Mechanical and Thermal Properties of Ultra-High Carbon Steel Containing Aluminum

PDF Version Also Available for Download.

Description

The properties of ultrahigh carbon steels (UHCS) are strongly influenced by aluminum additions. Hardness studies of quenched UHCS-Al alloys reveal that the temperature for the start of transformation increases with increases in aluminum content. It is shown that this change is a function of the atomic percent of solute and of the valence state when comparisons are made with UHCSs containing silicon and tin as solutes. The thermal expansion of UHCSs with dilute aluminum additions shows no discontinuity in the vicinity of the ferrite-austenite transformation temperature. This is the result of a three phase region of ferrite, carbides and austenite. ... continued below

Physical Description

PDF-file: 8 pages; size: 1.3 Mbytes

Creation Information

Syn, C K; Lesuer, D R; Goldberg, A; Tsai, H C & Sherby, O D October 3, 2005.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

The properties of ultrahigh carbon steels (UHCS) are strongly influenced by aluminum additions. Hardness studies of quenched UHCS-Al alloys reveal that the temperature for the start of transformation increases with increases in aluminum content. It is shown that this change is a function of the atomic percent of solute and of the valence state when comparisons are made with UHCSs containing silicon and tin as solutes. The thermal expansion of UHCSs with dilute aluminum additions shows no discontinuity in the vicinity of the ferrite-austenite transformation temperature. This is the result of a three phase region of ferrite, carbides and austenite. The slope of the expansion curve is higher in the austenite range than in the ferrite range as a result of the dissolution of carbon in austenite with temperature. Processing to achieve a fine grain size in UHCS-Al alloys was principally by hot and warm working (HWW) followed by isothermal warm working (IWW). The high temperature mechanical properties of a UHCS-10Al-1.5C material show nearly Newtonian-viscous behavior at 900 to 1000 C. Tensile elongations of 1200% without failure were achieved in the 1.5%C material. The high oxidation corrosion resistance of the UHCS-10Al materials is described.

Physical Description

PDF-file: 8 pages; size: 1.3 Mbytes

Source

  • Presented at: International Conference onPROCESSING & MANUFACTURING OF ADVANCED MATERIALS (Thermec' 2006) Processing, Fabrication, Properties, Applications, Vancouver, Canada, Jul 04 - Jul 08, 2006

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: UCRL-PROC-215848
  • Grant Number: W-7405-ENG-48
  • Office of Scientific & Technical Information Report Number: 891732
  • Archival Resource Key: ark:/67531/metadc875743

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • October 3, 2005

Added to The UNT Digital Library

  • Sept. 21, 2016, 2:29 a.m.

Description Last Updated

  • Dec. 7, 2016, 5:31 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 4
Total Uses: 7

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Syn, C K; Lesuer, D R; Goldberg, A; Tsai, H C & Sherby, O D. Mechanical and Thermal Properties of Ultra-High Carbon Steel Containing Aluminum, article, October 3, 2005; Livermore, California. (digital.library.unt.edu/ark:/67531/metadc875743/: accessed October 21, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.