Hadron Optics: Diffraction Patterns in Deeply Virtual Compton Scattering

PDF Version Also Available for Download.

Description

We show that the Fourier transform of the Deeply Virtual Compton Scattering (DVCS) amplitude with respect to the skewness variable {zeta} provides a unique way to visualize the light-front wavefunctions (LFWFs) of the target state in the boost-invariant longitudinal coordinate space variable ({sigma} = P{sup +}y{sup -}/2). The results are analogous to the diffractive scattering of a wave in optics in which the dependence of the amplitude on {sigma} measures the physical size of the scattering center of a one-dimensional system. If one combines this longitudinal transform with the Fourier transform of the DVCS amplitude with respect to the transverse ... continued below

Creation Information

Brodsky, S May 16, 2006.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Author

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

We show that the Fourier transform of the Deeply Virtual Compton Scattering (DVCS) amplitude with respect to the skewness variable {zeta} provides a unique way to visualize the light-front wavefunctions (LFWFs) of the target state in the boost-invariant longitudinal coordinate space variable ({sigma} = P{sup +}y{sup -}/2). The results are analogous to the diffractive scattering of a wave in optics in which the dependence of the amplitude on {sigma} measures the physical size of the scattering center of a one-dimensional system. If one combines this longitudinal transform with the Fourier transform of the DVCS amplitude with respect to the transverse momentum transfer {Delta}{sup {perpendicular}}, one can obtain a complete three-dimensional description of hadron optics at fixed light-front time {tau} = t + z/c. As a specific example, we utilize the quantum fluctuations of a fermion state at one loop in QED to obtain the behavior of the DVCS amplitude for electron-photon scattering. We then simulate the wavefunctions for a hadron by differentiating the above LFWFs with respect to M{sup 2} and study the corresponding DVCS amplitudes in {sigma} space.

Source

  • Journal Name: Physical Review D

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: SLAC-PUB-11615
  • Grant Number: AC02-76SF00515
  • Office of Scientific & Technical Information Report Number: 882421
  • Archival Resource Key: ark:/67531/metadc875897

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • May 16, 2006

Added to The UNT Digital Library

  • Sept. 21, 2016, 2:29 a.m.

Description Last Updated

  • Nov. 28, 2016, 7:31 p.m.

Usage Statistics

When was this article last used?

Congratulations! It looks like you are the first person to view this item online.

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Brodsky, S. Hadron Optics: Diffraction Patterns in Deeply Virtual Compton Scattering, article, May 16, 2006; [Menlo Park, California]. (digital.library.unt.edu/ark:/67531/metadc875897/: accessed July 16, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.