh -c ’. /local/products/ups/etc/setups.sh;setup fbsng;\

${SAM_BATCH_ADAPTER_HANDLER_DIR}/sam_fbsng_handler.py job_submit \

--project=%__USER_PROJECT__ --executable=%__USER_SCRIPT__ \

--arguments=%__USER_SCRIPT_ARGS__ \

--stdout=%__USER_JOB_OUTPUT__ --stderr=%__USER_JOB_ERROR__ \

--queue=SAMGrid --jobtype=%__USER_APPLICATION_TYPE__’

Type: job submit command

Known Outcomes:

Exit Status: 0

Outcome Description: Success

Exit Status: 0

Expected Output: %__BATCH_JOB_ID__

Exit Status: 1

Outcome Description: Failure

Command: /bin/sh -c ’. /local/products/ups/etc/setups.sh;setup fbsng; \

${SAM_BATCH_ADAPTER_HANDLER_DIR}/sam_fbsng_handler.py job_lookup \

--project=%__USER_PROJECT__ --localJobId=%__BATCH_JOB_ID__’

Type: job lookup command

Known Outcomes:

Exit Status: 0

Outcome Description: Success

Exit Status: 0

Expected Output: JobId=%__BATCH_JOB_ID__ Status=%__BATCH_JOB_STATUS__

Exit Status: 1

Outcome Description: Failure

...

Figure 4.1: The configuration of the “grid” batch adapter for the
“fnal-farm” SAM station (shortened). The adapter defines three inter-
faces with the batch system: job submit, lookup, and kill/cancel (not
shown). The commands are implemented via the sam fbsng handler.py
idealizer. The command arguments are defined using templates (e.g.
% USER APPLICATION TYPE ), which are substituted by the batch
adapter client. Templates are also used by the client know how to parse the
command output.
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in robustness. In our experience, all different types of local schedulers in
our grid failed at some point to return correctly from a client command.
Because the grid polls periodically the status of the jobs, job polling was
the command that showed most of the problems. The typical error condition
was a timeout, but we also saw rare occurrences of wrong results, for example
when the BQS batch system [166, 167] could not find jobs just submitted for
a minute. In some other cases of particular high load, the batch system could
not sustain the frequency of status polling, returning a “denial of service”
error. Another interesting failure mode was what we called the “black hole”
effect. Misconfigured worker nodes cause the jobs running there to fail very
rapidly. Nevertheless, the local scheduler keeps sending idle jobs to that
worker node, until all the idle jobs have failed (sec. 4.2.1).

Apart from the black hole effect, the other problems mentioned are tran-
sient and of no consequence in case of human interaction. For example, a
user would simply re-issue a command in case of timeout. The standard
implementation of the grid, instead, immediately considered the job failed.
In general, we needed an implementation that would idealize the interaction
with the batch system, overcoming temporary failures of the service. This
was achieved by implementing a batch system handler, called batch system
idealizer, that would increase the robustness of the batch system as seen by
the grid.

In our implementation of the idealizer, the interactions with the batch
system are retried with a random exponential back-off strategy. Typically
the first retrial is after a few seconds, then after a few dozens, and so on.
Taking this approach, we assume that the failure is temporary, that it is
a denial of service, and that it is caused by peak of activity at the server.
In practice, these assumptions are satisfied most of the time. In case of
status polling, the idealizer also caches the job statuses. Since the grid
typically polls the job status every few minutes, this gives us an opportunity
of returning a stale information and restarting the exponential retrials at
a new polling cycle. Analyzing data for a period of 4 months (June to
September 2005), we have estimated that the probability of a job failing
because of a temporary failure in the communication with the batch system
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is lower than 7× 10−6. Statistically, that corresponds to a failure rate more
rare than a job failure every 150,000 jobs.

In summary, the standard grid-to-fabric interface did not interact with
services such as data handling, monitoring, configuration management, etc.
We have reimplemented the grid-to-fabric interface to overcome this lack
of comprehensiveness. Our implementation interacts with the batch system
via a layer of abstraction called “batch system adapters”. The adapters
define the interface with the underlying batch system. The implementation
of these interfaces is flexible, in the sense that they can be programmed to
include site-specific characteristics of the batch system client commands. In
addition, the implementation idealizes the batch system, in the sense that it
enforces a robust interaction with it. In conclusion, the SAM-Grid grid-to-
fabric interface implements a comprehensive interaction with fabric services
and achieves flexibility and robustness in the interaction with the local batch
system.

4.2.1 The Black Hole Effect

In order to increase job throughput and efficiency at a local computing re-
source, we have investigated mechanisms to determine and react to failures
caused by the mismatch between the application requirements and the ex-
ecution host [168]. In particular we deal with failures that occur when the
execution host fails to provide a required service or a set of services to the
application, resulting in the application crashing. In this context, a service
is a library or a software product and it should not be confused with the
term “grid service”, as used throughout the rest of the dissertation.

Applications, typically, rely on a set of basic services offered by the exe-
cution environment, such as compression utilities and system libraries, and
usually do not explicitly specify these in the job description to the resource
management system. Compute nodes in clusters are heterogeneous in terms
of the underlying architecture or the software environment and utilities. Ser-
vice version conflicts may result in the application failing, typically quickly,
on a particular compute node, which can potentially have a cascading ef-
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fect. The entire set of queued batch jobs, running the same application,
gets scheduled to the compute node that fails the application, resulting in
low throughput and efficiency. This phenomenon is what we call the Black
Hole Effect. The compute nodes which malfunction with respect to the
application are called Black Holes.

A characteristic of the black hole effect is, therefore, a high turnaround on
a particular node. The grid software should be able to determine whether the
jobs are consistently failing on that node, or the node is just a combination
of powerful processing element and large memory. Black hole detection
is aided by the application specifying a minimum duration for the job to
execute (dmin). From empirical data, dmin can be estimated within an error
margin. dmin is expressed in terms of wall clock time for a given architecture
and a given operating system. For example to simulate 250 physics events of
a DZero Monte Carlo simulation job, it takes at a minimum 8 hours (dmin)
between the time it is scheduled by the batch system and the time that the
error and output logs are returned. The reference architecture is an Intel
x86 with 512 mega bytes of physical memory, 1024 mega bytes of virtual
memory, 1GHz of clock speed, running a Linux 2.4.x kernel. In determining
if a node is really a black hole, we normalize the values of the compute nodes
processing power (processor) and its memory with respect to the reference
system, thus arriving at a normalized value of dmin. Empirical evidence
suggests that if the amount of time taken by an execute node to complete
a job is less than 60% to 80% of the dmin value, then we have a potential
black hole.

It should be noted that the black hole effect is an application specific
effect. A node which is designated as a black hole for one application might
be a perfectly fine node for some other application, if that application does
not rely on the same services for its execution.

We believe that the grid-to-fabric interface is the appropriate compo-
nent to detect the presence of black holes. In particular, for the SAM-Grid,
black hole detection and reaction can be implemented in the batch system
idealizer (sec. 4.2), which is responsible for increasing the robustness of the
interaction of the grid with the local job scheduler. Some basic services are
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expected of the fabric to detect the existence of a black hole. These ser-
vices are incorporated in many popular batch queuing systems and include
retrieval of standard output and error streams of the finished jobs, as well
as API’s for explicitly specifying the compute node on which a job should
execute.

We have investigated reactive and proactive approaches to mitigate the
black hole effect [168].

The proactive approach of determining whether a compute node can be
a potential black hole relies on the application describing in a formal way as
to what services it expects from a compute node in the batch system. This
approach is a pessimistic approach in the sense that it assumes that there
will be potential black holes in a cluster and tries to avoid them by isolating
these nodes for the application. In principle, these services can be specified
via a service description language. The grid software then has the responsi-
bility of sending small probes (test jobs) to all the nodes in the batch system
and analyzes the results of these probes. Persistent information regarding
the total number of reachable nodes, nodes suitable for executing the ap-
plication based on the specified criteria (good nodes), and nodes unsuitable
for executing the application (potential black holes) is maintained.

There are two main problems with this approach. First, it is highly
dependent on the correct formal specification of the services required from
the compute nodes. Second, the persistent information regarding the state
of the cluster is not very dynamic, since it depends on the frequency of the
probing, and might result in wasted resources.

