Silicon Carbide Micro-devices for Combustion Gas Sensing under Harsh Conditions

PDF Version Also Available for Download.

Description

A sensor based on the wide bandgap semiconductor, silicon carbide (SiC), has been developed for the detection of combustion products in power plant environments. The sensor is a catalytic gate field effect device that can detect hydrogen-containing species in chemically reactive, high temperature environments. For fast and stable sensor response measurements, a gate activation process is required. Activation of all sensors took place by switching back and forth between oxidizing (1.0% oxygen in nitrogen) and reducing (10% hydrogen in nitrogen) gases for several hours at a sensor temperature {ge}620 C. All 52 devices on the sensor chip were activated simultaneously ... continued below

Creation Information

Ghosh, Ruby N.; Loloee, Reza; Tobin, Roger G. & Kahng, Yung Ho April 1, 2006.

Context

This report is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this report can be viewed below.

Who

People and organizations associated with either the creation of this report or its content.

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this report. Follow the links below to find similar items on the Digital Library.

Description

A sensor based on the wide bandgap semiconductor, silicon carbide (SiC), has been developed for the detection of combustion products in power plant environments. The sensor is a catalytic gate field effect device that can detect hydrogen-containing species in chemically reactive, high temperature environments. For fast and stable sensor response measurements, a gate activation process is required. Activation of all sensors took place by switching back and forth between oxidizing (1.0% oxygen in nitrogen) and reducing (10% hydrogen in nitrogen) gases for several hours at a sensor temperature {ge}620 C. All 52 devices on the sensor chip were activated simultaneously by flooding the entire chip with gas. The effects of activation on surface morphology and structure of Pt gates before and after activation were investigated. The optical images obtained from Pt gates demonstrated a clear transition from a smooth and shiny surface to a grainy and cloudy surface morphology. XRD scans collected from Pt gates suggest the presence of an amorphous layer and species other than Pt (111) after activation. The reliability of the gate insulator of our metal-oxide-SiC sensors for long-term device operation at 630 C was studied. We find that the dielectric is stable against breakdown due to electron injection from the substrate with gate leakage current densities as low at 5nA/cm{sup 2} at 630 C. We also designed and constructed a new nano-reactor capable of high gas flow rates at elevated pressure. Our reactor, which is a miniature version of an industrial reactor, is designed to heat the flowing gas up to 700 C. Measurements in ultrahigh vacuum demonstrated that hydrogen sulfide readily deposits sulfur on the gate surface, even at the very high hydrogen/hydrogen sulfide ratios (10{sup 3}-10{sup 5}) expected in applications. Once deposited, the sulfur adversely affects sensor response, and could not be removed by exposure to hydrogen at the temperatures and pressures accessible in the ultrahigh vacuum experiments. Oxygen exposures, however, were very effective at removing sulfur, and the device performance after sulfur removal was indistinguishable from performance before exposure to H{sub 2}S.

Language

Item Type

Identifier

Unique identifying numbers for this report in the Digital Library or other systems.

  • Report No.: none
  • Grant Number: FC26-03NT41847
  • DOI: 10.2172/882583 | External Link
  • Office of Scientific & Technical Information Report Number: 882583
  • Archival Resource Key: ark:/67531/metadc876048

Collections

This report is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this report?

When

Dates and time periods associated with this report.

Creation Date

  • April 1, 2006

Added to The UNT Digital Library

  • Sept. 21, 2016, 2:29 a.m.

Description Last Updated

  • Dec. 8, 2016, 11:03 p.m.

Usage Statistics

When was this report last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 2

Interact With This Report

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Ghosh, Ruby N.; Loloee, Reza; Tobin, Roger G. & Kahng, Yung Ho. Silicon Carbide Micro-devices for Combustion Gas Sensing under Harsh Conditions, report, April 1, 2006; United States. (digital.library.unt.edu/ark:/67531/metadc876048/: accessed September 24, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.