Addition of Tropospheric Chemistry and Aerosols to the NCAR Community Climate System Model

PDF Version Also Available for Download.

Description

Atmospheric chemistry and aerosols have several important roles in climate change. They affect the Earth's radiative balance directly: cooling the earth by scattering sunlight (aerosols) and warming the Earth by trapping the Earth's thermal radiation (methane, ozone, nitrous oxide, and CFCs are greenhouse gases). Atmospheric chemistry and aerosols also impact many other parts of the climate system: modifying cloud properties (aerosols can be cloud condensation nuclei), fertilizing the biosphere (nitrogen species and soil dust), and damaging the biosphere (acid rain and ozone damage). In order to understand and quantify the effects of atmospheric chemistry and aerosols on the climate and ... continued below

Physical Description

5 p. (0.2 MB)

Creation Information

Cameron-Smith, P; Lamarque, J; Connell, P; Chuang, C; Rotman, D & Taylor, J November 14, 2005.

Context

This report is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this report can be viewed below.

Who

People and organizations associated with either the creation of this report or its content.

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this report. Follow the links below to find similar items on the Digital Library.

Description

Atmospheric chemistry and aerosols have several important roles in climate change. They affect the Earth's radiative balance directly: cooling the earth by scattering sunlight (aerosols) and warming the Earth by trapping the Earth's thermal radiation (methane, ozone, nitrous oxide, and CFCs are greenhouse gases). Atmospheric chemistry and aerosols also impact many other parts of the climate system: modifying cloud properties (aerosols can be cloud condensation nuclei), fertilizing the biosphere (nitrogen species and soil dust), and damaging the biosphere (acid rain and ozone damage). In order to understand and quantify the effects of atmospheric chemistry and aerosols on the climate and the biosphere in the future, it is necessary to incorporate atmospheric chemistry and aerosols into state-of-the-art climate system models. We have taken several important strides down that path. Working with the latest NCAR Community Climate System Model (CCSM), we have incorporated a state-of-the-art atmospheric chemistry model to simulate tropospheric ozone. Ozone is not just a greenhouse gas, it damages biological systems including lungs, tires, and crops. Ozone chemistry is also central to the oxidizing power of the atmosphere, which destroys a lot of pollutants in the atmosphere (which is a good thing). We have also implemented a fast chemical mechanism that has high fidelity with the full mechanism, for significantly reduced computational cost (to facilitate millennium scale simulations). Sulfate aerosols have a strong effect on climate by reflecting sunlight and modifying cloud properties. So in order to simulate the sulfur cycle more fully in CCSM simulations, we have linked the formation of sulfate aerosols to the oxidizing power of the atmosphere calculated by the ozone mechanisms, and to dimethyl sulfide emissions from the ocean ecosystem in the model. Since the impact of sulfate aerosols depends on the relative abundance of other aerosols in the atmosphere, we also implemented interactive simulation of nitrate, sea-salt, black carbon, and both primary and secondary organic aerosols into CCSM (using assumed size distributions). These new capabilities are opening the door to studies of the role atmospheric chemistry and aerosols in climate change, and their impact on the biosphere, that were previously impossible.

Physical Description

5 p. (0.2 MB)

Notes

PDF-file: 5 pages; size: 0.2 Mbytes

Language

Item Type

Identifier

Unique identifying numbers for this report in the Digital Library or other systems.

  • Report No.: UCRL-TR-217228
  • Grant Number: W-7405-ENG-48
  • DOI: 10.2172/881068 | External Link
  • Office of Scientific & Technical Information Report Number: 881068
  • Archival Resource Key: ark:/67531/metadc875837

Collections

This report is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this report?

When

Dates and time periods associated with this report.

Creation Date

  • November 14, 2005

Added to The UNT Digital Library

  • Sept. 21, 2016, 2:29 a.m.

Description Last Updated

  • April 13, 2017, 6:12 p.m.

Usage Statistics

When was this report last used?

Yesterday: 0
Past 30 days: 2
Total Uses: 2

Interact With This Report

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Cameron-Smith, P; Lamarque, J; Connell, P; Chuang, C; Rotman, D & Taylor, J. Addition of Tropospheric Chemistry and Aerosols to the NCAR Community Climate System Model, report, November 14, 2005; Livermore, California. (digital.library.unt.edu/ark:/67531/metadc875837/: accessed December 17, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.