The reactive approach for dealing with the black hole effect is an opti-
mistic approach. We start by assuming that all the compute nodes in the
cluster comply with the applications service requirements. This approach
is probabilistic and depends greatly on the availability of statistical data
regarding the behavior of the application. By analyzing these data, we as-
sociate weights to the list of all available nodes: the higher the weight, the
more frequent the record of success of the application on the node. Jobs
are scheduled only to nodes with a certain record of success, thus avoiding
black holes.
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The advantages of this approach are that it is dynamic in nature and
does not need any formal specification of what services the compute node
should provide. On the other hand, in general, determining the cause of
failure is difficult and mining of log files may be necessary. In particular,
it is not easy for the infrastructure to determine whether the failure was
due to the application failing (property of the application) or to one of the
services required by the application failing (property of the node).

If should be noted that hybrid reactive/proactive approaches are possible
too. These can mitigate some of the problems of the “pure” approaches
alone.

4.3 Job Environment Preparation

High-energy physics applications seldom consist of a single self-contained
executable. Typically, users run applications by providing a list of direc-
tives to the experiment software framework. The framework consists of a
set of executables and libraries that are assumed to be available at run-
time. This approach lets the user run complex computations by compos-
ing tasks in high-level physics-specific macro directives, written in scripting
languages such as TCL. Users also often complement the framework direc-
tives by providing special-purpose executables. In addition, because of the
data-intensive nature of the computational tasks, applications rely on the
presence of data handling services, such as SAM. Also necessary is the ac-
cess to databases, typically to retrieve conditions of the data taking, such
as calibration constants of the detector and beam luminosity (related to the
number of events produced per second). In summary, the job environment
of the typical high-energy physics application is comprised of the following
components:

• User-provided information: it consists of user directives to the
framework and special libraries and executables to complement the
framework computational code. The library and executable files are
generally of small size (Kilobytes or Megabytes) and differ for every
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job. When running on the grid, this information is often called the
“user input sandbox”.

• Experiment code: it consists of the experiment offline analysis frame-
work. This code has generally a large size: the offline code of the DZero
experiment is 400 Megabytes compressed. The code is the same for
every job and it is often pre-installed on resources dedicated to the
experiment. On the grid, where the resources are shared, code pre-
installation is forbidden by most policies, and the experiment keeps
the code available on data handling storages to allow dynamic code
installation.

• Middleware: these are software products used to assist with the
application execution. It consists of application management systems,
such as Runjob for DZero (sec. 3.2), or client software of various
services, such as SAM, databases, or data transport (FTP, fcp [169],
SRM [125], etc.). The size of this information ranges from a few to
dozens of Megabytes.

• Service/Resource configuration: this information is generally used
to locate a service, such as a service discovery service, data handling
services, etc. The size of this information is generally less than a few
Kilobytes. It is presented in the form of environment variables or
small files. It should be noted that while the environment information
components mentioned so far are either common to all jobs or com-
ing from the user, the information on the configuration is generally
local to the computing environment (e.g. local data handling services
configuration, intra-cluster transfer mechanisms configuration, batch
system configuration, etc.). One of the challenges of preparing the job
environment is, in fact, gathering information from different sources
(the user, the site, virtual organization repositories, etc.)

• User credentials: these are used to establish a security context with
the services contacted by the job. The type of credentials depends
on the security model. Most services nowadays allow only strongly
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authenticated access. Typical credentials consists of a Kerberos ticket
or a X509 certificate. In particular, X509 certificates used with the
Globus Security Infrastructure are the most popular security technol-
ogy for the grid.

4.3.1 Problems in the Preparation of the Job Environment

When running applications on dedicated resources, most of the environment
is pre-installed and available typically via a shared file system on all the
nodes of the cluster. When running applications on the grid, however, none
of the necessary environment is generally available and it must be established
before passing control to the application. The total amount of information in
the environment is generally around 500 MB, when compressed. Most grids
do not provide any assistance in the preparation of the job environment,
leaving this responsibility to the user or the virtual organization. In this
scenario, the environment can be either pushed to the worker node, as a
user input sandbox, or pulled by the job itself, before control is passed to
the application. The push model is not always a viable solution, because of
restrictions on the size of the user input sandbox 1. The pull model, on the
other hand, requires that the user knows how to write code that finds and
transports the environment by interacting directly with grid services, such
as discovery services, replica catalogues, storage and data transfer services,
etc. To simplify the task for our users, the SAM-Grid opted to assist them
with environment preparation. The environment preparation service acts
transparently and receives input from the job description. In the following
subsections, we describe the main problems encountered in the design of the
environment preparation service. In section 4.3.2 and relative subsections,
we describe the solutions implemented for the SAM-Grid.

4.3.1.1 Information Transport

Different components of the environment are available at different storages
either at the site (e.g. local configuration) or external to the site (e.g. the

1The maximum size of the user input sandbox on LCG is 10 Megabytes.
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experiment framework and middleware). When running on the grid, typ-
ically the job or a job wrapper is responsible for retrieving the necessary
information and dynamically establish the environment at the worker node.
In order to access the source of the information, the job relies on data trans-
port clients. The availability of these clients, though, cannot be taken for
granted for the following reasons.

1. Every cluster is natively configured with a different transport mecha-
nism (rcp, kerberos rcp, scp, gridftp, etc.), if such mechanism is avail-
able at all. In general there is no agreement among sites to pre-install
a common set of data transport clients. Even if, in principle, coding
an environment retrieval program would be possible, this heterogene-
ity would make it difficult to provide a common solution for all the
clusters on the grid.

2. It is reasonable to assume that some common data transport client is
available close to the worker node e.g. in the form of a compressed
archive. VO software, in fact, can be deployed at special machines at
the sites e.g. at the gateway node. Nevertheless, it is not immediate
making the code available at the worker node. Most batch systems
can be configured to transport files to the worker node together with
the executables. This capability is called file stage-in. If file stage-
in were configured at every cluster, one could stage-in the common
data transport client. Yet again, there is no agreement on how batch
systems should be configured and, in practice, we cannot rely on the
presence of file stage-in capabilities.

3. In general we cannot assume the availability of a shared file system
between the worker node and the repository of the data transport
client code.

In summary, in order to access the components of the environment, we
cannot rely on the native data transport mechanisms of each cluster, nor
on the stage-in capabilities of the batch systems, nor on the presence of a
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shared file system. The solution provided by the SAM-Grid is based on a
self-extracting bootstrapping technique and it is described in section 4.3.2.1.

4.3.1.2 Load Control

Controlling the load of key machines, such as the gateway, is indispensable
to achieving production quality. The grid-to-fabric interface accesses ser-
vices, such as the environment preparation service, that are CPU intensive.
Another cause of load to key machines is due to data transfers initiated by
the batch jobs. When scheduling grid jobs to a cluster, it is a common oc-
currence that multiple batch processes start at worker nodes approximately
at the same time. In the case of the SAM-Grid, typically dozens of jobs start
concurrently, because the grid-to-fabric interface splits grid jobs into multi-
ple (hundreds, in fact) batch processes. Even after solving the “information
transport” problem (sec. 4.3.1.1), we still need to provide a scalable data
access solution for the jobs to access the job environment components at the
gateway and other storage services. The SAM-Grid solution, discussed in
section 4.3.2.2, is based on data access queues.

4.3.1.3 Service Configuration Accessibility

When running at the worker node of a grid site, the job has to be notified
of what services are available at the site and how they are configured. Of-
ten, this information is made available to the job as environment variables
pointing to indexing services, such as service discovery services. Optionally,
more detailed information on specific services can also be made available as
environment variables. Most resource selection services provide the ability
of initializing such variables at the time of the job / resource matching. The
values of the variables are advertised to the grid information service as part
of the resource description (sec. 3.4).

The SAM-Grid system relies for site and product configuration on a con-
figuration framework based on a network of XML databases (sec. 2.1). The
address of the site configuration service is made available to the job as an
environment variable that is defined at the time of the job / resource match.
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All of these schemes assume that the services necessary to successfully com-
plete the job are registered with these grid configuration / discovery systems.
In reality, it turns out that there are services that are fundamental for the
job, but that are not registered with any of these configuration systems.

One such service for the SAM-Grid is SAM, the data handling service.
The configuration of SAM is maintained at the site in the form of configu-
ration files, packaged in a special configuration product (sam config). Tools
parse and transform this configuration into environment variables that are
utilized at runtime by SAM. The configuration includes the address of the
SAM CORBA naming service, the address of the SAM database, option-
ally the name of the local SAM station, the addresses of the local calibra-
tion database proxies, etc. The values of these parameters are different for
the SAM development, integration, and production systems, for clients and
servers, and so on. The problem is then how to make the correct config-
uration files available at the worker nodes. The SAM-Grid utilizes a tool
called the product configuration manager in conjunction with the sandbox-
ing framework. This framework is used to transport all the environment
components that are available at the gateway node (user input sandbox,
user credentials, middleware software, configuration) to the worker node.
More details are given in section 4.3.2.3.

