Buoyancy Induced Boundary Layer Flows in Geothermal Reservoirs

PDF Version Also Available for Download.

Description

Most of the theoretical study on heat and mass transfer in geothermal reservoirs has been based on numerical method. Recently at the 1975 NSF Workshop on Geothermal Reservoir Engineering, Cheng presented a number of analytical solutions based on boundary layer approximations which are valid for porous media at high Rayleigh numbers. according to various estimates the Rayleigh number for the Wairakei geothermal field in New Zealand is in the range of 1000-5000, which is typical for a viable geothermal field consisting of a highly permeable formation and a heat source at sufficiently high temperature. The basic assumption of boundary layer ... continued below

Physical Description

236-246

Creation Information

Cheng, Ping December 1, 1976.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

Most of the theoretical study on heat and mass transfer in geothermal reservoirs has been based on numerical method. Recently at the 1975 NSF Workshop on Geothermal Reservoir Engineering, Cheng presented a number of analytical solutions based on boundary layer approximations which are valid for porous media at high Rayleigh numbers. according to various estimates the Rayleigh number for the Wairakei geothermal field in New Zealand is in the range of 1000-5000, which is typical for a viable geothermal field consisting of a highly permeable formation and a heat source at sufficiently high temperature. The basic assumption of boundary layer theory is that heat convective heat transfer takes place in a thin porous layer adjacent to heated or cooled surfaces. Indeed, numerical solutions suggest that temperature and velocity boundary layers do exist in porous media at high Rayleigh numbers. It is worth mentioning that the large velocity gradient existing near the heated or cooled surfaces is not due to viscosity but is induced by the buoyancy effects. The present paper is a summary of the work that we have done on the analytical solutions of heat and mass transfer in a porous medium based on the boundary layer approximations since the 1975 Workshop. As in the classical convective heat transfer theory, boundary layer approximations in porous layer flows can result in analytical solutions. Mathematically, the approximations are the first-order terms of an asymptotic expansion which is valid for high Rayleigh numbers. Comparison with experimental data and numerical solutions show that the approximations are also accurate at moderate values of Rayleigh numbers. For problems with low Rayleigh numbers where boundary layer is thick, higher-order approximations must be used. 9 refs., 5 figs.

Physical Description

236-246

Subjects

Source

  • Proceedings Second Workshop Geothermal Reservoir Engineering, Stanford University, Stanford, Calif., December 1-3, 1976

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: SGP-TR-20-34
  • Grant Number: E043-326-PA-50
  • Office of Scientific & Technical Information Report Number: 887404
  • Archival Resource Key: ark:/67531/metadc875934

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • December 1, 1976

Added to The UNT Digital Library

  • Sept. 21, 2016, 2:29 a.m.

Description Last Updated

  • Dec. 2, 2016, 8:46 p.m.

Usage Statistics

When was this article last used?

Congratulations! It looks like you are the first person to view this item online.

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Cheng, Ping. Buoyancy Induced Boundary Layer Flows in Geothermal Reservoirs, article, December 1, 1976; United States. (digital.library.unt.edu/ark:/67531/metadc875934/: accessed November 20, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.