Surfactant-Assisted Growth of CdS Thin Films for Photovoltaic Applications

PDF Version Also Available for Download.

Description

A common non-ionic surfactant, Triton X-100, was used to modify the chemical bath deposition (CBD) of CdS "buffer" layers on Cu(In,Ga)Se2 (CIGS) thin films. X-ray photoelectron spectroscopy (XPS) and Auger electron spectroscopy (AES) data demonstrate that films produced with the surfactant have about the same levels of impurities as films grown without it. For thin, ~130 ..ANG.. CdS layers and relative to devices made without the surfactant, average absolute cell efficiencies were increased from 10.5% to 14.8%, or by a relative 41%. Visual inspection of the CdS depositions reveals one possible mechanism of the surfactant's effects: bubbles that form and ... continued below

Physical Description

5 p.

Creation Information

Perkins, C. L. & Hasoon, F. S. November 1, 2005.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

A common non-ionic surfactant, Triton X-100, was used to modify the chemical bath deposition (CBD) of CdS "buffer" layers on Cu(In,Ga)Se2 (CIGS) thin films. X-ray photoelectron spectroscopy (XPS) and Auger electron spectroscopy (AES) data demonstrate that films produced with the surfactant have about the same levels of impurities as films grown without it. For thin, ~130 ..ANG.. CdS layers and relative to devices made without the surfactant, average absolute cell efficiencies were increased from 10.5% to 14.8%, or by a relative 41%. Visual inspection of the CdS depositions reveals one possible mechanism of the surfactant's effects: bubbles that form and adhere to the CIGS surface during the CBD reaction are almost completely eliminated with the addition of the TX-100. Thus, pinholes and thin areas in the CdS layers caused by poor wetting of the substrate surface are sharply reduced, leading to large increases in the open circuit voltage in devices produced with the surfactant.

Physical Description

5 p.

Source

  • Related Information: Presented at the 2005 DOE Solar Energy Technologies Program Review Meeting held November 7-10, 2005 in Denver, Colorado. Also included in the proceedings available on CD-ROM (DOE/GO-1020060-2245; NREL/CD-520-38577)

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: NREL/CP-520-38941
  • Grant Number: AC36-99-GO10337
  • Office of Scientific & Technical Information Report Number: 882598
  • Archival Resource Key: ark:/67531/metadc875906

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • November 1, 2005

Added to The UNT Digital Library

  • Sept. 21, 2016, 2:29 a.m.

Description Last Updated

  • April 6, 2017, 12:41 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 1
Total Uses: 3

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Perkins, C. L. & Hasoon, F. S. Surfactant-Assisted Growth of CdS Thin Films for Photovoltaic Applications, article, November 1, 2005; Golden, Colorado. (digital.library.unt.edu/ark:/67531/metadc875906/: accessed August 17, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.