4.3.1.4 Environment Uniformity

High-energy physics applications are generally implemented through exper-
iment specific analysis frameworks. The framework consists of executables
and libraries programmed around the peculiarities of the detector and its
read-out electronics. Special algorithms transform electronic signals from
the detector into physical quantities related to particle events. As the un-
derstanding of the detector improves, these algorithms are refined and new
releases of the analysis frameworks are made available to the collaboration.
Not all the collaborators are necessarily interested in processing their anal-
yses with the new algorithms. They may have, in fact, results from old data
obtained using old algorithms. Results from new data may not be compa-



4.3. JOB ENVIRONMENT PREPARATION 133

rable with the old results, if they were obtained using the new algorithm.

The uniformity of the execution environment among such computations
is a crucial requirement to produce meaningful physics results. It turns out
that the collaboration may be interested in keeping dozens of release versions
available at the same time. When running jobs on dedicated resources, it
is the responsibility of the administrator to maintain all such versions pre-
installed at the cluster. When running on grid resources, pre-installation of
software is generally never an option. Yet most analyses assume the presence
of the analysis framework. This makes running on the grid more challenging.

To make the code more portable, the DZero experiment has developed
tools that recreate the Run Time Environment (RTE) [171] of the vari-
ous applications. These tools give the users the ability of packaging their
programs with all the necessary software dependencies, thus enabling the
execution on rather “hostile” computing environments. In addition, these
tools make the user responsible for the uniformity of their application envi-
ronment. These executables, though, have the drawback of being large (in
some cases hundreds of Megabytes compressed). Because of this, it is incon-
venient to ship them as part of the user input sandbox. Each sandbox, in
fact, needs to be transported and temporarily stored possibly in more than
one place throughout the lifetime of the job. This leads to an inefficient
use of the storage resources. In other words, we are facing the problem of
making this code available at the worker node of the grid computing cluster
using a resource effective mechanism. The SAM-Grid solution uses the SAM
data handling for the distribution of the analysis framework packaged with
RTE techniques and uses the sandboxing framework for the distribution of
the user directives. We describe our solution in section 4.3.2.4.

4.3.2 Solutions for the Preparation of the Job Environment

The SAM-Grid provides a solution for the “information transport” problem
(sec. 4.3.1.1), the “load control” problem (sec. 4.3.1.2), and the “service
configuration accessibility” problem (sec. 4.3.1.3) using the SAM-Grid sand-
boxing framework. All of the components needed to establish the environ-
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ment but the analysis framework and part of the middleware, are present at
the gateway node of the cluster, once the job has entered the site. The sand-
boxing tools package all components at the gateway in an archive, or “sand-
box”, and make it available to the worker with scalable data transfers via
pushing or pulling mechanisms. The analysis framework and the remaining
components of the middleware are gathered directly from SAM storage ele-
ments using scalable mechanisms (“environment uniformity” problem, sec.
4.3.1.4).

Before a grid job is submitted to the grid, user-provided information,
user credentials, middleware software, and configuration files are available
at different sources around the world. After the job has entered the site,
though, they are all available at the gateway node. Their presence at the
gateway allows the sandbox framework to solve most of the environment
preparation problems. Each of these components is available at the gateway
for the following reasons.

• User-provided information: it is transported at the gateway node
from the user’s machine using interfaces provided by the GRAM pro-
tocol (sec. 1.1). The Globus Gatekeeper provides a data transport
server, called GASS (Globus Access to Secondary Storage) [172]. The
submission site services (sec. 3.3) use the GASS server to transport
the user input sandbox. The user input sandbox is a file (generally
an archive) that can be specified by the user via the SAM-Grid job
description language (attributes input sandbox or input sandbox tgz ).

• User credentials: they are delegated to the Globus Gatekeeper by
the submission site. The job uses the user credentials to authenticate
with services at the site, such as SAM and storage elements. After
delegation, the user credentials are available at the gateway in form of
a file.

• Middleware: it can be present at the gateway node as products that
are pre-installed by the Virtual Organization (VO). While sites do not
allow the installation of products at the worker nodes of the cluster,
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they generally provide a few special nodes where VO-specific software
can be installed. The gateway node is one such nodes. In the case of
the SAM-Grid, the middleware pre-installed at the worker node con-
sists of the data transfer client (gridftp and the SAM-Grid GSI config-
uration, used in our solution to the “information transport” problem,
sec. 4.3.2.1), the data queuing client (fcp, used at the core of our solu-
tion for the “load control” problem, sec. 4.3.2.2), the jim configuration
client software (used to retrieve product/site configuration), and the
SAM client (used to solve the “environment uniformity” problem, sec.
4.3.2.4, as well as to retrieve data and additional middleware). These
pieces of middleware are packaged as compressed archives, ready for
the deployment to the worker nodes.

• Configuration files: systems that are not integrated with a config-
uration framework often rely on files for their configuration. In the
case of the SAM-Grid, the SAM system uses files to configure clients
and servers. These files are created as part of the installation process
of SAM. The SAM client is one of the VO-specific products that are
installed at the gateway node.

These files are transferred to the worker nodes using the tools provided
by the sandboxing framework. These tools provide the abstraction of a
“sandbox” and methods to operate on it. Conceptually, the sandbox is an
archive of files available at the gateway and that are needed at the worker
node. The tools make available python and command line interfaces to
operate on the sandbox. A sandbox can be created, local files can be added
to it, it can be packaged, and it can be cleaned up. The relevant methods
of the sandbox framework and how they are used to solve the four problems
introduced above are discussed in the sections below.

4.3.2.1 Information Transport

When running at the worker node of a cluster, a job relies on the availability
of data transport clients to retrieve job environment information and data.
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The usability of data transfer clients cannot be taken for granted because
of the heterogeneity of native data transport mechanisms at the cluster and
the potential unavailability of batch system stage-in capabilities and of a
shared file system (sec. 4.3.1.1).

To overcome these problems, the SAM-Grid uses a technique called
“sandbox packaging”. The result of packaging a sandbox is creating a boot-
strapping executable. The executable consists of a self-extracting archive,
containing, among other things, the gridftp client as the data transfer pro-
tocol of choice. When the bootstrapping executable runs, it first extracts
the data transfer archive, then it passes control to a “driver” script, which
contains enough information about the sandbox to transfer all of its content
to the worker node. The bootstrapping executable is submitted to the batch
system as the executable program and transported to the worker node using
native cluster mechanisms.

In more detail, the sandbox is created at the cluster gateway by the
grid-to-fabric interface. The interface uses directives specified by the user
in the job description file (sec. 3.2) to fill the sandbox with environment
files specific for the job (configuration files, wrapper scripts, etc.). A set
of standard environment files, such as the sam client middleware, the user
credentials, etc., is also always added to the sandbox. Once the sandbox is
ready, the grid-to-fabric interface packages it. At this time, a “driver” script
is dynamically generated from a standard template. The driver contains
the information on the full path of all the files in the sandbox, the value
of standard SAM-Grid environment variables, such as JIM GLOBAL JID
(the global job identification handler), and the command to execute after
the sandbox has been transfered to the worker node. This command is
generally a wrapper whose behavior depends on what type of job the user is
executing. This information is also specified as part of the user’s directives
to the grid-to-fabric interface.

The driver is archived in a tar file, together with the gridftp client,
the standard SAM-Grid GSI configuration for data transfers, the user cre-
dentials, and the fcp client. This archive is then transformed into a self-
extracting executable by dynamically generating and compiling a C pro-
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gram. This program contains the octal dump of the archive, represented
as a large array. When executing at the worker node, the program writes
the content of the array to the standard input of the tar command, then
switches context by passing control to the driver. At this point, the driver
can use the data transfer middleware (fcp and gridftp) together with the
user credentials to transfer the content of the sandbox to the worker node,
before passing control to the application. The driver relies on the presence
of a gridftp server at the gateway node. Generally the server is run as
part of the required services at the gateway node; alternatively, the sand-
box framework can start up dynamically a gridftp server per job. While
the latter solution makes the deployment of the gridftp service easier, since
server instantiation is automatic, the former solution is more scalable and it
is the one used in practice. In any case, the configuration of the server (host,
port, and GSI identity) is saved in the driver script when the grid-to-fabric
interface generates it.

