Chemical Environment at Waste Package Surfaces in a High-Level Radioactive Waste Repository

PDF Version Also Available for Download.

Description

We have conducted a series of deliquescence, boiling point, chemical transformation, and evaporation experiments to determine the composition of waters likely to contact waste package surfaces over the thermal history of the repository as it heats up and cools back down to ambient conditions. In the above-boiling period, brines will be characterized by high nitrate to chloride ratios that are stable to higher temperatures than previously predicted. This is clearly shown for the NaCl-KNO{sub 3} salt system in the deliquescence and boiling point experiments in this report. Our results show that additional thermodynamic data are needed in nitrate systems to ... continued below

Physical Description

PDF-file: 41 pages; size: 1.8 Mbytes

Creation Information

Carroll, S; Alai, M; Craig, L; Gdowski, G; Hailey, P; Nguyen, Q A et al. May 26, 2005.

Context

This report is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this report can be viewed below.

Who

People and organizations associated with either the creation of this report or its content.

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this report. Follow the links below to find similar items on the Digital Library.

Description

We have conducted a series of deliquescence, boiling point, chemical transformation, and evaporation experiments to determine the composition of waters likely to contact waste package surfaces over the thermal history of the repository as it heats up and cools back down to ambient conditions. In the above-boiling period, brines will be characterized by high nitrate to chloride ratios that are stable to higher temperatures than previously predicted. This is clearly shown for the NaCl-KNO{sub 3} salt system in the deliquescence and boiling point experiments in this report. Our results show that additional thermodynamic data are needed in nitrate systems to accurately predict brine stability and composition due to salt deliquescence in dust deposited on waste package surfaces. Current YMP models capture dry-out conditions but not composition for NaCl-KNO{sub 3} brines, and they fail to predict dry-out conditions for NaCl-KNO{sub 3}-NaNO{sub 3} brines. Boiling point and deliquescence experiments are needed in NaCl-KNO{sub 3}-NaNO{sub 3} and NaCl-KNO{sub 3}-NaNO{sub 3}-Ca(NO{sub 3}){sub 2} systems to directly determine dry-out conditions and composition, because these salt mixtures are also predicted to control brine composition in the above-boiling period. Corrosion experiments are needed in high temperature and high NO{sub 3}:Cl brines to determine if nitrate inhibits corrosion in these concentrated brines at temperatures above 160 C. Chemical transformations appear to be important for pure calcium- and magnesium-chloride brines at temperatures greater than 120 C. This stems from a lack of acid gas volatility in NaCl/KNO{sub 3} based brines and by slow CO{sub 2}(g) diffusion in alkaline brines. This suggests that YMP corrosion models based on bulk solution experiments over the appropriate composition, temperature, and relative humidity range can be used to predict corrosion in thin brine films formed by salt deliquescence. In contrast to the above-boiling period, the below-boiling period is characterized predominately by NaCl based brines with minor amounts of K, NO{sub 3}, Ca, Mg, F, and Br at less than 70% relative humidity. These brines are identified as sulfate and bicarbonate brines by the chemical divide theory. Nitrate to chloride ratios are strongly tied to relative humidity and halite solubility. Once the relative humidity is low enough to produce brines saturated with respect to halite, then NO{sub 3}:Cl increases to levels and may inhibit corrosion. In addition to the more abundant NaCl-based brines some measured pore waters will evaporate towards acid NaCl-CaCl{sub 2} brines. Acid volatility also occurs with this brine type indicating that chemical transformations may be important in thin films. In contrast to the above-boiling period, comparison of our experimental data with calculated data suggest that current YMP geochemical models adequately predict in-drift chemistry in the below-boiling period.

Physical Description

PDF-file: 41 pages; size: 1.8 Mbytes

Language

Item Type

Identifier

Unique identifying numbers for this report in the Digital Library or other systems.

  • Report No.: UCRL-TR-212566
  • Grant Number: W-7405-ENG-48
  • DOI: 10.2172/877844 | External Link
  • Office of Scientific & Technical Information Report Number: 877844
  • Archival Resource Key: ark:/67531/metadc875736

Collections

This report is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

What responsibilities do I have when using this report?

When

Dates and time periods associated with this report.

Creation Date

  • May 26, 2005

Added to The UNT Digital Library

  • Sept. 21, 2016, 2:29 a.m.

Description Last Updated

  • Nov. 22, 2016, 10:22 p.m.

Usage Statistics

When was this report last used?

Congratulations! It looks like you are the first person to view this item online.

Interact With This Report

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Carroll, S; Alai, M; Craig, L; Gdowski, G; Hailey, P; Nguyen, Q A et al. Chemical Environment at Waste Package Surfaces in a High-Level Radioactive Waste Repository, report, May 26, 2005; Livermore, California. (digital.library.unt.edu/ark:/67531/metadc875736/: accessed August 17, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.