Prediction and prevention of silica scaling at low levels of oversaturation: Case studies, and calculations for Uenotai Geothermal Field, Akita Prefecture, Japan

PDF Version Also Available for Download.

Description

Production system design studies often include site-specific silica scaling field experiments, conducted because the onset and rate of scaling are believed difficult to predict, particularly at relatively low levels of oversaturation such as may exist in separators, flowlines, and injection wells. However, observed scaling occurrences (Cerro Prieto, Dixie Valley, Svartsengi, Otake, Hatchobaru, Milos, experimental work) actually conform fairly well to existing theory and rate equations. It should be possible to predict low level scaling with sufficient confidence for production and injection system design and, in cases where oversaturation is allowed, to design systems with foresight to suppress or manage the ... continued below

Physical Description

165-176

Creation Information

Klein, Christopher W.; Iwata, Shun; Takeuchi, Rituo & Naka, Tohsaku January 1, 1991.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

Production system design studies often include site-specific silica scaling field experiments, conducted because the onset and rate of scaling are believed difficult to predict, particularly at relatively low levels of oversaturation such as may exist in separators, flowlines, and injection wells. However, observed scaling occurrences (Cerro Prieto, Dixie Valley, Svartsengi, Otake, Hatchobaru, Milos, experimental work) actually conform fairly well to existing theory and rate equations. It should be possible to predict low level scaling with sufficient confidence for production and injection system design and, in cases where oversaturation is allowed, to design systems with foresight to suppress or manage the scale which develops. A promising suppression technology is fluid pH reduction by mixing with non-condensible gases and/or condensate. Calculations for injection lines at Uenotai geothermal field indicate molecular deposition at rates of 0.1 to 1 mm/yr, and some potential for particle deposition at points of turbulence, which can be suppressed by an order of magnitude with about 500 ppm CO{sub 2}. Further improvements of predictive technique will benefit from more uniformity in designing experiments, reporting results, and reporting measurements of scaling in actual production systems.

Physical Description

165-176

Source

  • Proceedings, sixteenth workshop on geothermal reservoir engineering, Stanford University, Stanford, CA, January 23-25, 1991

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: SGP-TR-134-22
  • Grant Number: None
  • Office of Scientific & Technical Information Report Number: 887506
  • Archival Resource Key: ark:/67531/metadc875904

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • January 1, 1991

Added to The UNT Digital Library

  • Sept. 21, 2016, 2:29 a.m.

Description Last Updated

  • Dec. 9, 2016, 6:47 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 1

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Klein, Christopher W.; Iwata, Shun; Takeuchi, Rituo & Naka, Tohsaku. Prediction and prevention of silica scaling at low levels of oversaturation: Case studies, and calculations for Uenotai Geothermal Field, Akita Prefecture, Japan, article, January 1, 1991; United States. (digital.library.unt.edu/ark:/67531/metadc875904/: accessed December 18, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.