Other grids solved the problem of environment preparation by relaxing
some of the constraints that drove our design for the “information trans-
port” problem (sec. 4.3.1.1). For example, LCG requires that clusters par-
ticipating to the grid pre-install the gridftp client at every worker node
(requirement 1). Open Science Grid, instead, assumes the presence of a
shared file system between gateway and worker nodes (requirement 3). De-
spite the fact that these solutions violate the principle of site independence,
both grids could negotiate these choices of resource configuration with the
sites because of their political weight. The SAM-Grid does not have such
weight, thus we had to find a solution that would adapt to pre-existing site
configurations.

In summary, the sandbox framework solves the “information transport”
problem using the following elements: a sandbox created by the grid-to-
fabric interface; a self-extracting executable containing data transfer mid-
dleware, user credential, and a “driver” script; a data transfer server at the
gateway node. The data transfer clients are made available at the worker
node by the batch system, which transports them as a single self-extracting
executable.
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4.3.2.2 Load Control

Transporting data transfer clients to the worker nodes using the sandbox
framework has been used in production by the SAM-Grid for a year and a
half on a dozen clusters. During this time, a drawback that was observed was
the increase in the load of the gateway machine during sandbox packaging.
This has been introduced in section 4.3.1.2 as the “load control” problem.
The major contributors to the load are the tar and gcc commands, which
are both CPU intensive. The increased load caused problems in the stability
of the gateway machine when multiple grid jobs entered the cluster. This
problem was addressed by programming the resource broker to throttle the
number of jobs submitted to a gateway.

We start by describing a simplistic solution first, in order to illustrate the
issues involved. In Condor, the resource classad (sec. 3.4) signals the avail-
ability of the resource to the broker using the Requirements attribute. This
attribute is a boolean expression built using the values of other attributes:
only when Requirements evaluates to TRUE will the resource accepts jobs.
Job throttling was achieved by including in the resource classad three extra
attributes:

1. JobsEnteringTheCluster : the number of grid jobs entering the cluster
when the classad is advertised. The value of this attribute does not
change at the information collector of the broker until a new classad
is advertised. This number can be obtained by looking at the list of
processes running at the gateway, where the advertisement framework
runs.

2. MaxEnteringJobsAllowed : the maximum allowed number of jobs con-
currently entering the cluster. This value is provided as part of the
site configuration and depends on the computing power of the gateway
machine.

3. CurMatches: this attribute is incremented by the broker every time
a new job is matched to the cluster. With this criterion, the match
maker considers a job as entering the cluster as soon as it is matched to
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the cluster. Because of the delays between resource selection and job
scheduling, this leads to a potential underutilization of the gateway. In
practice, this was never a limiting factor. The value of CurMatches is
initialized to JobsEnteringTheCluster when the classad is sent. Cur-
Matches is a reserved name in the Condor framework.

The Requirements attribute used to throttle jobs is

Requirements = CurMatches < MaxEnteringJobsAllowed

This way, when the number of jobs assigned by the broker to the cluster
exceeds the maximum number of jobs allowed by the site, the Requirements
attribute evaluates to FALSE and the broker stops matching jobs to the
cluster.

While in practice this technique solves the problem of the load to the
gateway machine, it should be noted that it does not guarantee 100% ac-
curacy. As mentioned, there is a time lag between matching the job to the
cluster and scheduling it. If a new classad is sent to the broker during this
time lag, the classad attributes JobsEnteringTheCluster and CurMatches
will not have a record of the jobs scheduled to the cluster that have not
yet entered. More jobs than the maximum allowed number of jobs may end
up entering the cluster in this case, because nothing will prevent the jobs
already scheduled from entering the cluster.

On the other hand, in some cases the total number of jobs entering the
cluster may never be reached during an advertisement cycle, even if there
are eligible jobs idle at the submission site. In fact, after the grid-to-fabric
interface has finished submitting batch jobs to the batch system, the status
of the grid jobs change from “entering” to “entered” the cluster. Because
advertisements are sent periodically and not continuously, the broker may
still consider jobs as “entering” the cluster, while in reality the jobs are
“entered”. This error is ultimately due to the time lag between two adver-
tisement cycles. In this case, less jobs than the maximum number allowed
will be matched to the cluster during the advertisement cycle. These inac-
curacies, both stemming from time lags typical of the grid, tend to cancel
each other and do not affect in practice the usability of the system.
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In reality, the job throttling expression used in the SAM-Grid is more
complicated than the one described above. The load to the head node, in
fact, increases with the number of jobs running at the cluster, even if they
are not in the status of entering the cluster. A control on the maximum
number of grid jobs allowed at the cluster is also needed.

We list here the factors that contribute to the load of the gateway and
that are due to the grid jobs that are running at (and not entering) the
cluster. The GRAM protocol instantiates a process (job-manager) per grid
job at the gateway. Because the SAM-Grid splits grid jobs into multiple
instances of batch processes at the cluster, for a given number of batch
processes it will have less job-managers running at the gateway node than
other grids, where a grid job always corresponds to a batch job. Nevertheless,
even in the case of the SAM-Grid, these processes running at the gateway
contribute to the load on the gateway. In fact, as few as several dozen
grid jobs, corresponding to several hundred batch processes, cause a load
problem on the typical commodity machine,

Another contributing factor to the load is the periodic polling of the grid
job status by the submission service. The grid job status is determined by
aggregating the status of every batch job running in the batch system. The
grid job is considered done when all the batch jobs are done. Information
on the status of the batch jobs is gathered through the batch adapter layer
(sec. 4.2) by querying the batch system. This process is in general also CPU
intensive. Caching the statuses of the jobs is one way we control this load.
When the batch system is queried, the returned statuses are recorded on
a temporary file. Independently of the polling frequency of the submission
site, we can control the load on the gateway node by returning the stale
information contained in this file. The batch system is periodically queried
again to refresh the statuses of the jobs. Caching techniques are used also by
LCG and OSG. In particular, the latest version of the globus toolkit, GT4
[173], adopted by OSG in the deployment v0.4, implements caching using a
relational database back-end.

Above a certain number of jobs, information caching is not a valuable
solution anymore. Returning stale information slows the grid from knowing
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the real status of the jobs. This increases the inefficiency of operations,
especially if new jobs can be submitted only if other have already finished
(sec. 3.2.4). In other words, the load on the gateway must be controlled not
only by information caching, but also by limiting the total number of grid
jobs running at the cluster. A way of achieving this is using job throttling
techniques.

To implement job throttling to limit the number of jobs entering the
cluster and the total number of jobs allowed, we advertise these attributes
in the cluster classad:

1. MaxJobsAllowed : the maximum number of jobs that are allowed to
be scheduled at a cluster. This value is configured as part of the site
configuration.

2. CurrentJobs: the total number of jobs running on the system. This
value is considered constant by the broker until a new classad is adver-
tised. The advertisement framework obtains this number by looking
at the list of processes running on the gateway machine.

3. CurMatches: this attribute is increased by the broker every time a new
job is matched to the resource (see description above for CurMatches).
To limit both the total number of jobs and the number of jobs entering
the cluster, in this case CurMatches is initialized to CurrentJobs.

4. JobsMatchedSinceLastAdvertisement : this is a counter of the jobs that
are matched to the resource since the last advertisement cycle. It is a
positive number that is zero when the classad is first advertised and
grows as the broker assigns jobs to the resource. The attribute is
defined as CurMatches− CurrentJobs.

5. JobsEnteringTheCluster : the number of grid jobs entering the cluster
when the classad is advertised. The value of this attribute does not
change at the information collector of the broker until a new classad
is advertised. This number can be obtained by looking at the list of
processes running at the gateway, where the advertisement framework
runs.
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6. MaxEnteringJobsAllowed : the maximum allowed number of jobs con-
currently entering the cluster. This value is provided as part of the
site configuration and depends on the computing power of the gateway
machine.

The Requirements attribute used to throttle jobs is

Requirements = (CurMatches < MaxJobsAllowed) &&
(JobsMatchedSinceLastAdvertisement + JobsEnteringTheCluster) <

MaxEnteringJobsAllowed

This expression prevents the broker from matching new jobs to the clus-
ter in case the total number of jobs running on the cluster exceeds the
maximum number of jobs allowed and in case the total number of jobs en-
tering the cluster exceeds the maximum number allowed. The expression is
the logical AND (&&) of two expressions. The first expression limits the
number of total jobs running at the cluster. At every new advertisement cy-
cle, CurMatches is initialized to the number of grid jobs currently running
at the cluster (CurrentJobs) and increases every time the broker matches a
job to the cluster. The expression becomes FALSE if CurMatches is equal
to or greater than MaxJobsAllowed. The second expression limits the num-
ber of grid jobs entering the cluster at any time. The expression becomes
FALSE when the number of grid jobs that were entering the cluster when
the classad was sent (JobsEnteringTheCluster) plus the number of grid jobs
matched by the broker to the cluster (JobsMatchedSinceLastAdvertisement)
is equal to or greater than the total number of allowed jobs entering the
cluster (MaxEnteringJobsAllowed).

