A large liquid argon time projection chamber for long-baseline, off-axis neutrino oscillation physics with the NuMI beam

PDF Version Also Available for Download.

Description

Results from neutrino oscillation experiments in the last ten years have revolutionized the field of neutrino physics. While the overall oscillation picture for three neutrinos is now well established and precision measurements of the oscillation parameters are underway, crucial issues remain. In particular, the hierarchy of the neutrino masses, the structure of the neutrino mixing matrix, and, above all, CP violation in the neutrino sector are the primary experimental challenges in upcoming years. A program that utilizes the newly commissioned NuMI neutrino beamline, and its planned upgrades, together with a high-performance, large-mass detector will be in an excellent position to ... continued below

Physical Description

63 pages

Creation Information

Finley, D.; Jensen, D.; Jostlein, H.; Marchionni, A.; Pordes, S.; Rapidis, P. A. et al. September 1, 2005.

Context

This report is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this report can be viewed below.

Who

People and organizations associated with either the creation of this report or its content.

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this report. Follow the links below to find similar items on the Digital Library.

Description

Results from neutrino oscillation experiments in the last ten years have revolutionized the field of neutrino physics. While the overall oscillation picture for three neutrinos is now well established and precision measurements of the oscillation parameters are underway, crucial issues remain. In particular, the hierarchy of the neutrino masses, the structure of the neutrino mixing matrix, and, above all, CP violation in the neutrino sector are the primary experimental challenges in upcoming years. A program that utilizes the newly commissioned NuMI neutrino beamline, and its planned upgrades, together with a high-performance, large-mass detector will be in an excellent position to provide decisive answers to these key neutrino physics questions. A Liquid Argon time projection chamber (LArTPC) [2], which combines fine-grained tracking, total absorption calorimetry, and scalability, is well matched for this physics program. The few-millimeter-scale spatial granularity of a LArTPC combined with dE/dx measurements make it a powerful detector for neutrino oscillation physics. Scans of simulated event samples, both directed and blind, have shown that electron identification in {nu}{sub e} charged current interactions can be maintained at an efficiency of 80%. Backgrounds for {nu}{sub e} appearance searches from neutral current events with a {pi}{sup 0} are reduced well below the {approx} 0.5-1.0% {nu}{sub e} contamination of the {nu}{sub {mu}} beam [3]. While the ICARUS collaboration has pioneered this technology and shown its feasibility with successful operation of the T600 (600-ton) LArTPC [4], a detector for off-axis, long-baseline neutrino physics must be many times more massive to compensate for the low event rates. We have a baseline concept [5] based on the ICARUS wire plane structure and commercial methods of argon purification and housed in an industrial liquefied-natural-gas tank. Fifteen to fifty kton liquid argon capacity tanks have been considered. A very preliminary cost estimate for a 50-kton detector is $100M (unloaded) [6]. Continuing R&D will emphasize those issues pertaining to implementation of this very large scale liquid argon detector concept. Key hardware issues are achievement and maintenance of argon purity in the environment of an industrial tank, the assembly of very large electrode planes, and the signal quality obtained from readout electrodes with very long wires. Key data processing issues include an initial focus on rejection of cosmic rays for a surface experiment. Efforts are underway at Fermilab and a small number of universities in the US and Canada to address these issues with the goal of embarking on the construction of industrial-scale prototypes within one year. One such prototype could be deployed in the MiniBooNE beamline or in the NuMI surface building where neutrino interactions could be observed. These efforts are complementary to efforts around the world that include US participation, such as the construction of a LArTPC for the 2-km detector location at T2K [7]. The 2005 APS neutrino study [1] recommendations recognize that ''The development of new technologies will be essential for further advances in neutrino physics''. In a recent talk to EPP2010, Fermilab director P. Oddone, discussing the Fermilab program, states on his slides: ''We want to start a long term R&D program towards massive totally active liquid Argon detectors for extensions of NOvA''. [8]. As such, we are poised to enlarge our R&D efforts to realize the promise of a large liquid argon detector for neutrino physics.

Physical Description

63 pages

Language

Item Type

Identifier

Unique identifying numbers for this report in the Digital Library or other systems.

  • Report No.: FERMILAB-FN-0776-E
  • Grant Number: AC02-76CH03000
  • DOI: 10.2172/875538 | External Link
  • Office of Scientific & Technical Information Report Number: 875538
  • Archival Resource Key: ark:/67531/metadc875851

Collections

This report is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this report?

When

Dates and time periods associated with this report.

Creation Date

  • September 1, 2005

Added to The UNT Digital Library

  • Sept. 21, 2016, 2:29 a.m.

Description Last Updated

  • July 25, 2017, 3:47 p.m.

Usage Statistics

When was this report last used?

Congratulations! It looks like you are the first person to view this item online.

Interact With This Report

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Finley, D.; Jensen, D.; Jostlein, H.; Marchionni, A.; Pordes, S.; Rapidis, P. A. et al. A large liquid argon time projection chamber for long-baseline, off-axis neutrino oscillation physics with the NuMI beam, report, September 1, 2005; Batavia, Illinois. (digital.library.unt.edu/ark:/67531/metadc875851/: accessed April 26, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.