A solution similar to our throttling solution has been adopted within
the context of the Condor-G framework to do resource load balancing in
a test bed grid for bio-informatics and it was demonstrated at the Super
Computing 2003 Conference, Baltimore, by the Condor Team [174]. That
grid consisted of a half dozen sites, each available to queue up to two dozens
jobs. Even if no scalability limit due to high load was hit in that context,
the demonstration was nevertheless a proof of principle of the functionality
of the framework to deal with problems of high load.
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We have also developed other scheduling rules to exercise a finer grain
of control over job flow from the submission site. In particular, it turns out
that packaging the output sandbox, at the end of the grid job, is also a CPU
intensive operation. Algorithms have been created to stop the flow of jobs in
case too many jobs are in the phase of entering the cluster and of packaging
the output sandbox. These algorithms have not been used for production
activities, since, in practice, we have never observed a machine crash due to
these conditions.

In addition to invoking CPU intensive services, another contributor to
the load of the gateway machine, as well as the data server machines, are
the data transfers initiated by the batch jobs. This is another aspect of
the “load control” problem (sec. 4.3.1.2). The SAM-Grid is particularly
sensitive to this problem because of job aggregation management, that is
the splitting of grid jobs at the gateway into multiple instances of batch
processes (sec. 3.2). Because of aggregation management, typically dozens
or hundreds of batch jobs tend to start approximately at the same time. The
principal consequence of this for the SAM-Grid is that all the jobs try to
concurrently transfer the sandbox to establish the job environment. Because
the sandbox is available at the gateway node, the data transfer server at the
gateway may be required to serve up to hundreds of data transfer requests
at the same time. A typical dual 1 GHZ Pentium III CPU with 1 Gigabyte
of RAM crashes at around 100 concurrent transfers. It should be noted that
this problem not only affects the gateway when transferring the sandbox,
but also storages when transferring data.

To overcome this problem, the SAM-Grid implements data access queues
using a product called fcp [169]. The product consists of a client and a server
programs. The fcp server is responsible for controlling access to the data
transfer server. The server queues up client requests to transfer data and
grants them N at the time, where N is a configurable parameter. In other
words, the fcp client blocks until the server grants access, then executes the
client data transfer command. In the case of the SAM-Grid, fcp servers
are instantiated at the gateway node as well as at all the SAM data storage
servers. In some cases, more than one data queue is also defined for the same
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storage server (sec. 3.2). The administrators are responsible for configuring
N to protect their machines from crashing. Typically, for a modern dual
CPU commodity machine, the administrators obtain a stable configuration
by setting the server to allow half a dozen concurrent transfers.

4.3.2.3 Service Configuration Accessibility

The SAM-Grid uses the local sandbox framework as the principal mecha-
nism to establish the job environment at the worker node. No assumption is
made regarding the pre-configuration of the worker node itself. The sandbox
framework makes available at the worker node data transport clients using
sandbox packaging (“information transport” problem, sec. 4.3.2.1) and pro-
vides load control of the data storage machines via data access queues (“load
control” problem, sec. 4.3.2.2).

The SAM-Grid uses the sandbox framework to make available at the
worker node the configuration files of those services that are not integrated
with the SAM-Grid configuration infrastructure (sec. 2.1). The configura-
tion of the SAM data handling system is an example of such service.

In practice, transporting the configuration files for these services to the
worker nodes is not enough. The files must be installed, in order to enable
fruition. In general, making available the configuration for these services is
a two step process:

1. Retrieval: this step is done at the gateway node. It gathers the
appropriate configuration files and make them ready for the transport
to the worker node. When multiple configuration files for the same
product are available, like in the case of SAM, this may not be a
trivial operation.

2. Installation: this step is done at the worker node. It gets hold of
the configuration file (already at the worker node) and prepares the
job environment so that the interested services can make use of it.
This typically implies installing the file at a specific location on the
file system, or defining a service-specific environment variable pointing



4.3. JOB ENVIRONMENT PREPARATION 145

to its path, or converting its content to a different format e.g. a set of
environment variables.

Because these two steps are taken at different locations and, presumably,
by different bodies of code, we could face the classical problem of keeping
retrieval and installation instructions synchronized when code maintenance
is needed. To minimize the risk of inconsistencies, we wanted to keep both
instructions together in the same body of code.

The SAM-Grid provides a solution to this problem using a tool called
product configuration manager (jim manage prod config). The tool offers
both a command line interface and a python API, and it is fully integrated
with the sandbox framework, in order to provide information transport to
the worker nodes. An initialization function allows the definition of both
the retrieval and installation instructions. Invoking the get config function,
the retrieval instructions are executed and the resulting files added to the
local sandbox. The installation instructions are appended to a control file,
which is also added to the sandbox. The SAM-Grid grid-to-fabric interface
uses this mechanism to retrieve the configuration of several products.

At the worker nodes, a job wrapper invokes the set config function. The
function automatically executes the commands in the control file, thus in-
stalling the configuration files for all the products. It should be noted that
the code invoking the set config function is always the same irrespectively of
the products configuration retrieved at the gateway. This essentially elim-
inates the need for maintaining the piece of code executing at the worker
node.

We use this mechanism not only to retrieve configuration files, but also
to reduce the load on the configuration framework. By default, jobs ac-
cess such configuration directly from the configuration framework database.
When hundreds of jobs start concurrently at a cluster, we may incur in a
database overload. This results in inefficient data access due to denial of
service errors and relative access retrials by the jobs. As discussed in the
solution to the “load control” problem (sec. 4.3.2.2), the sandbox framework
provides mechanisms to ensure the scalability of the environment transport.
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The product configuration manager and the sandbox framework can also
be used to transport to the worker nodes the configuration of products in-
tegrated with the configuration framework. Once the information is at the
worker node in the form of a file, it can be directly accessed from the file
system, without accessing the site configuration database. This does not
replace the use of the configuration framework, but gives us the option to
preempt potential scalability limits using a solution designed to be scalable
for hundreds of concurrently running jobs.

For the same reason of scalability, the sandbox framework is the tech-
nique of choice to distribute information common to a set of batch jobs,
when this information is gathered at the gateway node. This is convenient,
for example, when submitting montecarlo jobs to a site. The grid jobs are
split typically into hundreds of local batch processes. Each process needs
to access the SAM database to retrieve information about the montecarlo
request at hand. The information is the same for all batch processes, since
it is associated with the initial grid job. The grid-to-fabric interface can
be instructed to pool this access and store the result in the sandbox in the
form of a file. The sandbox framework will make the file available in the
environment of the job, where the application can use it without contacting
the SAM database directly. Ultimately, this mechanism reduces the load to
the database machine (see example 1, sec. 3.2).

Figure 4.2 shows a real-life example of the use of the product configura-
tion manager.

4.3.2.4 Environment Uniformity

When running analysis jobs, physicists want to be able to use the same
analysis framework over many months or years. This uniformity is necessary
because physics results are often only comparable when obtained using the
same version of the software. Rerunning older analyses with newer versions
of the software is not done on a regular basis because of the computation
time required.

When analysis jobs are run on dedicated resources, all necessary ver-
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Using the python API, from the code of the grid-to-fabric interface at the gateway
node

config = jim_manage_prod_config.JimManageConfigSettings(\
["--debug" ,\
"--name=jim_job_managers",\
"--get-cmd=. ‘ups setup jim_job_managers‘;\

jim_config_manager_cmd.py gcs \
-n jim_job_managers > jim_job_managers_config",\

"--set-cmd=export JIM_UPS_DB=‘pwd‘;\
mkdir -p $JIM_UPS_DB/jim_job_managers/etc;\
mv jim_job_managers_config

$JIM_UPS_DB/jim_job_managers/etc/config;\
export JIM_JOB_MANAGERS_DIR=\

$JIM_UPS_DB/jim_job_managers"])

jim_manage_prod_config.getConfig(config)

Using the command line interface, from the job wrapper code at the worker node

. ‘./jim_manage_prod_config.py set_all_config‘

Figure 4.2: The code to retrieve the configuration of the jim job managers
product at the gateway node (top) and to install the configuration in the
job environment at the worker node (bottom). Both the retrieve and install
commands are defined during the initialization of JimManageConfigSettings
(–get-cmd and –set-cmd options respectively). Coded as a shell script, the
retrieve command reads the configuration from the XML database, using its
command line interface (jim config manager cmd.py), and writes the con-
figuration to the jim job managers config file. The set command moves the
same files to an appropriate location on the file system and defines an en-
vironment variable used by the product management system to locate the
product. The set command is executed only at the worker node with the
code shown at the bottom.
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sions of the framework must therefore be pre-installed on the system. This
is the responsibility of the system administrators and results in high mainte-
nance load for the administrators themselves and for the users, who need to
check if old versions are still available before submitting their jobs. Another
problems is the inefficiency caused by several hundreds Gigabytes of disk
space being permanently allocated to hold this software at all the dedicated
clusters.

When analysis jobs are run on the grid, the above solution is not even
feasible because software pre-installation is rarely allowed. Users can use
RTE techniques to create a portable executable for their analysis. These
techniques are implemented in a framework that recreates the Run Time
Environment (RTE) of various DZero applications (sec. 4.3.1.4). The ex-
ecutable can then be included in the input sandbox when running on the
grid. As with the software pre-installation solution, this has also drawbacks.
The grid typically keeps the user input sandbox at several places through-
out the lifetime of the job. For example, for the SAM-Grid it is kept at the
Submission Service and at the Execution Site Gateway. Considering that
lot of information is duplicated in different jobs, this leads to an inefficient
use of the storage.

The solution adopted by the SAM-Grid consists in distributing the whole
analysis framework via the SAM data handling system. The environment
preparation framework is responsible for the dynamic installation of the soft-
ware on the scratch area of the worker node before the job runs. For the
DZero experiment, this translates in requiring 4 Gigabytes of local scratch
disk space for every CPU at the worker nodes. This requirement is in prac-
tice always met.

A disadvantage of this approach, as compared to software pre-installation,
is that jobs often waste CPU cycles waiting for the software to be transported
to the worker node. In our experience, in fact, practically no cluster pro-
vides scalable local storage. In other words, when hundreds of jobs access
data concurrently from the storage, the likelihood of having massive data
transport failures and cluster downtimes is high, making the system not
production-quality. In our solution, the software is retrieved via data access
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queues that block the job until access to the data is granted. This minimizes
problems of scalability of the storage, but it introduces inefficiencies in the
usage of the computational resources. However, the same inefficiencies are
also present when using “user provided executables”. From this point of
view, the SAM-Grid solution and the RTE techniques are essentially equiv-
alent. In summary, because on the grid very few clusters allow software
pre-installation and considering that RTE techniques are storage intensive,
the SAM-Grid solution is the most favorable.

As compared to the other approaches, this solution has also the following
advantages:

1. Low administrative maintenance: the software is delivered upon
request to the site storage elements controlled by SAM. Because SAM
is responsible for the disk space management, there is no longer a
maintenance issue of the availability of older software versions at a
site.

2. Small size of the user input sandbox: because the software is
dynamically deployed at the worker node before control is passed to the
application, the users effectively see the software as pre-installed. They
can therefore limit their input sandbox to the file of macro directives to
the framework (sec. 4.3). This reduces, by several orders of magnitude,
the amount of disk space required, as compared to RTE techniques.

3. Flexibility of the execution environment: if necessary, our solu-
tion can be used in conjunction with user-provided RTE executables,
providing a high degree of flexibility in configuring the job environ-
ment.

4. Application cataloguing: the software can be thoroughly cata-
logued using the metadata mechanisms of the SAM data handling
system. This promotes the reproducibility of the physics results be-
cause not only the data, but also the binaries, can be tracked through
the SAM system (sec. 1.3).
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5. Convenience of the distribution: when a new release of the frame-
work is available, storing it in the SAM system is the only action
required for its publication. This makes the release immediately avail-
able, since no intervention is necessary from administrators to pre-
install the software.

The user controls what software is deployed in the job environment by
specifying in the job description file a SAM dataset definition name that
corresponds to the list of binary files required by the job (JDL attribute
jobfiles dataset, sec. 3.2). Indicating a dataset name is a general mechanism
to specify the products required by the job. Depending on the application
type, the content of the dataset is in general different. For example, a binary
dataset for the reprocessing application includes the DZero analysis frame-
work and Runjob, the application management system (sec. 3.2.4). On
the other hand, a dataset for the montecarlo production application con-
tains, in addition to the analysis framework and Runjob, special framework
configuration parameters that describe the physics of the events to simu-
late (“Card” files) and the characteristics of the accelerator magnetic field
(“Magfield” files).

Despite its flexibility, though, this mechanism is arguably error prone.
Because the files required are all specified in the job description as a single
dataset name, important parameters, such as the version of the analysis
framework, remain implicit. This may lead to user errors when trying to
provide software uniformity. To overcome this problem, the user is required
to specify the version of the framework software explicitly using the attribute
d0 release version. The client software, then, compares this information
with the metadata of the framework file included in the binary dataset. The
job is not submitted if the two information do not match.

The files identified by the binary dataset name are imported to the
worker node by a job wrapper executing before the application. This wrap-
per uses SAM interfaces to trigger the delivery of the binary files to a SAM
storage element close to the cluster. Once the files are there, the wrapper
transports the files to the worker nodes using the data transport middle-
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ware available in the job environment (“information transport” problem,
sec. 4.3.1.1) and accessing the data queues of the SAM storage elements
(“load control” problem, sec. 4.3.1.2). The information on these data queues
is transported to the worker nodes as part of the local services configura-
tion (“service configuration accessibility” problem, sec. 4.3.1.3). Once the
binary files are at the worker nodes, the archives are deflated. This way, the
software and its configuration has been dynamically deployed to the worker
node. At this point, the wrapper passes control to the application, which
can access all its necessary software products.

Other grids, such as LCG or OSG, do not provide support for dynamic
installation of software products. LCG leaves this as a responsibility of the
user, who needs to write wrappers around the applications in case software
dependencies are needed. These dependencies can be uploaded to LCG stor-
ages before running the jobs. The jobs can then download them, using data
transport middleware pre-installed at the worker nodes. OSG, instead, has
negotiated with the resource providers the configuration of shared file system
areas (called $DATA) where the user can deploy software before running the
jobs. Once running at the worker nodes, the jobs can access this software
via the shared file system. We do not like these solutions because they im-
pose special requirements on the configuration of the clusters (middleware
pre-installation and the presence of a shared file system, respectively), which
violates the principle of distributed ownership of the resources.

It should be noted that the SAM-Grid solution to the “environment
uniformity” problem (sec. 4.3.1.4) is transparent to the users and does
not impose external requirements on the resource providers. Our solution
relies on the solutions developed for the “information transport” problem
(sec. 4.3.2.1), the “load control” problem (sec. 4.3.2.2), and the “service
configuration accessibility” problem (sec. 4.3.2.3) and it is the last step
required for the preparation of the job environment.
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Chapter 5

SAM-Grid At Work and

Conclusion

For the past two years, the SAM-Grid system has been used for data re-
construction and montecarlo production for the DZero experiment. In this
chapter, we present the data reconstruction project and our conclusions.

5.1 Data Reconstruction for DZero

Throughout the lifetime of a high-energy physics experiment, physicists con-
tinuously refine their understanding of the detector. Calibration constants
are made more precise in order to measure with greater accuracy quan-
tities such as position and energy of the particles. Processing algorithms
are improved, for example, to define more precisely the trajectories of the
particles or the spacial location of the event vertex. To take advantage of
such improvements, experiments often reprocess the raw data a few times
throughout the lifetime of the experiment. The reprocessed data are the
basis for more precise data analyses and, eventually, scientific publications.

In 2004 the DZero experiment took the decision of reprocessing the en-
tire data sample for the second time since the beginning of data taking in
1997. The data sample consisted of 250 Terabytes of raw data, comprising
one billion physics events organized in 250,000 files. After studying the ap-
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plication, it was estimated that the computing power necessary to reprocess
the whole sample was 1,600 1GHz-CPU×years. The computing resources
at Fermilab were already mostly allocated to process the raw data coming
daily from the detector and to let physicists work on their analysis. The
data reprocessing had to be done on remote resources. In October 2004,
it was decided to use the SAM-Grid for the management of job, data, and
information [175].

The data reprocessing project had two principal characteristics.

1. Resource intensiveness: the computational requirements of the
project implied that the institutions participating in the project had
to dedicate a substantial fraction of their resources continuously for a
long period of time. Most institutions decided to appoint facility rep-
resentatives to the project in order to ensure the efficient utilization
and the fair usage accountability of their resources.

2. Operational difficulty: the project bookkeeping had to be con-
ducted with an extreme level of accuracy. For completeness, all events
in the sample had to be reprocessed, but no more than once, in order
not to bias the physics results. To guarantee this level of accuracy, the
load of the operations had to be spread among a group of people.

For these two reasons, the experiment assembled a team of half a dozen
people, lead by two coordinators. This team was effectively the SAM-Grid
customer throughout the duration of the data reprocessing project. The
project is, to our knowledge, the largest data processing activity on the grid
to date.

5.1.1 Challenges

The DZero reprocessing project presented several challenges for the team
and the software infrastructure. These challenges are presented in this sec-
tion. The solutions to the technical challenges are discussed in the appro-
priate sections, referenced below.
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DØFarm (Fermilab), 1000CPUs Also Traditional Computing
Lyon (France), 400CPUs Shared with LCG VO
Westgrid (Vancouver), 600CPUs Shared
U. Wisconsin (USA), 30CPUs Not a DØ institution
Prague (Czech Rep.), 200CPUs
DØSAR (UTA, Texas), 200CPUs
DØSAR (Oscer, Oklahoma), 140CPUs Shared with hurricane forecast
DØSAR (Sprace, Brazil), 170CPUs
CMS Farm (Fermilab), 100CPUs Same Gateway as OSG
London (UK), 200CPUs
GridKa (Germany), 500CPUs Shared by 8 HEP Experiments
Total (1GHz PIII CPU) ∼3540CPUs (2540 CPUs Remote)

Table 5.1: The amount of computing resources available for the DZero re-
processing activity in 1GHz PentiumIII-equivalent processors.

Coordination: the operations of the team had to be coordinated in
order to guarantee the reprocessing of the full data sample. One coordinator
was responsible for giving periodically portions of the dataset to operators.
New datasets were allocated to operators every couple of months, as already
allocated datasets were processed. Most operators ran their datasets at their
home institutions, so to guarantee full utilization of the resources and to have
easy access to administrative control in case of failures.

Short time: the experiment desired to publish the data with the refined
algorithms at the physics conferences held in 2006. Therefore, the deadline
for completing the project was the end of 2005. Starting from October 2004,
this gave the project about 6 months of development and deployment of the
infrastructure and a subsequent 6 months of data production. The latter
was achievable, considering that the total number of 1GHz-equivalent CPU
available to the experiment throughout the collaboration was about 3,300
and that the estimated required CPU was 1,600 1GHz-CPU×years. Table
5.1 shows the details of the number of resources available for the DZero
reprocessing project throughout the collaboration.

Large deployment: a big portion of the effort to prepare the infras-
tructure was the deployment of the SAM-Grid. This overlapped with the
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beginning of the reprocessing, started in March 2005, because of constraints
related to hardware procurement for some of the facilities. The 3,300 1GHz-
equivalent CPU, in fact, were available as fractions of about a dozen com-
puting centers throughout the US, Europe, and Latin America. The facili-
ties that were not already part of the SAM-Grid have been brought online
through May 2005.

As new sites were made available to the grid and as the group became
familiar with the operations, the number of jobs run per day increased to a
steady plateau of 4,000 jobs per day (fig. 5.1). This rate of job submission
corresponded to the expected average production of six million events per
day, to complete the reprocessing of the 1 billion events sample in 6 months.
The plot of figure 5.1 shows also the slow down of operations toward the
end of the project (September 2005), as operators finished their allocated
datasets and stopped using their facility for data reprocessing.

Operators local to large facilities were made responsible for the deploy-
ment of the SAM-Grid infrastructure at their site. A central team of experts,
located at Fermilab, was actively supporting the operators with the deploy-
ment and subsequent necessary optimizations. Even if arguably not most
efficient, this model contributed to the familiarization of the operators with
the SAM-Grid and soon built up an active geographically spread support
community. Following this model, the infrastructure could be typically de-
ployed in a few weeks. This included the installation and configuration of
the software, the testing, and the cluster “certification” for production.

Cluster “certification” was particularly important to give the team con-
fidence that the output produced at every cluster was physically sound. To
this end, plots of physical quantities produced by the newly deployed sites
were compared with a standard reference, produced with traditional (non-
grid) computational mechanisms. To reduce the time required to generate
the certification plots, only 10% of the events in the reference sample was
used. The plots were inspected by a physicist who certified the consistency
of the results within the expected statistical variance (fig. 5.2).

Full resource utilization: in order to complete the project in the
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Figure 5.1: The number of DZero reprocessing jobs running on the SAM-
Grid every day.
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Figure 5.2: The mass plots of Kshort particles from the DZero detector.
The red and black traces are generated from standard farm and SAM-Grid
processing mechanisms respectively. The traces are statistically equivalent.
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estimated 6 months, the infrastructure had to continuously fully utilize the
DZero share of resources available at collaborating institutions. In addition,
the system had to be able to use opportunistically all available resources at a
cluster, in case the activity of other groups ceased temporarily. Considering
the size of available clusters, this meant supporting up to 1,000 concurrently
running jobs at the same site. This was particularly challenging since the
standard middleware supported a maximum of 200 concurrent jobs on a
modern commodity CPU (sec. 4.1). The solution to this scalability problem
is discussed in chapter 4.

Large data volumes: Raw and derived data from the DZero exper-
iment is stored at Fermilab. During the reprocessing activity, 75% of the
physics events were processed at institutions outside Fermilab. This meant
moving about 190 TBytes of data to “remote” facilities, in order to take
advantage of the computing power available at the collaborating sites. Data
movement was managed by the SAM data handling system (sec. 1.3).

Figure 5.3 shows a bar diagram of the number of events produced at
each site.

Job recoverability: In a system as complex as the SAM-Grid, job
failure is a daily occurrence. Failures are due to problems in grid services
(SAM, job management services, etc.), local services (batch system, local
storage systems, etc.), and hardware (worker and key service node crashes,
file system failures, etc.). Rather than concentrating our efforts on the
tuning of the infrastructure at each site to minimize the rate of failure, we
decided to accept a rate of up to 15% and focus our effort on developing a
reliable recovery mechanism for our data processing model. We now describe
this model.

The raw detector data, input to the reprocessing software, is naturally
organized into daysets, where each dayset is the set of files acquired from
the detector in a day. The number of files in the dayset depends on the
average daily conditions of the accelerator (beam luminosity) and on the
detector trigger configuration (online event selection criteria). A typical
DZero dayset consists of approximately 100 files. A dayset can be trivially
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Figure 5.3: The number of data reprocessing events produced on the SAM-
Grid per site. 75% of the events were processed outside Fermilab and
less than 20% using traditional computation mechanisms (blue bar tagged
“fnal”).
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represented in terms of a SAM dataset definition i.e. a named query in the
SAM file metadata catalogue.

Every couple of months, each institution was assigned new daysets to
reprocess. Operators treated the dayset as a unit of processing and expected
the SAM-Grid to allow for such model. To comply with such expectations,
SAM-Grid grid jobs for the data reprocessing application were designed to
accept a SAM dataset definition as input. In this way, operators could assign
daysets to grid jobs, making a grid job the unit of data processing.

On a modern 3 GHz commodity CPU, the DZero reprocessing applica-
tion processes a typical raw data file, 1 Gigabyte in size, in about 6 hours.
If a grid job could be split at a cluster into as many batch processes as files
in its dayset, the grid job would typically take less than a day to complete,
even on the smallest of our clusters. Depending on the size of the cluster, an
operator could then submit a number of grid jobs to the cluster and check
what jobs succeeded or failed the next day. The timing of this cycle would
match very well with the daily routine of the operators.

In addition to the operational convenience, processing a single file per
batch job also facilitates the recovery procedures. In fact, if a batch job
fails, it is trivial (with appropriate bookkeeping) to identify what file must
be reprocessed.

For these reasons, we decided to split grid jobs into a number of batch
processes that correspond to the number of files in the input dataset. The
multiplicity of the batch processes is managed by the grid-to-fabric interface
when the grid job enters the site (sec. 4.1).

It turns out that the output of each batch job cannot be immediately
used for analysis consumption. The size of a typical output file, in fact, is 200
Megabytes, too small for efficient storage in the mass storage system of the
experiment (sec. 3.2.4). The processed files, therefore, must be merged into
larger files, typically 1 Gigabyte in size. This is accomplished by submitting
a grid job running a “merge” application. The output of the reprocessing
jobs i.e. the input to the merging application, is stored in SAM on volatile
storage, in what we call durable locations. The merging application retrieves
these files via SAM and, after merging them, stores the “large” output to
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the mass storage system at Fermilab, again via SAM.

This processing model, consisting of a production and a merging phases,
completely relies on SAM for the bookkeeping of the data. In fact, input and
output from each phase is handled via SAM. The SAM system, therefore,
has a record of the whole processing history and parentage of the files. On
this fact, actually, we have based our job recovery mechanism.

In this processing model, a job is considered failed if SAM does not have
a record of its output. Therefore, to recover a processing job, we follow the
following steps. After a grid job finished 1, we iterate through each raw file
in its input dayset. For each raw file, we lookup its reprocessed “child” file
in the SAM file metadata catalogue. If such “child” file does not exist, the
raw file must be reprocessed. We thus build the recovery dataset, using the
list of non-processed raw file names to create a SAM dataset definition. This
dataset can be submitted as the input to a recovery reprocessing grid job.
The recovery procedure is then followed again at the end of each recovery
job, until the dayset is completely processed.

A similar procedure is followed to recover failed grid merging jobs. In this
case, the procedure acts on the input to the merging job i.e. the dataset of
reprocessed files generated from a certain dayset. As for the grid processing
jobs, we iterate through the list of files in the job input dataset. For each
reprocessed file, we lookup its merged “child” file in the SAM file metadata
catalogue. If this “child” file does not exist, the reprocessed file must be
re-merged.

The experiment has developed a series of tools to help with the opera-
tions. Such tools include the routines to check the completeness of jobs and
to create recovery jobs.

5.1.2 Failure Analysis

The bulk of the reprocessing activity finished in seven months, at the end
of October 2005. Figure 5.4 shows the plot of the integrated number of

1This recovery procedure should be followed 12 hours after the job is finished, as, in
case of failure, the SAM file storage server retries to store output files for 12 hours, before
timing out.
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Figure 5.4: The integrated number of DZero reprocessing events produced
as a function of time.
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events processed as a function of time. The job success rate averaged 85%
throughout the grid during stable operations (after middle of May), as shown
in figure 5.5, right plot. Failed jobs are defined as those that did not hand
over their output to the SAM system. It should be noted that this definition
of job “efficiency” is not directly related to the resource usage efficiency.
Many job failures, in fact, are immediate and constitute a minimal waste
of computing resources. Examples of this type of failures include problems
with the job environment preparation framework (sec. 4.3).

The left plot of figure 5.5 shows a possible categorization of the types of
job failures. The information in the plot is derived from the analysis of the
data in the job monitoring infrastructure (sec. 2.2.3). This analysis is based
on the exit code of the grid wrapper around the application (sec. 4.3), as
reported to the monitoring. Three categories of failures can be studied with
this mechanism.

1. No Exit Code: these are the jobs that did not report any exit sta-
tus to the monitoring system. In the plot, these are represented by
the black trace (tagged failed no code). It is not immediate to distin-
guish among the reasons why this happens. These reasons are describe
hereby.

(a) Failures of the monitoring system: the XML database that was
used to store monitoring information (sec. 2.2.3) was not avail-
able or the connection from the client failed. In principle, these
jobs can be successful even if the monitoring does not report it.
In this case, one could in principle identify this as a monitoring
system failure, because a successful job hands over its output to
the SAM system and, therefore, the bookkeeping service has a
record about it.

(b) Failures of the job environment preparation: these are fast-fail
conditions, which waste a minimal amount of resources. If the
job environment cannot be established properly, the monitoring
client software may not be available to the job.
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Figure 5.5: Right Plot: The success rate of local reprocessing jobs running
on the SAM-Grid (daily binning). Left Plot: Analysis of the number of
jobs failed per day (top Y axis set to 600 failed jobs, to show structure).
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(c) Killed batch process: the batch system kills the jobs, thus the
monitoring notification routines are not executed. This can hap-
pen, for example, because of administrative actions e.g. cluster
maintenance, or because the job has violated some of the sys-
tem execution policy e.g. surpassed maximum allowed execution
time, disk quota, etc.

(d) Hardware failure: worker nodes crashes e.g. components faults,
power outages, etc.

2. Grid Wrapper Failure: the grid wrapper interacts with services
of the grid on behalf of the application (sec. 4.3). This is needed,
since practically all DZero applications are not grid-aware. The wrap-
per passes control to the application management system (sec. 4.1),
which controls the execution of the application. If either the wrapper
or the application management system fail, the job sends a notifica-
tion message to the monitoring system. In this case, the application
has certainly failed because of problems with the infrastructure, rather
than because of application bugs. These types of failures are repre-
sented in the plot by a blue trace (tagged failed user code). A typical
reason for these failures are problems with the data handling system,
either at the level of global or local services. An example of a prob-
lem with a global service is the inability to contact the central SAM
database. In the plot, this is sometime due to jobs submitted during
the scheduled monthly downtime of the SAM database (first Tuesday
of every month). These failures tend to be catastrophic. Since DZero
reprocessing is a data intensive application, the interaction with the
data handling system is indispensable to the execution of the job. If
SAM has problems, all batch jobs submitted to the grid will probably
sooner or later fail. An example of a data handling problem with local
services are failures in the local data storages. The file may be avail-
able in the storage, but the data transport service (gridftp, rfio, etc.)
may be unavailable.

3. Application Failure: These failures are due to bugs in the applica-
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Westgrid Production Summary
RawFiles 106178
Daysets 1636
GridJobs 3331
BatchJobs 134745
FailedBatchJobs 28567
CorruptedFiles 680
BatchJobs/RawFiles 1.269
RawFiles/GridJobs 31.876
FailedBatch/BatchJobs 0.2120
CorruptedFiles/RawFiles 0.0064
GridJobs/Daysets 2.0361

Table 5.2: DZero production statistics at the westgrid site at the end of the
activity.

tion code, to corruptions of the input file, or to the unavailability of
the local calibration databases. The failures are represented by the
yellow trace (tagged failed d0 code) and, because of the way the plot
is generated, also contribute to the number of infrastructural failures
(blue trace). By the end of the reprocessing activity, it turned out that
0.2% of the files in the full dataset generate unrecoverable failures, due
to data corruption. Recovery of these files is sometimes possible with
special care.

Table 5.2 shows statistics of the data reprocessing activity at Westgrid,
one of the largest clusters in the SAM-Grid.

5.2 Conclusion

The SAM-Grid is a large distributed meta-computing infrastructure for
DZero and CDF, two high-energy physics experiments taking data at the
Fermi National Accelerator Laboratory, Batavia, Illinois. The system is
architecturally divided into three functional components: job and informa-
tion management components, based on the standard grid middleware, and
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the data handling component, implemented by the Sequential Access via
Metadata (SAM) system. The design and implementation of the SAM-Grid
job and information management components are the main subject of this
research.

All components of the SAM-Grid offer a set of global and local ser-
vices. These interact with the computational, storage, and network resources
(the fabric) of the collaborating institutions, via a grid-to-fabric interface.
The SAM-Grid implementation of this interface enables a robust interac-
tion of the global services with a wide range of local services and resources
(data handling, monitoring, job environment preparation, local job sched-
uler, etc.), using extensible and flexible adaptation layers.

The SAM-Grid mechanism of interfacing the grid to the fabric allows
local system administrators to choose the resource configuration and local
management software that best suits the needs of each site. Thus, the
SAM-Grid promotes site autonomy and fosters the distributed ownership of
the resources, the basic paradigms of grid computing. This is one major
contribution of this work.

In order to maximize data throughput, the SAM-Grid optimizes the us-
age of local resources by coordinating the resource interaction with local and
grid services. Resource and service coordination is achieved through a set of
services that are aware of requirements and resource usage patterns of prin-
cipal high-energy physics applications. This is another major contribution
of this research.

In the past year alone, the SAM-Grid has processed hundreds of Ter-
abytes of data, running thousands of jobs every day on dozens of partici-
pating institutions throughout the world. We believe that this is the largest
data processing activity ever attempted on a data grid system to date. This,
more than anything, proves the scalability, flexibility, and high throughput
of the SAM-Grid system.
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